Responsive image
博碩士論文 etd-0928116-155151 詳細資訊
Title page for etd-0928116-155151
論文名稱
Title
前鎮河底泥中16種多環芳香烴流布調查及新穎類Fenton法結合電動力整治污染底泥之研究
Occurrence and Distribution of 16 Polycyclic Aromatic Hydrocarbons in Sediment of Cianjhen River and Its Treatment by Novel Fenton-like Coupled with Electrokinetic Process
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
190
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-08-30
繳交日期
Date of Submission
2016-10-28
關鍵字
Keywords
多環芳香烴、河川底泥、電動力法、施威特曼石、類Fenton法、十二烷基硫酸鈉
Electrokinetic process, Sodium dodecyl sulfate, Fenton-like process, Schwertmannite, River sediment, Polycyclic aromatic hydrocarbons
統計
Statistics
本論文已被瀏覽 5728 次,被下載 58
The thesis/dissertation has been browsed 5728 times, has been downloaded 58 times.
中文摘要
本研究旨在調查高雄市轄區前鎮河 (含鳳山溪) 底泥中關切的16種多環芳香烴之殘留濃度,並嘗試開發一個利用奈米級施威特曼石 (nano-SHM) 催化過氧化氫產生類Fenton氧化程序,並結合十二烷基硫酸鈉 (SDS) 及電動力法整治受多環芳香烴污染底泥之新穎現地整治技術。於前鎮河 (含鳳山溪) 底泥中16種多環芳香烴之殘留濃度調查工作方面,針對選定之7個採樣點位進行6梯次採集底泥樣品,綜合調查結果顯示,於河川底泥中可檢出不同濃度的16種多環芳香烴之化合物,於前鎮河流域之前鎮橋處檢出最高濃度 (2,282 μg/kg)之總多環芳香烴(16 PAHs),且其Naphthalene、Acenaphthylene、Acenaphthene、Fluorene、Phenanthrene、Benzo(b)fluoranthene及Dibenzo(a,h)anthracene之平均濃度高於我國「底泥品質指標之分類管理及用途限制辦法」下限值,且總毒性當量濃度為377 μg TEQ/kg,而藉由指紋鑑定之結果初判,前鎮河 (含鳳山溪) 之多環芳香烴來源可能為鄰近工廠之排放。另外,本研究利用實驗室規模之新穎現地整治技術(亦即,電動力法結合加強式類Fenton法)整治受到16種多環芳香烴污染之河川底泥,試驗期間則將nano-SHM/H2O2/SDS添加於底泥反應室注入孔,並施加定電壓 (0.2 V/cm) 進行為期15日及30日之5組電動力試驗。試驗結果顯示:(1) 電動力空白試驗結果發現,單純施加電場 (0.2 V/cm) 有助於16種多環芳香烴之去除 (去除率為11%);(2) nano-SHM懸浮液由測試期間每日均量添加改為僅第1日全量添加時,亦可達到良好之去除效率 (71% vs. 67%);(3) 有無以SDS結合類Fenton法會影響總多環芳香烴去除率約10% (77% vs. 67%);(4) 延長電動力反應時間有助於16種多環芳香烴之去除;及 (5) 類Fenton反應會造成整治試驗底泥之結構尺寸變小,進而使底泥孔隙流降低,並阻礙反應試劑之傳輸,藉由電動力法可有效克服此問題。另外,本新穎整治工法其操作成本粗估約2,312 元/噸,具經濟可行性,且具有大規模應用於現地整治之潛勢。
Abstract
The objectives of this study are two-fold: (1) to investigate the residual concentrations of 16 polycyclic aromatic hydrocarbons (16 PAHs) of concern in sediment samples collected from the Cianjhen River; and (2) to develop and establish a feasible, novel in situ remediation technology, which couples enhanced Fenton-like process (nano-schwertmannite (nano-SHM)/H2O2/sodium dodecyl sulfate (SDS) and electrokinetic process for the removal of 16 PAHs in sediments of the Cianjhen River. To meet the first objective, six batches of sediment sampling were conducted at seven sampling sites along the Cianjhen River. The sediment samples were analyzed for 16 PAHs of concern. The highest concentration was detected at the sampling site under Cianjhen Bridge (2,282 μg/kg). The average concentrations of naphthalene, acenaphthylene, acenaphthene, fluorine, phenanthrene, benzo(b)fluoranthene, and dibenzo(a,h)anthracene are greater than the “Regulations for Systematic Management of Quality Indices of Sediments and Their Use Restrictions” promulgated by Taiwan EPA. The toxic equivalent concentration (TEQcarc) of 16 PAHs was 377 μg TEQ/kg. It is postulated that combustion emissions from neighboring factories and industrial park may contribute to the majority of 16 PAHs found in the sediment of Cianjhen River. To meet the second objective, five tests with a remediation time of 15 days or 30 days were carried out using the aforementioned novel in situ remediation technology under an electric potential gradient of 0.2 V/cm coupling with the periodic polarity reversal. Test results for the removal of 16 PAHs in the sediment samples collected at the sampling site under the Cianjhen Bridge of the Cianjhen River are given as follows: (1) Application of an electric potential gradient of 0.2 V/cm would yield 11% removal of 16 PAHs in the blank test, which no oxidants was added to the remediation system; (2) The full amount injection of nano-SHM slurry on Day 1 instead of fractional injection throughout the test period still yielded a good removal efficiency (67% vs. 71%) of 16 PAHs; (3) Further addition of SDS to Fenton-like process would enhance 10% of 16 PAHs removal; (4) As expected, an extension of treatment time from 15 d to 30 d is beneficial to the removal efficiency of 16 PAHs; and (5) Importantly, an employment of electrokinetics would solve the problem of the decreased sediment particle size (due to Fenton-like reaction) that would result in the hindrance of pore water flow and transport of oxidants and surfactant in the sediment compartment. A rough estimate of the unit remediation cost for the said novel in situ remediation technology was determined to be as low as 2,312 TWD/ton. Thus, the novel in situ remediation technology coupling enhanced Fenton-like process (nano-SHM/H2O2/SDS) and electrokinetic process is a potentially viable technology for the removal of 16 PAHs from river sediments in large scale operation.
