Responsive image
博碩士論文 etd-1004111-032106 詳細資訊
Title page for etd-1004111-032106
論文名稱
Title
應用強韌PID控制法則設計燃料電池之氫氣供應控制系統
Design of a Robust PID Controller for Hydrogen Supply on a PEM Fuel Cell
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
75
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-14
繳交日期
Date of Submission
2011-10-04
關鍵字
Keywords
質子交換膜燃料電池、氫氣過量比、頻譜分析法、強韌PID、系統識別
spectral analysis, Robust PID, PEMFC, system identification, hydrogen excess ratio
統計
Statistics
本論文已被瀏覽 5714 次,被下載 839
The thesis/dissertation has been browsed 5714 times, has been downloaded 839 times.
中文摘要
  本論文以質子交換膜燃料電池作為研究對象,目的為藉由設計強韌 PID 控制器調節氫氣流量,使得當燃料電池輸出不同功率時,將定義的氫氣過量比迅速追蹤到設定值,達到節省氫氣與避免由於輸入氫氣量過少而對電池造成傷害。
  燃料電池系統為一非線性系統,但在其一固定的操作點上可以將之近似為一線性系統。如此,本文針對不同的操作點以系統識別方法獲得系統轉移函數。首先,在 Labview 平台圖控環境下,採用掃頻訊號 (chirp signal) 激發系統低頻到高頻響應,以頻譜分析法獲得系統波德圖,再藉由 Matlab 模擬分析軟體的曲線擬合功能獲得系統轉移函數。最後,設計一H∞PID 控制器,並實際驗證燃料電池於負載變動時,λH2能迅速追蹤到設定值。
Abstract
In this thesis we propose a robust PID controller to regulate the hydrogen flow of proton exchange membrane fuel cells. The controller allows the so-called hydrogen excess ratio to track a desired value rapidly in order to achieve saving hydrogen and to avoid damage of the fuel cell when the power output of
the fuel cell varies from one level to another.

The fuel cell system is governed by a set of complicated nonlinear dynamical equations. To ease the control design task, we model the system, at each operating point, as a feedback interconnection of
a linear time-invariant nominal part with a norm-bounded perturbation. We use the technique of system identification to acquire the transfer
function representation of the nominal part and the size of the perturbation. To do this, the chirp signal is adopted to excite the system and the observed response is analyzed using spectral analysis
to obtain the model. Based on the model, a $H_{infty}$ PID controller is designed for the fuel cell system. The design is tested on an experimental platform. The experimental results verify that the proposed
controller can regulate the hydrogen excess ratio rapidly under load variation, and effectively reject the influence of external disturbances.
目次 Table of Contents
中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .i
英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . ii
目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .iii
圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . vi
表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .viii
符號表. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . ix
第一章緒論. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 1
1.1 研究背景、動機與目的. . . . . . . . . . . . . . . . . . . . . . 1
1.2 文獻回顧 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.1 燃料電池相關回顧 . . . . . . . . . . . . . . . . . . . . . . . .2
1.2.2 系統識別相關回顧 . . . . . . . . . . . . . . . . . . . . . . . .2
1.2.3 PID控制相關回顧. . . . . . . . . . . . . . . . . . . . . . . . .3
1.3 研究貢獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
第二章燃料電池簡介與模型. . . . . . . . . . . . . . . . . . . . . 4
2.1 燃料電池歷史 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
2.2 燃料電池特點 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4
2.3 燃料電池種類 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 質子交換膜燃料電池工作原理. . . . . . . . . . . . . . . . .6
2.5 質子交換膜燃料電池動態模型. . . . . . . . . . . . . . . . .7
2.5.1 陰極流道模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5.2 陽極流道模型. . . . . . . . . . . . . . . . . . . . . . . . .. . . . 9
2.5.3 薄膜水滲透模型. . . . . . . . . . . . . . . . . . . . . . . . .. . 11
2.5.4 電池電壓模型. . . . . . . . . . . . . . . . . . . . . . . . . . .. . 12
