Responsive image
博碩士論文 etd-0931119-092220 詳細資訊
Title page for etd-0931119-092220
論文名稱
Title
應用於近紅外光譜解析之漸變週期導波模態共振濾波器
Continuously-chirped guided mode resonance filter for near-infrared spectroscopic applications
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
102
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2019-10-14
繳交日期
Date of Submission
2019-10-31
關鍵字
Keywords
漸變式波導模態共振元件、光學頻譜儀、全像干涉微影系統
Lloyd’s interferometer, optical spectroscopy, chirped guided-mode resonance (GMR) filter
統計
Statistics
本論文已被瀏覽 5617 次,被下載 0
The thesis/dissertation has been browsed 5617 times, has been downloaded 0 times.
中文摘要
本論文提出應用於近紅外波段(1260 nm ~1360 nm, O-band)的波導模態共振濾波器,此種濾波器主要是由次波長繞射光柵以及波導結構組成。首先,我們利用搭配凸面鏡的勞氏鏡全像干涉曝光系統製作漸變週期光柵於玻璃基板上,接著再鍍上高折射率材料形成波導結構,在此我們分別使用五氧化二鉭(Ta2O5)與矽(Si)作為波導材料,分析並比較兩種元件的特性。從實驗結果得知,以Ta2O5作為波導材料的濾波器在垂直偏振(TE)與水平偏振(TM)下分別具有2.36 nm及0.96 nm的線寬;以Si作為波導材料的濾波器其線寬在垂直偏振(TE)與水平偏振(TM)下則是6.59 nm與1.04 nm。值得一提的是,為了避免使用折射液來降低波導材料和外在環境的折射率差,進而降低其線寬,我們在以Si為波導材料的濾波器表面額外鍍上一層SiO和SiO2的薄膜,使得原本Si/Air的高折射率差變成Si/SiO/SiO2/Air的折射率漸變,進而成功達到窄線寬的濾波效果。
此外,漸變週期光柵結構使元件具有頻譜重現的能力,我們利用此特性重建了寬頻譜光源SLED的輸出頻譜,然後也量測了元件的動態範圍,在O-band的工作波段內其動態範圍大於10 dB。最後我們提出以奈米壓印的方式重現波導模態共振元件,此方法能有效縮短製程時間,有助於我們快速生產高品質的光學濾波器。
Abstract
This thesis proposes and demonstrates a chirped guided-mode resonance (GMR) filter for near infrared (1260~1360 nm) spectroscopic applications. The chirped GMR filter is formed by a continuously period-change subwavelength grating structure covered with a waveguide layer. Such a period-chirped grating is defined by a Lloyd’s laser interferometer equipped with a convex mirror for the following deposition of high refractive index material to form the waveguide. In this study, we apply Ta2O5 and Si as the waveguide material for the fabrication of GMR filters. Experimental results reveal that liquid-filled Ta2O5-based GMR filter provides a reflecting bandwidth of 2.36 and 0.96 nm for TE and TM polarization, respectively. To avoid the use of refractive index liquid, we further deposit SiO and SiO2 thin films atop the Si-based GMR filter during the device fabrication in order to provide gradually-changed refractive index (Si/SiO/SiO2/Air) and thus a smaller refractive index contrast between Si waveguide layer and the surrounding environment. The reflecting bandwidth of as-realized Si-based GMR filter is 6.59 and 1.04 nm for the TE and TM polarization, respectively.
Chirped GMR filter can serve as a dispersion element for the optical spectroscopy. We had employed this chirped GMR filter to reconstruct the optical spectrum of a broadband light source (SLED) with a dynamic range of larger than 10 dB. Finally, we aim to replicate the chirped grating pattern by direct nanoimprint lithography in order to mass produce high-quality GMR filters.