目次 Table of Contents
論文審定書 i
著作權聲明切結書 ii
誌謝 iii
摘要 iv
Abstract vi
目錄 viii
圖目錄 xii
表目錄 xvii
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 3
1.3研究項目及架構 3
第二章 文獻回顧 6
2.1 多環芳香烴 6
2.1.1 基本性質 6
2.1.2 來源 9
2.1.3 毒理性質 11
2.1.4 傳播途徑 13
2.1.5 河川底泥影響評估 14
2.2 底泥整治技術 18
2.2.1 Fenton法 19
2.2.2 類Fenton法 21
2.2.3 電動力法 23
2.3 施威特曼石 27
2.4 界面活性劑 30
第三章 材料與方法 32
3.1 化學藥品 32
3.1.1 多環芳香烴標準品 32
3.1.2 其他相關藥品及材料 33
3.2 實驗設備 34
3.3 前鎮河 (含鳳山溪) 底泥調查 36
3.3.1 樣品採集 36
3.3.2 樣品前處理 39
3.3.3 樣品分析 40
3.4 電動力輔助新穎氧化劑整治技術 41
3.4.1 整治試驗用河川底泥來源及其基本性質 41
3.4.2 奈米級施威特曼石及其懸浮液製備 44
3.4.3 整治試驗用底泥與nano-SHM/H2O2反應之批次試驗 46
3.4.4電動力輔助新穎氧化劑整治河川底泥中多環芳香烴污染 48
3.5 組合式整治技術評估 54
第四章 結果與討論 55
4.1 前鎮河 (含鳳山溪) 底泥調查 55
4.1.1 空間分布調查 55
4.1.2 時間分布調查 56
4.1.3 多環芳香烴之來源 60
4.1.4 本調查區16種多環芳香烴殘留濃度與其他地區底泥之比較 62
4.1.5 底泥影響評估 64
4.2 施威特曼石 66
4.2.1 奈米級施威特曼石合成 66
4.2.2 奈米級施威特曼石懸浮液製備 70
4.3 電動力輔助新穎氧化劑整治技術 72
4.3.1 整治試驗用底泥與nano-SHM/H2O2反應之批次試驗 72
4.3.2 電動力試驗 75
4.4 降解副產物 109
4.5 操作成本估算 111
4.6 電動力整治河川底泥中16種多環芳香烴之再現性 114
第五章 結論與建議 121
5.1 結論 121
5.1.1 污染調查方面 121
5.1.2 新穎組合式整治技術試驗方面 122
5.2建議 122
5.2.1 污染調查方面 122
5.2.2 新穎組合式整治技術試驗方面 122
參考文獻 124
附錄 152
碩士在學期間發表之學術論文 169
參考文獻 References
Acar, Y. B. and A. N. Alshawabkeh, “Principle of electrokinetic remediation,” Environmental Science & Technology, Vol. 27, pp. 2638-2647 (1993).
Acar, Y. B., R. J. Gale, and A. N. Alshawabkeh, “Electrokinetic remediation: basics and technology status,” Journal of Hazardous Materials, Vol. 40, pp. 117-137 (1995).
Akhbarizadeh, R., F. Moore, B. Keshavarzi, and A. Moeinpour, “Aliphatic and polycyclic aromatic hydrocarbons risk assessment in coastal water and sediments of Khark Island, SW Iran,” Marine Pollution Bulletin, Vol. 108, pp. 33-45 (2016).
Alshawabken, A. N. and H. Sarahney, “Effect of current density on enhanced transformation of naphthalene,” Environmental Science & Technology, Vol. 39, pp. 5837-5843 (2005).
Antelo, J., S. Fiol, D. Gondar, R. López, and F. Arce, “Comparison of arsenate, chromate and molybdate binding on schwertmannite: surface adsorption vs anion-exchange,” Journal of Colloid and Interface Science, Vol. 386, pp. 338-343 (2012).
Arnold, S. M., W. J. Hickey, and R. F. Harris, “Degradation of Atrazine by Fenton’s reagent: Condition optimization and product quantification,” Environmental Science & Technology, Vol. 29, pp. 2083-2089 (1995).
ATSDR, “Toxicological profile for polycyclic aromatic hydrocarbons,” U.S. Department of Health and Human Services, Agency for Toxic Substances and Disease Registry, Atlanta, GA. (1995).
Bailey, K. L., F. Tilton, D. P. Jansik, S. J. Ergas, M. J. Marshall, A. L. Miracle, and D. M. Wellman, “Growth inhibition and stimulation of Shewanella oneidensis MR-1 by surfactants and calcium polysulfide,” Ecotoxicology and Environmental Safety, Vol. 80, pp. 195-202 (2012).
Baker, R. S., J. Lachance, and G. Heron, “In-pile thermal desorption of PAHs, PCBs and dioxins/furans in soil and sediment,” Land Contamination & Reclamation, Vol. 14, pp. 620-624 (2006).
Bigham, J. M., L. Carlson, and E. Murad, “Schwertmannite, a new iron oxyhydroxysulphate from Pyasalmi, Finland, and other localities,” Mineralogical Magazine, Vol. 58, pp. 641-648 (1994).
Bigham, J. M., U. Schwertmann, and G. Pfab, “Influence of pH on mineral speciation in a bioreactor simulating acid mine drainage,” Applied Geochemistry, Vol. 11, pp.845-849 (1996).
Bigham, J. M., U. Schwertmann, L. Carlson, and E. Murad, “A poorly crystallized oxyhydroxysulfate of iron formed by bacterial oxidation of Fe(II) in acid mine waters,” Geochimica et Cosmochimica Acta, Vol. 54, pp. 2743-2758 (1990).
Bocos, E., C. Fernández-Costas, M. Pazos, and M. Á. Sanromán, “Removal of PAHs and pesticides from polluted soils by enhanced electrokinetic-Fenton treatment,” Chemosphere, Vol. 125, pp. 168-174 (2015).
Bokare, A. D. and W. Choi, “Review of iron-free Fenton-like systems for activation H2O2 in advanced oxdation processes,” Journal of Hazardous Materials, Vol. 275, pp. 121-135 (2014).
Boonyatumanond, R., G. Wattayakorn, A. Togo, and H. Takada, “Distribution and origins of polycyclic aromatic hydrocarbons (PAHs) in riverine, estuarine, and marine sediments in Thailand,” Marine Pollution Bulletin, Vol. 52, pp. 942-956 (2006).
Briscoe, B. J., A. U. Khan, and P. F. Luckham, “Optimising the dispersion on an alumina suspension using commercial polyvalent electrolyte dispersants,” Journal of the European Ceramic Society, Vol. 18, pp. 2141-2147 (1998).
Buchman, M. F., “NOAA Screening Quick Reference Tables,” NOAA OR&R Report 08-1, Seattle WA, Office of Response and Restoriation Division, National Oceanic and Atmospheric Administration, USA (2008).
Cang, L., G. P. Fan, D. M. Zhou, and Q. Y. Wang, “Enhanced-electrokinetic remediation of copper–pyrene co-contaminated soil with different oxidants and pH control,” Chemosphere, Vol. 90, pp. 2326-2331 (2013).
Chen, C. W. and C. F. Chen, “Distribution, origin, and potential toxicological significance of polycyclic aromatic hydrocarbons (PAHs) in sediments of Kaohsiung Harbor, Taiwan,” Marine Pollution Bulletin, Vol. 63, pp. 417-423 (2011).
Chen, C. F., N. T. Binh, C. W. Chen, and C. D. Dong, “Removal of polycyclic aromatic hydrocarbons from sediments using sodium persulfate activated by temperature and nanoscale zero-valent iron,” Journal of the Air & Waste Management, Association, Vol. 65, pp. 375-383 (2015a).
Chen, C. F., C. W. Chen, C. D. Dong, and C. M. Kao, “Assessment of toxicity of polycyclic aromatic hydrocarbons in sediments of Kaohsiung Harbor, Taiwan,” Science of the Total Environment, Vol. 463-464, pp. 1174-1181 (2013).
