Responsive image
博碩士論文 etd-0930117-153227 詳細資訊
Title page for etd-0930117-153227
論文名稱
Title
Multi-Gbps 5G手機之MIMO天線設計及其MIMO通道容量測試
MIMO Antennas for the Multi-Gbps 5G Smartphone and MIMO Channel Capacity Testing
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
148
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-10-21
繳交日期
Date of Submission
2017-10-30
關鍵字
Keywords
行動終端天線、第五代行動通訊、手機天線、手機MIMO八天線、手機MIMO十二天線、MIMO通道容量、多輸入多輸出天線
MIMO channel capacity, twelve MIMO antennas, eight MIMO antennas, smartphone antennas, MIMO antennas, mobile antennas, 5G mobile communications
統計
Statistics
本論文已被瀏覽 5889 次,被下載 0
The thesis/dissertation has been browsed 5889 times, has been downloaded 0 times.
中文摘要
在未來應用於第五代(5G)行動通訊終端中,具有至少8個MIMO數據流之高維度MIMO天線系統可以大幅提高頻譜效率及傳輸速率,為潛力技術重點之一。然而,在手機有限空間內有效配置低耦合與低封包相關係數的MIMO多天線,一直是天線設計者的技術挑戰。因此,本論文提出一項5G手機之MIMO八天線設計,八天線由四個雙天線組合單元所組成,雙天線為一自我解耦合平面結構,尺寸為7 x 10 mm2,配置於手機側邊框內側表面上,頻帶可涵蓋3400~3600 MHz。雙天線的結構與手機系統接地面形成不對稱的鏡射排列,且垂直配置於該系統接地面的不同側,可以達成低耦合與低封包相關係數之特性。此外,低耦合特性無需額外加入外部解耦合結構來達成,進而有效縮小雙天線之尺寸。接著,為了讓手機能夠達到Multi-Gbps的傳輸速率,利用四或六個雙天線組合單元,來達成MIMO八或十二天線之配置。透過MIMO通道容量測試平台,將八天線應用於8 x 8 MIMO系統時,在訊雜比(SNR)為20 dB的條件下,可實際測得其通道容量能達到約35 bps/Hz;再者,將十二天線應用於12 x 8 MIMO系統時,呈現在100 MHz頻寬與256 QAM調變下,達到3.8 Gbps之吞吐量(頻譜效率約38 bps/Hz)。為了更進一步分析手機十二天線應用於12 x 8 MIMO系統之通道容量與吞吐量特性,選擇使用者手握、室內外場景及不同封包相關係數來進行MIMO效能的實測。最後,將本論文中所提出的雙天線設計概念應用於異質網路3.5/5.8 GHz雙頻帶MIMO天線,並針對3.5/5.8 GHz雙頻帶的MIMO效能進行一系列的研究與討論。
Abstract
The High-Dimensional (HD) MIMO operation with at least eight MIMO streams is a very promising technology for applications in the fifth-generation (5G) mobile communication terminals. HD MIMO can provide a much higher spectral efficiency, thereby increasing the data throughput in practical communications. However, it has been a great challenge for antenna designers to dispose as many as MIMO antennas with low envelope correlation coefficients (ECCs) in the very limited space of the smartphone. In this thesis, promising eight and twelve MIMO antennas for the 5G smartphone are presented. The MIMO antennas are formed by using decoupled two-antenna building blocks. The building block has a small planar size of 7 x 10 mm2 for operating at 3.5-GHz band (3400~3600 MHz) and can be printed on the inner surface of the side-edge frame of the smartphone. Decreased coupling between the two antennas can be obtained without the need of an external decoupling structure. The operating principle and antenna performance of the two decoupled antennas in the building block are presented in this study. To demonstrate Multi-Gbps data throughput for the smartphone, four or six two-antenna building blocks are used to implement eight or twelve MIMO antennas. By using the MIMO testbed developed at NSYSU, the measured channel capacity of about 35 bps/Hz with 20-dB signal-to-noise ratio (SNR) is obtained with eight antennas applied in an 8 x 8 MIMO system. In the case of twelve antennas applied in a 12 x 8 MIMO system, a 3.8-Gbps throughput (about 38 bps/Hz spectral efficiency) with a 100-MHz bandwidth and 256-QAM modulation has also been achieved. To further analyze the channel capacity and throughput of the twelve-antenna smartphone applied in a 12 x 8 MIMO system, the user’s hand effects, various indoor/outdoor scenarios, and the ECC effects are tested. The design concept of the decoupled two-antenna building block has also been applied in achieving 3.5/5.8-GHz dual-band operation for mobile and wireless local area networks. The dual-band eight MIMO antennas have been experimentally studied. The obtained MIMO performance is presented and discussed.