目次 Table of Contents
中文審定書 i
致謝 ii
中文摘要 iii
Abstract iv
圖目錄 ix
表目錄 xiv
第一章 緒論 1
1-1研究背景 1
1-2研究動機 2
第二章 理論基礎與數值分析 4
2-1文獻回顧 4
2-1.1 光學薄膜式濾波器 4
2-1.2 高對比折射率光柵反射鏡 5
2-1.3 波導模態共振(Guided-mode resonance filter, GMR)濾波器 7
2-1.4 波導模態共振頻譜儀 10
2-2 波導理論 12
2-3 嚴格耦合波分析(Rigorous Coupled Wave Analysis, RCWA) 15
2-4 弱調製波導光柵 18
2-5 等效介質理論 20
2-5.1 TE模態之等效折射率 20
2-5.2 TM模態等效折射率 21
2-5.3 等效折射率的性質 22
2-6 波導模態共振原理 24
2-7 波導模態共振原理相關特性 26
2-7.1 入射角度 26
2-7.2 偏振選擇性 27
2-7.3 共振線寬 27
2-7.4 非共振旁帶效應 29
第三章 元件製程與繞射光柵檢測系統 31
3-1微影技術 31
3-2次波長光柵製程 35
3-2.1 次波長光柵 35
3-2.2 平坦化光場全像干涉微影系統 35
3-2.3 漸變週期光柵曝光系統 37
3-3光柵檢測系統 40
3-3.1 掃描式電子束顯微鏡(Scanning electron microscope, SEM) 40
3-3.2 原子力顯微鏡(Atomic force microscope, AFM) 41
3-3.3 光柵繞射系統(Diffraction system) 42
3-4 漸變週期光柵濾波器製程 45
3-4.1 漸變週期光柵微影製程 45
3-4.2 電子束蒸鍍高折射率波導材料 46
3-4.3 液晶盒製作 46
第四章 結果與討論 48
4-1以Ta2O5作為波導材料的漸變週期GMR濾波器 48
4-1.1 元件模擬 48
4-1.2 漸變週期光柵檢測 51
4-2 Ta2O5漸變週期GMR元件量測 52
4-2.1 量測系統介紹 52
4-2.2 單波長雷射量測 53
4-3以Si作為波導光柵的波導模態共振濾波器 56
4-3.1 元件模擬 56
4-3.2 漸變週期光柵檢測 58
4-4 Si漸變週期GMR元件量測 61
4-4.1 單波長雷射量測 61
4-4.2 利用Si漸變週期GMR元件進行寬頻譜光源的頻譜重建 64
4-4.3 動態範圍與靈敏度測試 65
4-5利用奈米壓印技術製作Si漸變週期GMR濾波器 68
4-5.1 漸變週期光柵母模製作 68
4-5.2 翻模過程與結果 70
4-5.3 利用奈米壓印技術製作之Si漸變週期GMR元件量測 71
第五章 結論與未來工作 73
5-1結論 73
5-2未來工作 76
5-2.1 二維波導模態共振元件 76
5-2.2 涵蓋光通訊波段的波導模態共振元件 76
參考文獻 78
附錄 84
附(1) 波導模態共振濾波器相關應用 84
附(1).1 圖形化光柵 84
附(1).2 利用GMR原理製作QR code防偽標籤及隱藏訊息 84
參考文獻 References
[1] L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nature Communications, vol. 5, no. 1, pp. 3069, 2014.
[2] Z. Lu, D. Celo, H. Mehrvar, E. Bernier, and L. Chrostowski, “High-performance silicon photonic tri-state switch based on balanced nested Mach-Zehnder interferometer,” Scientific Reports, vol. 7, no. 1, pp. 12244, 2017.
[3] A. Wang, S. He, X. Fang, X. Jin, and J. Lin, “Optical fiber pressure sensor based on photoelasticity and its application,’’ Journal of Lightwave Technology, vol. 10, no. 10, pp. 1466-1472, 1992.
[4] Suresh, R., Tjin, S. C., and Hao, J., “Applications of Fiber Bragg Grating Sensors,” Springer Berlin Heidelberg, pp.441-480, 2012.
[5] K. Kishino, M. S. Unlu, J. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE Journal of Quantum Electronics, vol. 27, no. 8, pp. 2025-2034, 1991.
[6] H. Kikuta, N. Maegawa, A. Mizutani, K. Iwata, and H. Toyota, “Refractive index sensor with a guided-mode resonant grating filter,’’ Proceedings of SPIE - The International Society for Optical Engineering, vol. 4416, pp. 219-222, 2001.
[7] P. K. Sahoo, S. Sarkar, and J. Joseph, “High sensitivity guided-mode-resonance optical sensor employing phase detection,’’ Scientific Reports, vol. 7, no. 1, pp. 7607, 2017.
[8] R. Magnusson, M. Shokooh-Saremi, Y. Hu, K. J. Lee, S. J. W. Platzer, A. K. Nebioglu, S. Zimmerman, and D. Wawro, “Fabrication of guided-mode resonance elements by nanoimprint lithography,’’ Journal of Nanoscience and Nanotechnology, vol. 10, no. 3, pp. 1606-1615, 2010.