Chen, C. W., N. T. Binh, C. M. Hung, C. F. Chen, and C. D. Dong, “Removal of polycyclic aromatic hydrocarbons from sediments using chemical oxidation processes,” Journal of Advanced Oxidation Technologies, Vol. 18, pp. 15-22 (2015b).
Choi, K., S. Bae, and W. Lee, “Degradation of pyrene in cetylpyridinium chloride-aided soil washing wastewater by pyrite Fenton reaction,” Chemical Engineering Journal, Vol. 249, pp. 34-41 (2014).
Chung, H. I. and M. Kamon, “Ultrasonically enhanced electrokinetic remediation for removal of Pb and phenanthrene in contaminated soils,” Engineering Geology, Vol. 77, pp. 233-242 (2005).
Colacicco, A., G. de Gioannis, A. Muntoni, E. Pettinao, A. Polettini, and R. Pomi, “Enhanced electrokinetic treatment of marine sediments contaminated by heavy metals and PAHs,” Chemosphere, Vol. 81 pp. 46-56 (2010).
de Souza e Silva, P. T., V. L. da Silva, B. de Barros Neto, and M. O. Simonnot, “Phenanthrene and pyrene oxidation in contaminated soils using Fenton’s reagent,” Journal of Hazardous Materials, Vol. 161, pp. 967-973 (2009).
Diggs, D. L., A. C. Huderson, K. L. Harris, J. N. Myers, L. D. Banks, P. V. Rekhadevi, M. S. Niaz, and A. Ramesh, “Polycyclic aromatic hydrocarbons and digestive tract cancers: a perspective,” Journal of Environmental Science and Health, Part C, Vol. 29, pp. 324-357 (2011).
Dong, C. D., C. F. Chen, and C. W. Chen, “Determination of polycyclic aromatic hydrocarbons in industrial harbor sediments by GC-MS,” International Journal of Environmental Research and Public Health, Vol. 9, pp. 2175-2188 (2012).
Dong, S., X. Dou, D. Mohan, C. U. Pittman Jr., and J. Luo, “Synthesis of graphene oxide/schwertmannite nanocomposites and their application in Sb(V) adsorption from water,” Chemical Engineering Journal, Vol. 270, pp. 205-214 (2015).
Doong, R. A. and Y. T. Lin, “Characterization and distribution of polycyclic aromatic hydrocarbon contaminations in surface sediment and water from Gao-ping River, Taiwan,” Water Research, Vol. 38, pp. 1733-1744 (2004).
Eskandarpour, A., M. S. Onyango, A. Ochieng, and S. Asai, “Removal of fluoride ions from aqueous solution at low pH using schwertmannite,” Journal of Hazardous Materials, Vol. 152, pp. 571-579 (2008).
Fang, M. D., C. L. Lee, and C. S. Yu, “Distribution and source recognition of polycyclic aromatic hydrocarbons in the sediments of Hsin-ta Harbour and adjacent coastal areas, Taiwan,” Marine Pollution Bulletin, Vol. 46, pp. 941-953 (2003).
Ferrarese, E., G. Andreottola, and I. A. Oprea, “Remediation of PAH-contaminated sediments by chemical oxidation,” Journal of Hazardous Materials, Vol. 152, pp. 128-139 (2008).
Fine, P. M., G. R. Cass, and B. S. Simoneit, “Chemical characterization of fine particle emissions from fireplace combustion of woods grown in the northeastern United States,” Environmental Science & Technology, Vol. 35, pp. 2665-2675 (2001).
Flotron, V., C. Delteil, Y. Padellec, and V. Camel, “Removal of sorbed polycyclic aromatic hydrocarbons from soil, sludge and sediment samples using the Fenton’s reagent process,” Chemosphere, Vol. 59, pp.1427-1437 (2005).
Fukushi, K., T Sato, and N. Yanase, “Solid-solution reactions in As(V) sorption by schwertmannite,” Environmental Science and Technology, Vol. 37 pp. 3581-3586 (2003).
Garcia-Suastegui, W. A., A. Huerta-Chagoya, K. L. Carrasco-Colin, M. M. Pratt, K. John, P. Petrosyan, J. Rubio, M. C. Poirier, and M. E. Gonsebatt, “Seasonal variations in the levels of PAH–DNA adducts in young adults living in Mexico City,” Mutagenesis, Vol. 26, pp. 385-391 (2011).
Genc, A., G. Chase, and A. Foos, “Electrokinetic removal of manganese from river sediment,” Water, Air, & Soil Pollution, Vol. 197, pp. 131-141 (2009).
Giannis, A., E. Gidarakos, and A. Skouta, “Application of sodium dodecyl sulfate and humic acid as surfactants on electrokinetic remediation of cadmium-contaminated soil,” Desalination, Vol. 211, pp. 249-260 (2007).
Grimmer, G., J. Jacob, K. W. Naujack, and G. Dettbarn, “Profile of the polycyclic aromatic hydrocarbons from used engine oil—inventory by GCGC/MS—PAH in environmental materials, Part 2,” Analytical and Bioanalytical Chemistry, Vol. 309, pp. 13-19 (1981).
Gupta, A., P. Singh, and C. Shivakumara, “Synthesis of BaSO4 nanoparticles by precipitation method using sodium hexametaphosphate as a stabilizer,” Solid State Communications, Vol. 150, pp. 386-388 (2010).
Haroun, M., G. V. Chilingar, and S. Pamukcu, “The efficacy of using electrokinetic transport in highly-contaminated offshore sediments” Journal of Applied Electrochemistry, Vol. 40, pp. 1131-1138 (2010).
Hockridge, J. G., F. Jones, M. Loan, and W. R. Richmond, “An electron microscopy study of the crystal growth of schwertmannite needles through oriented aggregation of goethite nanocrystals,” Journal of Crystal Growth, Vol. 311, pp. 3876-3882 (2009).
Hodaifa, G., J. M. Ochando-Pulido, S. Rodriguez-Vives, and A. Martinez-Ferez, “Optimization of continuous reactor at pilot scale for olive-oil mill wastewater treatment by Fenton-like process,” Chemical Engineering Journal, Vol. 220, pp. 117-124 (2013).
Huguenot, D., E. Mousset, E. D. van Hullbusch, and M. A. Oturan, “Combination of surfactant enhanced soil washing and electro-Fenton process for the treatment of soils contaminated by petroleum hydrocarbons,” Journal of Environmental Management, Vol. 153, pp. 40-47 (2015).
Hung, C. C., G. C. Gong, F. C. Ko, H. Y. Chen, M. L. Hsu, J. M. Wu, S. C. Peng, F. H. Nan, K. M. Yeager, and P. H. Santschi, “Relationships between persistent organic pollutants and carbonaceous materials in aquatic sediments of Taiwan,” Marine Pollution Bulletin, Vol. 60, pp. 1010-1017 (2010).
Hwang, S and T. J. Cutright, “Effect of expandable clays and cometabolism on PAH biodegradability,” Environmental Science and Pollution Research, Vol. 10, pp. 277-280 (2003).