目次 Table of Contents
論文審定書 i
致謝 ii
中文摘要 iv
英文摘要 v
目錄 vi
圖次 viii
表次 xii
第一章 序論 (Introduction)
1.1 5G概述與研究動機 1
1.2 文獻導覽 4
1.3 論文各章節提要 6
第二章 5G手機之MIMO八天線設計 (Eight MIMO Antennas for the 5G Smartphone)
2.1 手機MIMO八天線結構與技術原理說明 8
2.2 手機MIMO八天線模擬及量測結果 17
2.3 MIMO通道容量測試平台介紹 26
2.4 8 x 8 MIMO通道容量的理論計算與實測結果 30
2.5 考慮實際應用之手機MIMO八天線分析研究 32
2.6 手機MIMO八天線之延伸設計 37
2.7 心得與討論 43
第三章 手機MIMO十二天線應用於12 x 8 MIMO系統之通道容量與吞吐量特性分析 (Channel Capacity and Throughput of the 12-Antenna Smartphone Applied in a 12 x 8 MIMO System)
3.1 手機MIMO十二天線結構與量測結果 46
3.2 12 x 8 MIMO系統之通道容量與吞吐量實測結果 51
3.3 使用者手握對12 x 8 MIMO效能之影響 56
3.4 室內場景之12 x 8 MIMO效能實測結果 61
3.5 戶外場景之12 x 8 MIMO效能實測結果 77
3.6 封包相關係數對12 x 8 MIMO通道容量與吞吐量之影響 89
3.7 心得與討論 94
第四章 5G手機之3.5/5.8 GHz雙頻MIMO天線設計 (3.5/5.8-GHz Dual-Band MIMO Antennas for the 5G Smartphone)
4.1 手機雙頻MIMO八天線結構與技術原理說明 96
4.2 手機雙頻MIMO八天線模擬及量測結果 104
4.3 雙頻MIMO通道容量測試平台介紹 109
4.4 雙頻8 x 8 MIMO效能的實測結果與分析 115
4.5 心得與討論 123
第五章 結論 (Conclusions) 125
參考文獻 (References) 127
論文著作表 (Publication List) 132
參考文獻 References
[1] I. Poole. (May 31, 2015) LTE frequency bands and spectrum allocations. [Online]. Available: http://www.radio-electronics.com/
[2] Press Release. (Feb., 2017) 5G標準草案公布:20 Gbps下行速率,支持每平方公里100萬台連接設備. [Online]. Available: http://www.hksilicon.com/articles/1279876
[3] ITRI. (Aug. 24, 2015) 全球5G市場發展趨勢. [Online]. Available: https://ictjournal.itri.org.tw/Content/Messagess/contents.aspx?&MmmID=654304432070702333&MSID=654526036164003536
[4] 3GPP. (2017) [Online]. Available: http://www.3gpp.org
[5] WRC-15 Press Release. (Nov. 27, 2015) World Radiocommunication Conference allocates spectrum for future innovation. [Online]. Available: http://www.itu.int/net/pressoffice/press_releases/ 2015/56.aspx
[6] K. Schaubach. (2016) Shared spectrum and the 3.5 GHz band. Federated Wireless, accessed on Jan. 13, 2016. [Online]. Available: http://wssww.federatedwirele.com/ shared-spectrum-and-the-3-5-ghz-band/
[7] European Commission. (2016) [Online]. Available: http://ec.europa.eu/index_en.htm
[8] Press Release. (June 07, 2017) 工信部下發 IMT-2020 頻帶使用通知. [Online]. Available: http://www.gooread.com/article/20122512879/
[9] 華為(Huawei)官方網頁.(2014) [Online]. Available: http://consumer.huawei.com/tw/
[10] 維基百科. (Apr. 09, 2017) IEEE 802.11 ac的新技術、產品、網路標準、相關條目等. [Online]. Available: https://zh.wikipedia.org/wiki/IEEE_802.11ac
[11] 國際電機電子學會. (2017) [Online]. Available: https://www.ieee.org/index.html
[12] A. A. Al-Hadi, J. Ilvonen, R. Valkonen, and V. Viikari, “Eight-element antenna array for diversity and MIMO mobile terminal in LTE 3500 MHz band,” Microwave Opt. Technol. Lett., vol. 56, pp. 1323-1327, 2014.