[9] https://lifeng.lamost.org/courses/astrotoday/CHAISSON/AT304/HTML/AT30401.HTM
[10] http://physexp.thu.edu.tw/~kuan/OE_LAB/index-2-1-7.html
[11] S.-Y. Ding, J. Yi, J.-F. Li, B. Ren, D.-Y. Wu, R. Panneerselvam, and Z.-Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,’’ Nature Reviews Materials, vol. 1, pp. 16021, 2016.
[12] Z.-Q. Zhou, H. Lv, D. Zhang, H.-W. Chen, and Z.-F. Zhao, “Application of mass spectrometer in deep-space exploration,” Journal of Chinese Mass Spectrometry Society, vol. 36, no. 6, pp. 492-505, 2015.
[13] X. Peng, B. Liu, Y. Li, H. Wang, X. Chen, H. Guo, Q. Guo, J. Xu, H. Wang, D. Zhang, J. Dai, S. Hou, and Y. Guo, “Development and Validation of LC–MS/MS Method for the Quantitation of Infliximab in Human Serum,’’ Chromatographia, vol. 78, no. 7, pp. 521-531, 2015.
[14] Z. Yin and X. Tang, “A review of energy bandgap engineering in III–V semiconductor alloys for mid-infrared laser applications,” Solid-State Electronics, vol. 51, no. 1, pp. 6-15, 2007.
[15] R. Feldhoff, T. Huth-Fehre, T. Kantimm, L. Quick, K. Cammann, W. V. D. Broek, D. Wienke, and H. Fuchs, “Fast Identification of Packaging Waste by near Infrared Spectroscopy with an InGaAs Array Spectrograph Combined with Neural Networks,” Journal of Near Infrared Spectroscopy, vol. 3, no. 1, pp. 3-9, 1995.
[16] https://www.edmundoptics.com/resources/application-notes/optics/optical-filters/
[17] A. Piegari, A. K. Sytchkova, J. Bulir, B. Harnisch, and A. Wuttig, “Thin-film filters for a high resolution miniaturized spectrometer,” Proceeding of SPIE, vol. 7101, no.710113, 2008.
[18] Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-Wavelength VCSEL Using High-Contrast Grating,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 19, no. 4, pp. 1701311, 2013.
[19] C. F. R. Mateus, M. C. Y. Huang, Y. F. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband Mirror Using Low-Index Cladded Subwavelength Grating,” IEEE Photonics Technology Letters, vol. 16, no. 2, pp. 518-520, 2004.
[20] G. Zheng, J. Cong, L. H. Xu, and W. Su, “Angle-insensitive and narrow band grating filter with a gradient-index layer,” Optics Letters, vol. 39, no. 20, pp. 5929-5932, 2014.
[21] X. W. Jiang, H. Wu, and F. Wang, “Design and Optimization of Wavelength Tunable Guide Mode Resonance Filter,” Laser and Optoelectronics Progress, vol. 54, no. 10, pp. 100501, 2017.
[22] H.-A. Lin, H.-Y. Hsu, and C.-S. Huang, “Compact wavelength detection system based on a gradient grating period guided-mode resonance filter,” 2016 Conference on Lasers and Electro-Optics (CLEO), no. ATu1J.6, 2016.
[23] C. Fang, D. Bo, L. Zheng, Z. Ali, Q. Wang, S. Bin, and D. Zhang, “Tunable guided-mode resonance filter with a gradient grating period fabricated by casting a stretched PDMS grating wedge,” Optics Letters, vol. 41, no. 22, pp. 5302-5305, 2016.
[24] F. Gilles and N. McCarthy, “Chirped holographic grating used as the dispersive element in an optical spectrometer,” Applied Optics, vol. 44, no. 23, pp. 4874-4883, 2005.
[25] M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” Journal of the Optical Society of America, vol. 71, no. 7, pp. 811-818, 1981.
[26] L. B. Mashev and E. G. Loewen, “Anomalies of all-dielectric multilayer coated reflection gratings as a function of groove profile: an experimental study,” Applied Optics, vol. 27, no. 1, pp. 31-32, 1988.
[27] L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings,” Optics Communications, vol. 55, no. 6, pp. 377-380, 1985.
[28] A. Hessel and A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Applied Optics, vol. 4, no. 10, pp. 1275-1297, 1965.
[29] S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, “Guided-mode resonances in planar dielectric-layer diffraction gratings,” Journal of the Optical Society of America A, vol. 7, no. 8, pp. 1470-1474, 1990.