IARC, “List of classification, volumes1-112,” International Agency for Research on Cancer, France, http://monographs.iarc.fr/ENG/Classification/latest_classif.php (2015).
Iglesias, O., M. A. Sanromán, and M. Pazos, “Surfactant-Enhanced Solubilization and Simultaneous Degradation of Phenanthrene in Marine Sediment by Electro-Fenton Treatment,” Industrial & Engineering Chemistry Research, Vol. 53, pp. 2917-2923 (2014).
IPCS, “Selected non-heterocyclic policyclic aromatic hydrocarbons,” International Programme on Chemical Safety, USA, http://www.inchem.org/documents/ehc/ehc/ehc202.htm. (2010).
Jee, S. H., S. O. Ko, and H. N. Jang, “Effects of surfactants on the Fenton degradation of phenanthrene in contaminated sediments,” Environmental Engineering Research, Vol. 10, pp.138-143 (2005).
Jiang, J. J., C. L. Lee, M. D. Fang, and J. T. Liu, “Polycyclic aromatic hydrocarbons in coastal sediments of southwest Taiwan: an appraisal of diagnostic ratios in source recognition,” Marine Pollution Bulletin, Vol. 58, pp. 752-760 (2009).
Jönsson, J., S. Sjöberg, and L. Lövgren, “Adsorption of Cu(II) to schwertmannite and goethite in presence of dissolved organic matter,” Water Research, Vol. 40, pp. 969-974 (2006).
Jönsson, J., P. Persson, S. Sjöberg, and L. Lövgren, “Schwertmannite precipitated from acid mine drainage: phase transformation, sulphate release and surface properties,” Applied Geochemistry, Vol. 20, pp. 179-191 (2005).
Jönsson, S., Y. Persson, S. Frankki, B. van Bavel, S. Lundstedt, P. Haglund, and M. Tysklind, “Degradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soils by Fenton’s reagent: A multivariate evaluation of the importance of soil characteristics,” Journal of Hazardous Materials, Vol. 149, pp.86-96 (2007).
Kanzari, F., A. D. Syakti, L. Asia, L. Malleret, A. Piram, G. Mille, and P. Doumenq, “Distributions and sources of persistent organic pollutants (aliphatic hydrocarbons, PAHs, PCBs and pesticides) in surface sediments of an industrialized urban river (Huveaune), France,” Science of the Total Environment, Vol. 478, pp.141-151 (2014).
Kim, G., W. Jeong, and S. Choe, “Impact of pH buffer capacity of sediment on dechlorination of atrazine using zero valent iron,” Journal of Environmental Science and Health Part B, Vol. 42, pp. 287-295 (2007).
Kim, K. H., S. A. Jahan, E. Kabir, and R. J. C. Brown, “A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects,” Environment International, Vol. 60, pp. 71-80 (2013).
Ko, F. C., C. W. Chang, and J. O. Cheng, “Comparative study of polycyclic aromatic hydrocarbons in coral tissues and the ambient sediments from Kenting National Park, Taiwan,” Environmental Pollution, Vol. 185, pp. 35-43 (2014).
Krein, A. and M. Schorer, “Road runoff pollution by polycyclic aromatic hydrocarbons and its contribution to river sediments,” Water Research, Vol. 34, pp. 4110-4115 (2000).
Kumpulainen, S., F. von der Kammer, and T. Hofmann, “Humic acid adsorption and surface charge effects on schwertmannite and goethite in acid sulphate waters,” Water Research, Vol. 42, pp. 2051-2060 (2008).
Kuo, J. Y., F. C. Ko, J. O. Cheng, P. J. Meng, J. J. Li, and C. C. Hung, “Environmental assessment of polycyclic aromatic hydrocarbons in the surface sediments of a remote region on the eastern coast, Taiwan,” Environmental Monitoring and Assessment, Vol. 184, pp. 2967-2979 (2012).
Kuppayee, M., G. K. V. Nachiyar, and V. Ramasamy, “Synthesis and characterization of Cu2+ doped ZnS nanoparticles using TOPO and SHMP as capping agents,” Applied Surface Science, Vol. 257, pp. 6779-6786 (2011).
Lee, C. L., M. T. Hsieh, and M. D. Fang, “Aliphatic and polycyclic aromatic hydrocarbons in sedments of Kaohsiung harbour and adjacent coast, Taiwan,” Environmental Monitoring and Assessment, Vol. 100, pp. 217-234 (2005).
Lee, Y. H., S. M. Chuang, S. C. Huang, X. Tan, R. Y. Liang, G. C. C. Yang, and P. J. Chueh, “Biocompatibility assessment of nanomaterials for environmental safety screening,” Environmental Toxicology, doi: 10.1002/tox.22313 (2016).
Leinz, R. W., D. B. Hoover, and A. L. Meier, “NEOCHIM: an electrochemical method for environmental application,” Journal of Geochemical Exploration, Vol. 64, pp. 421-434 (1998).
Lemaire, J., M. Buès, T. Kabeche, K. Hanna, and M. O. Simonnot, “Oxidant selection to treat an aged PAH contaminated soil by in situ chemical oxidation,” Journal of Environmental Chemical Engineering, Vol. 1, pp. 1261-1268 (2013).
Li, T., S. Yuan, J. Wan, and X. Lu, “Hydroxypropyl-β-cyclodextrin enhanced electrokinetic remediation of sediment contaminated with HCB and heavy metals,” Journal of Hazardous Materials, Vol. 176, pp. 306-312 (2010).
Li, P., R. Xue, Y. Wang, R. Zhang, and G. Zhang, “Influence of anthropogenic activities on PAHs in sediments in a significant gulf of low-latitude developing regions, the Beibu Gulf, South China Sea: distribution, sources, inventory and probability risk,” Marine Pollution Bulletin, Vol. 90, pp. 218-226 (2015a).
Li, G., X. Xia, Z. Yang, R. Wang, and N. Voulvoulis, “Distribution and sources of polycyclic aromatic hydrocarbons in the middle and lower reaches of the Yellow River, China,” Environmental Pollution, Vol. 144, pp. 985-993 (2006).
Li, B., C. Feng, X. Li, Y. Chen, J. Niu and Z. Shen, “Spatial distribution and source apportionment of PAHs in surficial sediments of the Yangtze Estuary, China,” Marine Pollution Bulletin, Vol. 64, pp. 636-643 (2012).
Li, J., H. Dong, D. Zhang, B. Han, C. Zhu, S. Liu, X. Liu, Q. Ma, and X. Li, “Sources and ecological risk assessment of PAHs in surface sediments from Bohai Sea and northern part of the Yellow Sea, China,” Marine Pollution Bulletin, Vol. 96, pp. 485-490 (2015b).
Liang, Y., M. F. Tse, L. Young, and M. H. Wong, “Distribution patterns of polycyclic aromatic hydrocarbons (PAHs) in the sediments and fish at Mai Po Marshes Nature Reserve, Hong Kong,” Water Research, Vol. 41, pp. 1303-1311 (2007).