[13] K. L. Wong and J. Y. Lu, “3.6-GHz 10-antenna array for MIMO operation in the smartphone,” Microwave Opt. Technol. Lett., vol. 57, pp. 1699-1704, 2015.
[14] K. L. Wong, J. Y. Lu, L. Y. Chen, W. Y. Li, Y. L. Ban, and C. Li, “16-antenna array in the smartphone for the 3.5-GHz LTE MIMO operation,” Proc. 2015 Asia Pacific Microwave Conference, Nanjing, China.
[15] K. L. Wong, J. Y. Lu, L. Y. Chen, W. Y. Li, and Y. L. Ban, “8-antenna and 16-antenna arrays using the quad-antenna linear array as a building block for the 3.5-GHz LTE MIMO operation in the smartphone,” Microwave Opt. Technol. Lett., vol. 58, pp. 174-181, 2016.
[16] Z. Qin, W. Geyi, M. Zhang, and J. Wang, “Printed eight-antenna MIMO system for compact and thin 5G mobile handset,” Electron. Lett., vol. 52, pp. 416-418, 2016.
[17] M. Y. Li, Y. L. Ban, Z. Q. Xu, G. Wu, C. Y. D. Sim, K. Kang, and Z. F. Yu, “8-Port orthogonally dual-polarized antenna array for 5G smartphone applications,” IEEE Trans. Antennas Propag., vol. 64, pp. 3820-3830, Sep. 2016.
[18] Y. L. Ban, C. Li, C. Y. D. Sim, G. Wu, and K. L. Wong, “4G/5G multiple antennas for future multi-mode smartphone applications,” IEEE Access, vol. 4, pp. 2981-2988, 2016.
[19] K. L. Wong, C. Y. Tsai, J. Y. Lu, D. M. Chian, and W. Y. Li, “Compact eight MIMO antennas for 5G smartphones and their MIMO capacity verification,” 2016 URSI AP-RASC, Aug. 22~26, 2016, Seoul, South Korea.
[20] M. S. Sharawi, “A 5-GHz 4/8-element MIMO antenna system for IEEE 802.11ac devices,” Microwave Opt. Technol. Lett., vol.55, pp. 1589-1594, 2013.
[21] T. Adachi, A. Hirata, and T. Shiozawa, “Folded-loop antennas for handset terminals at the 2.0-GHz band,” Microwave Opt. Technol. Lett., vol. 36, pp. 376-378, 2003.
[22] Y. W. Chi and K. L. Wong, “Compact multiband folded loop chip antenna for small-size mobile phone,” IEEE Trans. Antennas Propag., vol. 56, pp. 3797-3803, Dec. 2008.
[23] Y. L. Ban, Y. F. Qiang, Z. Chen, K. Kang, and J. H. Guo, “A dual-loop antenna design for hepta-band WWAN/LTE metal-rimmed smartphone applications,” IEEE Trans. Antennas Propag., vol. 63, pp. 48-58, Jan. 2015.
[24] O. Pajona and L. Desclos, “Loop antenna with switchable feeding and grounding points,” U.S. Patent Application Publication No. 2013/0307740 A1, Nov. 21, 2013.
[25] K. L. Wong, W. Y. Chen, and T. W. Kang, “On-board printed coupled-fed loop antenna in close proximity to the surrounding ground plane for penta-band WWAN mobile phone,” IEEE Trans. Antennas Propag., vol. 59, pp. 751-757, Mar. 2011.
[26] K. L. Wong, T. W. Kang, and M. F. Tu, “Internal mobile phone antenna array for LTE/WWAN and LTE MIMO operations,” Microwave Opt Technol Lett., vol. 53, pp. 1569-1573, 2011.
[27] Y. L. Ban, S. Yang, Z. Chen, K. Kang, J. L. W. Li, “Decoupled planar WWAN antennas with T-shaped protruded ground for smartphone applications,” IEEE Antennas Wireless Propag. Lett., vol. 13, pp. 483-486, 2014.
[28] ANSYS HFSS. (2015) [Online] Available: http://www.ansys.com/staticassets/ ANSYS/staticassets/resourcelibrary/brochure/ansys-hfss-brochure-16.0.pdf.
[29] Y. A. S. Dama, R. A. Abd-Alhameed, S. M. R. Jones, D. Zhou, N. J.McEwan, M. B. Child, and P. S. Excell, “An envelope correlation formula for (N,N) MIMO antenna arrays using input scattering parameters, and including power losses, ” International Journal of Antennas Propag., vol. 2011, Article ID 421691, 2011.