[30] R. Magnusson and S. S. Wang, “New principle for optical filters,” Applied Physics Letters, vol. 61, no. 9, pp. 1022-1024, 1992.
[31] S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Applied Optics, vol. 32, no. 14, pp. 2606-2613, 1993.
[32] D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE Journal of Quantum Electronics, vol. 33, no. 11, pp. 2038-2059, 1997.
[33] 周柏仰, “波導共振模態濾波器的製作與模擬,” 交通大學電子工程學系, 碩士論文, 2010.
[34] 許哲隆, “矽基波導模態共振元件與應用之研究,” 交通大學光電科學研究所, 博士論文, 2007.
[35] J. Zhao, X. Fang, and X. Jiang, “Research of effect of guide-mode resonance grating parameters on resonance wavelength and line width,” Laser Technology, vol. 43, no. 2, pp. 227-232, 2019
[36] J. Inoue, T. Ogura, K. Tomohiro, K. Kintaka, K. Nishio, Y. Awatsuji, and S. Ura, “Reflection characteristics of guided-mode resonance filter combined with bottom mirror,” Optics Letters, vol. 39, no. 7, pp. 1893-1896, 2014.
[37] D. Shin, S. Tibuleac, T. A. Maldonado, and R. Magnusson, “Thin-film optical filters with diffractive elements and waveguides,” Optical Engineering, vol. 37, no. 9, pp. 2634-2646, 1998.
[38] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub‐25 nm vias and trenches in polymers,” Applied Physics Letters, vol. 67, no. 21, pp. 3114-3116, 1995.
[39] D. Gabor, “A new microscopic principle,” Nature, vol. 161, no. 4098, pp. 777-778, 1948.
[40] I. Byun and J. Kim, “Cost-effective laser interference lithography using a 405 nm AlInGaN semiconductor laser,” Journal of Micromechanics and Microengineering, vol. 20, no. 5, pp. 055024, 2010.
[41] T. Ohira, T. Segawa, K. Nagai, S. Takahashi, K. Utaka, and M. Nakao, “InP 2D nano-structures fabricated by two-time laser holography,” Conference Proceedings. The 13th International Conference on Indium Phosphide and Related Materials, pp. 286-271, 2001.
[42] W. Mao, W. Ishan, and C.-H. Choi, “Tunable two-mirror laser interference lithography system for large-area nano-patterning,” Proceeding of SPIE. Alternative Lithographic Technologies III, vol. 7970, no. 79701K, 2011.
[43] 張漢榮, “利用勞氏鏡干涉架構搭配光場強度均勻器製作晶圓級奈米圖案,” 中山大學光電工程學系, 碩士論文, 2016.
[44] 高子杰, “連續漸變週期光柵的實現與應用,” 中山大學光電工程學系, 碩士論文, 2017.
[45] http://www.starjoy-china.com/sem_theory_tw
[46] https://www.materialsnet.com.tw/AD/ADImages/AAADDD/MCLM100/download/equipment/EM/FE-SEM/FE-SEM005.pdf
[47] 林建宇, “定置樣品式原子力顯微鏡之設計與特性研究,” 交通大學電子工程學系, 碩士論文, 2010.
[48] 高加緯, “連續漸變週期光柵於光頻譜重建與平面光波導元件之應用,” 中山大學光電工程學系, 碩士論文, 2018.
[49] D. W. Dobbs, G. Irena, and C. T. Brian, “Fabrication of a graded-wavelength guided-mode resonance filter photonic crystal,” Applied Physics Letters, vol. 89, no. 12, pp. 123113, 2006.
[50] H.-Y. Hsu, Y.-H. Lan, and C.-S. Huang, “A Gradient Grating Period Guided-Mode Resonance Spectrometer,” IEEE Photonics Journal, vol. 10, no. 1, pp. 1-9, 2018.
[51] E. Li, X. Chong, F. Ren, and A. X. Wang, “Broadband on-chip near-infrared spectroscopy based on a plasmonic grating filter array,” Optics Letters, vol. 41, no. 9, pp. 1913-1916, 2016.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2024-10-31
校外 Off-campus:開放下載的時間 available 2024-10-31

您的 IP(校外) 位址是 54.208.238.160
現在時間是 2024-03-29
論文校外開放下載的時間是 2024-10-31

Your IP address is 54.208.238.160
The current date is 2024-03-29
This thesis will be available to you on 2024-10-31.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 2024-10-31

QR Code