Liao, Y., J. Liang, and L. Zhou, “Adsorptive removal of As(III) by biogenic schwertmannite form simulated As-contaminated groundwater,” Chemosphere, Vol. 83, pp. 295-301 (2011).
Liu, Y., L. Chen, Q. H. Huang, W. Y. Li, Y. J. Tang, and J. F. Zhao, “Source apportionment of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of the Huangpu River, Shanghai, China,” Science of the Total Environment, Vol. 407, pp. 2931-2938 (2009).
Liu Y., B. Beckingham, H. Ruegner, Z. Li, L. Ma, M. Schwientek, H. Xie, J. Zhao, and P. Grathwohl, “Comparison of sedimentary PAHs in the rivers of Ammer (Germany) and Liangtan (China): differences between early- and newly- industrialized countries,” Environmental Science & Technology, Vol. 23, pp. 701-709 (2013).
Loan, M., W. R. Richmond, and G. M. Parkinson, “On the crystal growth of nanoscale schwertmannite,” Journal of Crystal Growth, Vol. 275, pp. e1875-e1881 (2005).
Long, E., C. G. Ingersoll, and D. D. Macdonald, “Calculation and uses of mean sediment quality guideline quotients: a critical review,” Environmental Science & Technology, Vol. 40 pp. 1726-1736 (2006).
Lu, X. Y., B. Li, T. Zhang, and H. H. P. Fang, “Enhanced anoxic bioremediation of PAHs-contaminated sediment,” Bioresource Technology, Vol. 104, pp. 51-58 (2012).
Lu, M., Z. Zhang, W. Qiao, Y. Guan, M. Xiao, and C. Peng, “Removal of residual contaminants in petroleum-contaminated soil by Fenton-like oxidation,” Journal of Hazardous Materials, Vol. 179, pp. 604-611 (2010).
Luo, Q., H. Wang, X. Zhang, and Y. Qian, “Effect of direct electric current on the cell surface properties of phenol-degrading bacteria,” Applied and Environmental Microbiology, Vol. 71, pp. 423-427 (2005).
Ma, J. W., F. Y. Wang, Z. H. Huang, and H. Wang, “Simultaneous removal of 2,4-dichlorophenol and Cd from soils by electrokinetic remediation combined with activated bamboo charcoal,” Journal of Hazardous Materials, Vol. 176, pp. 715-720 (2010).
Maini, G., A. K. Sharman, C. J. Knowles, G. Sunderland, and S. A. Jackman, “Electrokinetic remediation of metals and organics from historically contaminated soil,” Journal of Chemical Technology and Biotechnology, Vol. 75, pp. 657-664 (2000).
Margesin, R. and F. Schinner, “Biodegradation of diesel oil by cold-adapted microorganisms in presence of sodium dodecyl sulfate,” Chemosphere, Vol. 38, pp. 3463-3472 (1999).
Marks, P. J., W. J. Wujcik, and F. A. Loncar, “Remediation technologies screening matrix and reference guide,” DOD Environmental Technology (1994).
Martens, D. A. and W. T. Frankenberger Jr., “Enhanced degradation of polycyclic aromatic hydrocarbons in soil treated with an advanced oxidative process-Fenton’s Reagent,” Journal of Soil Contamination, Vol. 4, pp. 175-190 (1995).
Maturi, K., K. R. Reddy, and C. Cameselle, “Surfactant-enhanced electrokinetic remediation of mixed contamination in low permeability soil,” Separation Science and Technology, Vol. 44, pp. 2385-2409 (2009).
Men, B., M. He, L. Tan, C. Lin, and X. Quan, “Distributions of polycyclic aromatic hydrocarbons in the Daliao River Estuary of Liaodong Bay, Bohai Sea (China),” Marine Pollution Bulletin, Vol. 58, pp. 818-826 (2009).
Mena, E., J. Villaseñor, M. A. Rodrigo, and P. Cañizares, “Electrokinetic remediation of soil polluted with insoluble organics using biological permeable reactive barriers: Effect of periodic polarity reversal and voltage gradient,” Chemical Engineering Journal, Vol. 299, pp. 30-36 (2016).
Mena, E., C. Ruiz, J. Villasenor, M. A. Rodrigo, and P. Canizares, “Biological permeable reactive barriers coupled with electrokinetic soil flushing for the treatment of diesel-polluted clay soil,” Journal of Hazardous Materials, Vol. 283, pp. 131-139 (2015).
Montuori, P., S. Aurino, F. Garzonio, P. Sarnacchiaro, A. Nardone, and M. Triassi, “Distribution, sources and ecological risk assessment of polycyclic aromatic hydrocarbons in water and sediments from Tiber River and estuary, Italy,” Science of Total Environment, Vol. 566-567, pp. 1254-1267 (2016).
Mousset, E., N. Oturan, E. D. van Hullebusch, G. Guibaud, G. Esposito, and M. A. Oturan, “Influence of solubilizing agents (cyclodextrin or surfactant) on phenanthrene degradation by electro-Fenton process – Study of soil washing recycling possibilities and environmental impact,” Water Research, Vol. 48, pp. 306-316 (2014).
Mozeto, A. A., T. M. Yamada, C. R. de Morais, M. R. L. do Nascimento, P. S. Fadini, R. J. Torres, A. P. E. Sueitt, and B. M. de Faria, “Assessment of organic and inorganic contaminants in sediments of an urban tropical eutrophic reservoir,” Environmental Monitoring and Assessment, Vol. 186, pp. 815-834 (2014).
Niroumand, H., R. Nazir, and K. A. Kassim, “The performance of electrochemical remediation technologies in soil mechanics,” International Journal of Electrochemical Science, Vol. 7, pp. 5708-5715 (2012).
Oenbrink, G. and T. Schiffer, “Cyclododecanol, cyclododecanone, and laurolactam,” in Ullman’s Encyclopedia of Industrial Chemistry: Wiley-VCH, doi: 10.1002/14356007.a08_201.pub2 (2009).
Oh, S. Y., and D. S. Shin, “Treatment of diesel-contaminated soil by Fenton and persulfate oxidation with zero-valent iron,” Soil and Sediment Contamination, Vol. 23, pp. 180-193 (2014).
Oonnittan, A., R. A. Shrestha, and M. Sillanpää, “Effect of cyclodextrin on the remediation of hexachlorobenzene in soil by electrokinetic Fenton process,” Separation and Purification Technology, Vol. 64, pp. 314-320 (2009).
Oros, D. R. and J. R. M. Ross, “Polycyclic aromatic hydrocarbons in San Francisco Estuary sediments,” Marine Chemistry, Vol. 86, pp. 169-184 (2004).
Paikaray, S., J. Göttlicher, and S. Peiffer, “Removal of As(III) from acidic waters using schwertmannite: surface speciation and effect of synthesis pathway,” Chemical Geology, Vol. 283, pp.134-142 (2011).