[30] K. L. Wong, C. Y. Tsai, and J. Y. Lu, “Two asymmetrically mirrored gap-coupled loop antennas as a compact building block for eight-antenna MIMO array in the future smartphone,” IEEE Trans. Antennas Propag., vol. 65, pp. 1765-1778, Apr. 2017.
[31] M. S. Sharawi, “Printed multi-band MIMO antenna systems and their performance metrics,” IEEE Antennas Propag. Mag., vol. 55, pp. 218-232, Oct. 2013.
[32] Y. L. Ban, Z. X. Chen, Z. Chen, K. Kang, and J. L. W. Li, “Decoupled closely spaced heptaband antenna array for WWAN/LTE smartphone applications,” IEEE Antennas Wireless Propag., vol. 13, pp. 31-34, 2014.
[33] K. L. Wong, Y. C. Chen, and W. Y. Li, “Four LTE low-band smartphone antennas and their 4  4 MIMO performance with user’s hand presence,” Microwave Opt. Technol. Lett., vol. 58, pp. 2046-2052, Sep. 2016.
[34] K. L Wong, Compact and Broadband Microstrip Antennas, Chap. 4. New York, NY, USA: Wiley, 2012.
[35] Rohde&Schwarz (R&S). (Mar. 17, 2017) [Online]. Available: http://www.rohde-schwarz. com.tw/PrecompiledWeb/Index.aspx
[36] 盧俊諭, 國立中山大學電機系2016年碩士論文, 智慧型手機之小型化 MIMO 八天線陣列研究, pp. 19-21.
[37] Press release, “Huawei Conducts 5 Gbit/s Tests with Phone Form-Factor 5G Terminals, ”[Online].Available:http://www.huawei.com/en/news/2017/2/5Gbit-s-Tests-Phone-Form-Factor-5GTerminals, Feb. 23, 2017.
[38] Qualcomm. [Online]. Available: https://www.qualcomm.com/products/snapdragon, Feb. 28, 2017.
[39] Press release. (Mar. 07, 2016) 物連網商機大,Verizon搶先2017年推5G服務. [Online]. Available: http://www.epochtimes.com/b5/16/3/7/n4656139.htm
[40] Press release. (July 14, 2016) Verizon宣布完成5G天線規範制定. [Online]. Available: https://kknews.cc/tech/o538lp.html
[41] Y. Wang and Z. Du, “A wideband printed dual-antenna system with a novel neutralization line for mobile terminals,” IEEE Antennas Wireless Propag. Lett., vol. 12, pp. 1428-1431, 2013.
[42] C. H. See, R. A. Abd-Alhameed, Z. Z. Abidin, N. J. McEwan, and P. S. Excell, “Wideband printed MIMO/diversity monopole antenna for WiFi/WiMAX applications,” IEEE Trans. Antennas Propag., vol. 60, pp. 2028-2031, Apr. 2012.
[43] K. L. Wong, Y. C. Chen, and W. Y. Li, “Four LTE low-band smartphone antennas and their 4  4 MIMO performance with user’s hand presence,” Microwave Opt. Technol. Lett., vol. 58, pp. 2046-2052, Sep. 2016.
[44] J. Ren, W. Hu, and Y. Yin, “Compact printed MIMO antenna for UWB applications,” IEEE Antennas Wireless Propag. Lett., vol. 13, pp. 1517-1520, 2014.
[45] Y. L. Ban, Z. X. Chen, Z. Chen, K. Kang, and J. L. W. Li, “Decoupled hepta-band antenna array for WWAN/LTE smartphone applications,” IEEE Antennas Wireless Propag. Lett., vol. 13, pp. 999-1002, 2014.
[46] K. L. Wong, C. Y. Tsai, and W. Y. Li, “Integrated yet decoupled dual antennas with inherent decoupling structures for 2.4/5.2/5.8-GHz WLAN MIMO operation in the smartphone,” Microwave Opt. Technol. Lett., vol. 59, pp. 2235-2241, Sep. 2017.
[47] C. A. Balanis, Antenna Throry: Analysis and Design, New Jersey: John Wiley & Sons, Inc., 2005.
[48] 5G Spectrum Bands. (Feb. 22, 2017) GSA (Global mobile Suppliers Association). [Online]. Available: https://gsacom.com/5g-spectrum-bands/
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.220.64.128
論文開放下載的時間是 校外不公開

Your IP address is 18.220.64.128
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code