2.6 氫氣過量比. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
第三章系統識別. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . .17
3.1 系統識別目的與原理. . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 頻譜分析法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 實驗設備 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 實驗規劃與步驟 . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.1 實驗規劃 . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 23
3.4.2 實驗步驟 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 實驗結果與曲線擬合 . . . . . . . . . . . . . . . . . . . . . . . 26
第四章強韌控制器理論與控制器設計. . . . . . . . . . . . ..34
4.1 H∞控制理論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1.1 範數定義 . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 34
4.1.2 回路系統穩定性 . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.3 系統的不確定性 . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.1.4 系統的強韌穩定性與性能規格 . . . . . . . . . . . . . 37
4.2 控制器設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.1 PID控制器基礎理論介紹 . . . . . . . . . . . . . . . . . . 39
4.2.2 權重函數(W2)的選擇與與不確定性(△)計算. . . 40
4.2.3 強韌PID控制器設計. . . . . . . . . . . . . . . . . . . . . . . 41
第五章控制器模擬與實驗結果. . . . .. . . . .. . . . .. . . . .. . 48
5.1 PID控制器的離散化與模擬結果. . . . . . . . . . . . . . .. 48
5.2 實驗規劃與結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
第六章結論與未來展望. . . . .. . . . .. . . . .. . . . .. . . . .. . . 55
6.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
6.2 未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .56
參考文獻 References
[1] M. Ceraolo, C. Miulli, and A. Pozio, “Modelling static and dynamic behaviour of proton exchange membrane fuel cells on the basis of electro-chemical description,”Journal of power sources, vol. 113, no. 1, pp. 131–144, 2003.
[2] 王曉宏,黃宏, 燃料電池基礎. 全華圖書股份有限公司, 2008.
[3] C. Wang, M. Nehrir, and S. Shaw, “Dynamic models and model validation for pem fuel cells using electrical circuits,” IEEE Transactions on Energy Conversion,vol. 20, no. 2, pp. 442–451, 2005.
[4] J. Jia, Y. Wang, Q. Li, Y. Cham, and M. Han, “Modeling and dynamic characteristic
simulation of a proton exchange membrane fuel cell,” IEEE Transactions on Energy Conversion, vol. 24, no. 1, pp. 283–291, 2009.
[5] 蔡武田,質子交換膜燃料電池之非線性電錄分析與控制.國立中興大學電機工程系碩士論文,民國九十三年.
[6] C. Kunusch, A. Husar, P. Puleston, M. Mayosky, and J. Moré, “Linear identification and model adjustment of a PEM fuel cell stack,” International Journal of Hydrogen Energy, vol. 33, no. 13, pp. 3581–3587, 2008.
[7] M. Meiler, O. Schmid, M. Schudy, and E.Hofer, “Dynamic fuel cell stack model
for real-time simulation based on system identification,” Journal of Power Sources, vol. 176, no. 2, pp. 523–528, 2008.
[8] Y. Yang, Z. Liu, and F. Wang, “Model reference adaptive control of a low power proton exchange membrane fuel cell,” in 46th IEEE Conference on Decision and Control, pp. 1314–1319, 2007.
[9] F. Wang, H. Chen, Y. Yang, H. Chang, and J. Yen, “Multivariable system identification
and robust control of a proton exchange membrane fuel cell system,”in 46th IEEE Conference on Decision and Control, pp. 6118–6123, 2007.
[10] J. Pukrushpan, A. Stefanopoulou, and H. Peng, “Control of fuel cell breathing,”IEEE Control Systems Magazine, vol. 24, no. 2, pp. 30–46, 2004.
[11] C. Bordons, A. Arce, and A. Del Real, “Constrained predictive control strategies
for pem fuel cells,” in IEEE American Control Conference, pp. 6–pp, 2006.
[12] M. Danzer, J. Wilhelm, H. Aschemann, and E. Hofer, “Model-based control of cathode pressure and oxygen excess ratio of a pem fuel cell system,” Journal of Power Sources, vol. 176, no. 2, pp. 515–522, 2008.