Parab, H. J., J. H. Huang, T. C. Lai, Y. H. Jan, R. S. Liu, J. L. Wang, M. Hsiao, C. H. Chen, Y. K. Hwu, D. P. Tsai, S. Y. Chuang, and J. H. S. Pang, “Biocompatible transferrin-conjugated sodium hexametaphosphate-stabilized gold nanoparticles: synthesis, characterization, cytotoxicity and cellular uptake,” Nanotechnology, Vol. 22, pp. 395706 (2011).
Paria, S., “Surfactant-enhanced remediation of organic contaminated soil and water,” Advances in Colloid and Interface Science, Vol. 138 pp. 24-58 (2008).
Park, J. Y. and J. H. Kim, “Switching effects of electrode polarity and introduction direction of reagents in electrokinetic-Fenton process with anionic surfactant for remediation iron-rich soil contaminated with phenanthrene,” Electrochimica Acta, Vol. 56, pp. 8094-8100 (2011).
Park, J. Y. and J. H. Kim, “Role of sol with iron oxyhydroxide/sodium dodecyl sulfate composites on Fenton oxidation of sorbed phenanthrene in sand,” Journal of Environmental Management, Vol. 126, pp. 72-78 (2013).
Pardo, F., J. M. Rosas, A. Santos, and A. Romero, “Remediation of a biodiesel blend-contaminated soil by using a modified Fenton process,” Environmental Science and Pollution Research, Vol. 21, pp. 12198-12207 (2014).
Pardo, F., M. Peluffo, A. Santos, and A. Romero, “Optimization of the application of the Fenton chemistry for the remediation of a contaminated soil with polycyclic aromatic hydrocarbons,” Journal of Chemical Technology and Biotechnology, Vol. 91, pp. 1763-1772 (2016).
Pazos, M., M. A. Sanromán, and C. Cameselle, “Improvement in electrokinetic remediation of heavy metal spiked kaolin with the polarity exchange technique,” Chemosphere, Vol. 62, pp. 817-822 (2006).
Pazos, M., O. Iglesias, J. Gómez, E. Rosales, and M. A. Sanromán, “Remediation of contaminated marine sediment using electrokinetic-Fenton technology,” Journal of Industrial and Engineering Chemistry, Vol. 19, pp. 932-937 (2013).
Peluffo, M., F. Pardo, A. Santos, and A. Romero, “Use of different kinds of persulfate activation with iron for the remediation of a PAH-contaminated soil,” Science of The Total Environment, Vol. 563-564, pp. 649-656 (2016).
Qiao, M., C. Wang, S. Huang, D. Wang, and Z. Wang, “Composition, sources, and potential toxicological significance of PAHs in the surface sediments of the Meiliang Bay, Taihu Lake, China,” Environment International, Vol. 32, pp. 28-33 (2006).
Raeisi, A., H. Arfaeinia, M. Seifi, M. S. Siboni, M. Keshtkar, and S. Dobaradaran, “Polycyclic aromatic hydrocarbons (PAHs) in coastal sediments from urban and industrial areas of Asaluyeh Harbor, Iran: distribution, potential source and ecological risk assessment,” Water Science & Technology, doi: 10.2166/wst.2016.265 (2016).
Rahner, D., G. Ludwig, and J. Röhrs, “Electrochemically induced reactions in soils-a new approach to the in-situ remediation of contaminated soil?: Part 1: The microconductor principle,” Electrochimica Acta, Vol. 47, pp. 1395-1403 (2002).
Reddy, K. R. and S. Chinthamreddy, “Electrokinetic remediation of heavy metal-contaminated soils under reducing environments,” Waste Management, Vol. 19, pp. 269-282 (1999).
Reddy, K. R., U. S. Parupudi, S. N. Devulapalli, and Y. C. Xu, “Effects of soil composition on the removal of chromium by electrokinetics,” Journal of Hazardous Materials, Vol. 55, pp. 135-158 (1997).
Regenspurg, S. and S. Peiffer, “Arsenate and chromate incorporation in schwertmannite,” Applied Geochemistry, Vol. 20, pp. 1226-1239 (2005).
Regenspurg, S., A. Brand, and S. Peiffer, “Formation and stability of schwertmannite in acidic mining lakes,” Geochimica et Cosmochimica Acta, Vol. 68, pp. 1185-1197 (2004).
Reis, E., A. Lodolo, and S. Miertus, “Survey of sediment remediation technology,” International Centre for Science and High Technology, United Nations Industrial Development Organization (2007).
Riding, M. J., K. J. Doick, F. L. Martin, K. C. Jones and K. T. Semple, “Chemical measures of bioavailability/bioaccessibility of PAHs in soil: fundamentals to application,” Journal of Hazardous Materials, Vol. 261, pp. 687-700 (2013).
Risco, C., R. López-Vizcaíno, C. Sáez, A. Yustres, P. Cañizares, V. Navarro, and M. A. Rodrigo, “Remediation of soils polluted with 2,4-D by electrokinetic soil flushing with facing rows of electrodes: A case study in a pilot plant,” Chemical Engineering Journal, Vol. 285, pp. 128-136 (2016).
Rocher, V., S. Azimi, R. Moilleron, and G. Chebbo, “Hydrocarbons and heavy metals in the different sewer deposits in the ‘Le Marais’ catchment (Paris, France): stocks, distributions and origins,” Science of the Total Environment, Vol. 323, pp. 107-122 (2004).
Romero, A., A. Santos, T. Cordero, J. Rodriguez-Mirasol, J. M. Rosas, and F. Vicente, “Soil remediation by Fenton-like process: Phenol removal and soil organic matter modification,” Chemical Engineering Journal, Vol. 170, pp. 36-43 (2011).
Rusevova, K., F. Kopinke, and A. Georgi, “Nano-sized magnetic iron oxides as catalysts for heterogeneous Fenton-like reactions—Influence of Fe(II)/Fe(III) ratio on catalytic performance,” Journal of Hazardous Materials, Vol. 241-242, pp.433-440 (2012).
Saichek, R. E. and K. R. Reddy, “Electrokinetically enhanced remediation of hydrophobic organic compounds in soils: a review,” Critical Reviews in Environmental Science and Technology, Vol. 35, pp. 115-192 (2005).
Sarria-Villa, R., W. Ocampo-Duque, M. Páez, and M. Schuhmacher, “Presence of PAHs in water and sediments of the Colombian Cauca River during heavy rain episodes, and implications for risk assessment,” Science of the Total Environment, Vol. 540, pp. 455-465 (2016).
Schauer, J. J., M. J. Kleeman, G. R. Cass, and B. R. Simoneit, “Measurement of emissions from air pollution sources. 3. C1-C29 organic compounds from fireplace combustion of wood,” Environmental Science & Technology, Vol. 35, pp. 1716-1728 (2001).
Shapiro, A. P. and R. F. Probsteln, “Removal of contaminants from saturated clay by electroosmosis,” Environmental Science & Technology, Vol. 27, pp. 283-291 (1993).
Sherafatmand, M. and H. Y. Ng, “Using sediment microbial fuel cells (SMFCs) for bioremediation of polycyclic aromatic hydrocarbons (PAHs),” Bioresource Technology, Vol. 195, pp. 122-130 (2015).
Shi, L., H. Harms, and L. Y. Wick, “Electroosmotic flow stimulates the release of alginate-bound phenanthrene,” Environment Science Technology, Vol. 42, pp. 2105-2110 (2008).
Shen, H., Y. Huang, R. Wang, D. Zhu, W. Li, G. Shen, B. Wang, Y. Zhang Y. Chen, Y. Lu, H. Chen, T. Li, K. Sun, B. Li, W. Liu, J. Liu, and S. Tao, “Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions,” Environmental Science & Technology, Vol. 47, pp. 6415-6424 (2013).
Shih, Y. J., N. T. Binh, C. W. Chen, C. F. Chen, and C. D. Dong, “Treatability assessment of polycyclic aromatic hydrocarbons contaminated marine sediments using permanganate, persulfate and Fenton oxidation processes,” Chemosphere, Vol. 150, pp. 294-303 (2016).
Soclo, H. H., P. H. Garrigues, and M. Ewald, “Origin of polycyclic aromatic hydrocarbons (PAHs) in coastal marine sediments: case studies in Cotonou (Benin) and Aquitaine (France) areas,” Marine Pollution Bulletin, Vol. 40, pp. 387-396 (2000).
Song, J., S. Y. Jia, H. T. Ren, S. H. Wu, and X. Han, “Application of a high-surface-area schwertmannite in the removal of arsenate and arsenite,” Environmental Science and Technology International Journal, Vol. 12, 1559-1568 (2015).
Srogi, K., “Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review,” Environmental Chemistry Letters, Vol. 5, pp. 169-195 (2007).
Stout, S. A. and T. P. Graan, “Quantitative source apportionment of PAHs in sediments of Little Menomonee River, Wisconsin: weathered creosote versus urban background,” Environmental Science & Technology, Vol. 44, pp. 2932-2939 (2010).
Šubrt, J., J. Boháček, V. Štengl, T. Grygar, and P. Bezdička, “Uniform particles with a large surface area formed by hydrolysis of Fe2(SO4)3 with urea,” Materials Research Bulletin, Vol. 34, pp. 905-914 (1999).
Unwin, J., J. Cocker, E. Scobbie, and H. Chambers, “An assessment of occupational exposure to polycyclic aromatic hydrocarbons in the UK,” Annals of Occupational Hygiene, Vol. 50, pp. 395-403 (2006).
USEPA, “Innovative site remediation technology: soil washing/soil flushing volume 3,” EPA-542-B-93-012, USEPA, Washington, DC (1993).
USEPA, “Provisional guidance for quantitative risk assessment of polycyclic aromatic hydrocarbons,” EPA-600-R-93-089, USEPA, Washington, DC (1993a).
USEPA, “Cost and performance report: Slurry phase bioremediation application at the southeastern wood preserving Superfund site Canton, Mississippi,” USEPA, Washington, DC (1995).
USEPA, “Cost and performance summary report-interim in situ soilidification/ stabilization at Koppers Co. (Carleston plant) Ashley River Superfund site, South Carolina,” USEPA, Washington, DC (2003).
USEPA, “Electrochemical remediation technologies (ECRTs) – in situ remediation of contaminated marine sediment,” EPA-540-R-04-507, USEPA, Washington, DC (2007).
USEPA, “Priority pollutant list,” USEPA, Washington, DC (2014).
Usman, M., P. Faure, C. Ruby, and K. Hanna, “Remediation of PAH-contaminated soils by magnetite catalyzed Fenton-like oxidation,” Applied Catalysis B: Environmental, Vol. 117-118, pp. 10-17 (2012).
USP, “Iodometric Titration,” USP Technologies, USA, http://www.h2o2.com/technical-library/analytical-methods/default.aspx?pid=70. Accessed 2015 (2015).
Vicente, F., A. Santos, E. G. Sagüillo, Á. M. Martínez-Villacorta, J. M. Rosas, and A. Romero, “Diuron abatement in contaminated soil using Fenton-like process,” Chemical Engineering Journal, Vol. 183, pp. 357-364 (2012).
Virkutyte, J. and M. Sillanpää, “The hindering effect of experimental strategies on advancement of alkaline front and electroosmotic flow during electrokinetic lake sediment treatment,” Journal of Hazardous Materials, Vol. 143, pp. 673-681 (2007).
Virkutyte, J., E. van Hullebusch, M. Sillanpää, and P. Lens, “Copper and trace element fractionation in electrokinetically treated methanogenic anaerobic granular sludge,” Environmental Pollution, Vol. 138, pp. 517-528 (2005).
Wang, S., “A Comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater,” Dyes and Pigments, Vol. 76, pp. 714-720 (2008).
Wang, W. M., J. Song, and X. Han, “Schwertmannite as a new Fenton-like catalyst in the oxidation of phenol by H2O2,” Journal of Hazardous Materials, Vol. 262, pp. 412-419 (2013).
Wang, Y. B., C. W. Liu , Y. H. Kao, and C. S. Jang, “Characterization and risk assessment of PAH-contaminated river sediment by using advanced multivariate methods,” Science of the Total Environment, Vol. 524-525, pp. 63-73 (2015a).
Wang, Y., P. Li, H. Li, X. Liu, and W. Wang, “PAHs distribution in precipitation at Mount Taishan China. Identification of sources and meteorological influences,” Atmospheric Research, Vol. 95, pp. 1-7 (2010).
Wang, M., C. Wang, X. Hu, H. Zhang, S. He, and S. Lv, “Distributions and sources of petroleum, aliphatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) in surface sediments from Bohai Bay and its adjacent river, China,” Marine Pollution Bulletin, Vol. 90, pp. 88-94 (2015b).
Wassenberg, D. M. and R. T. Di Giulio, “Synergistic embryotoxicity of polycyclic aromatic hydrocarbon aryl hydrocarbon receptor agonists with cytochrome P4501A inhibitors in Fundulus heteroclitus,” Environmental Health Perspectives, Vol. 112, pp. 1658-1664 (2004).
Watts, R. J., M. D. Udell, P. A. Rauch, and S. W. Leung, “Treatment of pentachlorophenol-contaminated soils using Fenton’s reagent,” Hazardous Waste and Hazardous Materials, Vol. 7, pp. 335-345 (1990).
Waychunas, G. A., C. S. Kim, and J. F. Banfield, “Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanisms,” Journal of Nanoparticle Research, Vol. 7, pp. 409-433 (2005).
Wittle, J. K., S. Pamukcu, D. Bowman, L. M. Zanko, and F. Doering, “Field studies on sediment remediation,” in: K. R. Reddy and C. Cameselle (Eds.), Electrochemical remediation technologies for polluted soils, sediments and groundwater, John Wiley & Sons, USA and Canada, pp. 661-696 (2009).
Woodhull, P. M. and D. E. Jerger, “Bioremediation using a commercial slurry-phase biological treatment system: site-specific applications costs,” Remediation Journal, Vol. 4, pp. 353-362 (1994).
Xu, L. and J. Wang, “Fenton-like degradation of 2, 4-dichlorophenol using Fe3O4 magnetic nanoparticles,” Applied Catalysis B: Environmental, Vol. 123-124, pp. 117-126 (2012).