[13] A. Vahidi, A. Stefanopoulou, and H. Peng, “Model predictive control for starvation prevention in a hybrid fuel cell system,” in Proceedings of the American
Control Conference, vol. 1, pp. 834–839, 2004.
[14] A. Arce, A. del Real, C. Bordons, and D. Ramírez, “Real-time implementation
of a constrained mpc for efficient airflow control in a pem fuel cell,” IEEE Transactions on Industrial Electronics, vol. 57, no. 6, pp. 1892–1905, 2010.
[15] V. Sanchez, J. Ramirez, and G. Arriaga, “On-line air supply control of pem fuel cell by an adaptive neural network,” in North American Power Symposium(NAPS), 2010, pp. 1–6, 2010.
[16] W. Garcia-Gabin, F. Dorado, and C. Bordons, “Real-time implementation of
a sliding mode controller for air supply on a pem fuel cell,” Journal of Process Control, vol. 20, no. 3, pp. 325–336, 2010.
[17] Z. Liu, L. Yang, Z. Mao, W. Zhuge, Y. Zhang, and L. Wang, “Behavior of pemfc in starvation,” Journal of power sources, vol. 157, no. 1, pp. 166–176,2006.
[18] A. Taniguchi, T. Akita, K. Yasuda, and Y. Miyazaki, “Analysis of electrocatalyst
degradation in pemfc caused by cell reversal during fuel starvation,”Journal of Power Sources, vol. 130, no. 1-2, pp. 42–49, 2004.
[19] 趙清風,使用MATLAB控制之系統識別.全華圖書股份有限公司, 2001.
[20] 王永清,磁浮轉子系統鑑別與控制.國立成功大學航空太空工程研究所碩士論文,民國九十年.
[21] 薛博文,雙馬達之同步運動控制.國立中山大學機械工程研究所碩士論文,民國九十年.
[22] 張碩,自動控制系統.鼎茂圖書出版股份有限公司,民國九十年.
[23] J. Doyle, B. Francis, and A. Tannenbaum, Feedback control theory, vol. 134.Citeseer, 1992.
[24] M. Ho, “Synthesis of H1 PID controllers,” in Proceedings of the 40th IEEE Conference on Decision and Control, vol. 1, pp. 255–260, 2001.
[25]林建銘,符合H∞-norm之PID控制器設計.國立高雄應用科技大學電機工程碩士論文,民國九十四年.
[26] 林品宏,PID迴路整型及其在撓性臂定位控制之應用.國立成功大學工程科學系碩士論文,民國九十二年.
[27] 黃鎮江,燃料電池.滄海書局,2008.
[28] J. Pukrushpan, A. Stefanopoulou, and H. Peng, Control of fuel cell power systems: principles, modeling, analysis, and feedback design. Springer Verlag,2004.
[29] “System Identificatin Toolkit Algorithm Reference.” Labview.
[30] L. Ljung and E. Ljung, System identification: theory for the user, vol. 11.
Prentice-Hall Englewood Cliffs, NJ, 1999.
[31] “Curce Fitting Toolkit For Use with MATLAB.”
[32] J. Dennis Jr and R. Schnabel, Numerical methods for unconstrained optimization
and nonlinear equations. Prentice-Hall, Englewood Cliffs, NJ, 1983.
[33] 楊憲東,葉芳,線性與非線性H∞控制理論: Game Theoretic Approach.全華科技圖書股份有限公司,1997.
[34] K. Zhou and J. Doyle, Essentials of robust control. Prentice Hall New Jersey,1998.
[35] G. Silva, A. Datta, and S. Bhattacharyya, PID controllers for time-delay systems.Birkhauser, 2005.
[36] M. Ho and C. Lin, “PID controller design for robust performance,” IEEE Transactions
on Automatic Control, vol. 48, no. 8, pp. 1404–1409, 2003.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code