Xu, J., Y. Yu, P. Wang, W. Guo, S. Dai, and H. Sun, “Polycyclic aromatic hydrocarbons in the surface sediments from Yellow River, China,” Chemosphere, Vol. 67, pp. 1408-1414 (2007).
Yan, Z., N. Song, H. Cai, J. H. Tay, and H. Jiang, “Enhanced degradation of phenanthrene and pyrene in freshwater sediments by combined employment of sediment microbial fuel cell and amorphous ferric hydroxide,” Journal of Hazardous Materials, Vol. 199-200, pp. 217-225 (2012).
Yang, G. C. C. and Y. I. Chang, “Integration of emulsified nanoiron injection with the electrokinetic process for remediation of trichloroethylene in saturated soil,” Separation and Purification Technology, Vol. 79, pp. 278-284 (2011).
Yang, G. C. C. and C. Y. Liu, “Remediation of TCE contaminated soils by in situ EK-Fenton process,” Journal of Hazardous Materials, Vol. B85, pp. 317-331 (2001).
Yang, G. C. C. and S. L. Lin, “Removal of lead from a silt loam soil by electrokinetic remediation,” Journal of Hazardous Materials, Vol. 58, pp. 285-299 (1998).
Yang, G. C. C. and Y. W. Long, “Removal and degradation of phenol in a saturated flow by in-situ electrokinetic remediation and Fenton-like process,” Journal of Hazardous Materials, Vol. B69, pp. 259-271 (1999).
Yang, G. C. C. and M. Y. Wu, “Injection of nanoscale Fe3O4 slurry coupled with the electrokinetic process for remediation of NO3− in saturated soil: Remediation performance and reaction behavior,” Separation and Purification Technology, Vol. 79, pp. 272-277 (2011).
Yang, G. C. C. and C. F. Yeh, “Enhanced nano-Fe3O4/S2O82− oxidation of trichloroethylene in a clayey soil by electrokinetics,” Separation and Purification Technology, Vol. 79, pp. 264-271 (2011).
Yang, G. C. C., C. L. Wang, and Y. H. Chiu, “A comprehensive study on remediation of mercury-contaminated soil by the iodide-assisted electrokinetic process,” The 11th Symposium on Electrokinetic Remediation (EREM 2012), Sapporo, Japan, July 8-11 (2012).
Yang, G. C. C., C. L. Wang, and Y. H. Chiu, “Remediation of subsurface mercury contamination using the iodide-assisted electrokinetic process,” The 12th Symposium on Electrokinetic Remediation (EREM 2013), Boston, U.S.A., June 23-26 (2013).
Yang, G. C. C., Y. H. Chiu, and C. L. Wang, “Integration of electrokinetic process and nano-Fe3O4/S2O82− oxidation process for remediation of phthalate esters in river sediment,” Electrochimica Acta, Vol. 181, pp. 217-227 (2015).
Yang, G. C. C., S. C. Huang, Y. S. Jen, P. S. Tsai, “Remediation of phthalates in river sediment by integrated enhanced bioremediation and electrokinetic process,” Chemosphere, Vol. 150, pp. 576-585 (2016a).
Yang, G. C. C., S. C. Huang, C. L. Wang, and Y. S. Jen, “Degradation of phthalate esters and acetaminophen in river sediments using the electrokinetic process integrated with a novel Fenton-like process catalyzed by nanoscale schwertmannite,” Chemosphere, Vol. 159, pp. 282-292 (2016b).
Yap, C. L., S. Gan, and H. K. Ng, “Fenton based remediation of polycyclic aromatic hydrocarbons-contaminated soils,” Chemosphere, Vol. 83, pp. 1414-1430 (2011).
Yu, J. Y., M. Park, and J. Kim, “Solubilities of synthetic schwertmannite and ferrihydrite,” Geochemical Journal, Vol. 36, pp. 119-132 (2002).
Yuan, S. Y. and B. V. Chang, “Anaerobic degradation of five polycyclic aromatic hydrocarbons from river sediment in Taiwan,” Journal of Environmental Science and Health Part B, Vol. 42, pp. 63-69 (2007).
Yuan, C., C. H. Hung, and K. C. Chen, “Electrokinetic remediation of arsenate spiked soil assisted by CNT-Co barrier—The effect of barrier position and processing fluid,” Journal of Hazardous Materials, Vol. 171, pp. 563-570 (2009).
Yunker, M. B., R. W. Macdonald, R. Vingarzan, R. H. Mitchell, D. Goyette, and S. Sylvestre, “PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition,” Organic Geochemistry, Vol. 33, pp. 489-515 (2002).
王智龍,「典寶溪底泥中鄰苯二甲酸酯類及藥物類流布調查及新穎整治技術開發」,博士學位論文,國立中山大學環境工程研究所,高雄市 (2014)。
李郁惠,「愛河及前鎮河水體中多環芳香烴含量分佈之研究」,碩士學位論文,國立中山大學海洋環境及工程學系,高雄市 (2005)。
黃蘊慧、蔡劍輝及曹亞文,「新礦物 (1994.1–1994.12)」岩石礦物學雜誌,第18卷,第1期,第50-64頁 (1999)。
劉歡、陸現彩、歐陽冰潔、李娟及陸建軍,「氯化鐵-硫酸鈉體系中合成的施威特曼石的穩定性」矽酸鹽學報,第41卷,第1期,第663-668頁 (2013)。
環保署,「底泥品質指標之分類管理及用途限制辦法」,行政院環保署環保法規,http://ivy5.epa.gov.tw/epalaw/index.aspx,(2012)。
環保署,「底泥採樣方法」,行政院環境保護署環境檢驗所,NIEA S104.31B,http://www.niea.gov.tw/analysis/method/ListMethod.asp?methodtype=SOIL,2014年11月查詢 (2014a)。
環保署,「土壤及底泥水分含量測定方法-重量法」,行政院環境保護署環境檢驗所,NIEA S280.62C,http://www.niea.gov.tw/analysis/method/ListMethod.asp?methodtype=SOIL,2014年11月查詢 (2014b)。
環保署,「索氏萃取法」,行政院環境保護署環境檢驗所,NIEA M165.00C,http://www.niea.gov.tw/analysis/method/ListMethod.asp?methodtype=REFSOIL,2014年11月查詢 (2014c)。
環保署,「去硫淨化法」,行政院環境保護署環境檢驗所,NIEA M186.01C,http://www.niea.gov.tw/analysis/method/ListMethod.asp?methodtype=REFSOIL,2014年11月查詢 (2014d)。
環保署,「土壤酸鹼值 (pH值) 測定方法-電極法」,行政院環境保護署環境檢驗所,NIEA S410.62C,http://www.niea.gov.tw/analysis/method/ListMethod.asp?methodtype=SOIL,2014年11月查詢 (2014e)。
環保署,「水中半揮發性有機化合物檢測方法-氣相層析質譜儀法」,NIEA W801.52B,http://www.niea.gov.tw/analysis/method/ListMethod.asp?methodtype=WATER,2014年11月查詢 (2014f)。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code