Responsive image
博碩士論文 etd-1004111-033002 詳細資訊
Title page for etd-1004111-033002
論文名稱
Title
雙併式降壓轉換器穩壓控制
Output Voltage Regulation of Twin-buck Converter
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
61
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-13
繳交日期
Date of Submission
2011-10-04
關鍵字
Keywords
柔性切換、雙併式降壓轉換器、現場可程式邏輯閘陣列、線性二次調節器、穩壓控制
zero-voltage-transition, LQR, FPGA, output voltage regulation, twin-buck converter, zero-current-transition
統計
Statistics
本論文已被瀏覽 5646 次,被下載 868
The thesis/dissertation has been browsed 5646 times, has been downloaded 868 times.
中文摘要
本論文為針對一新型具有柔性切換之雙併式降
壓轉換器應用線性二次調節器 (Linear Quadratic Regulator, LQR) 設計一最佳化控制器。
控制器利用回授輸出電壓及電感電流訊號計算出所需的同步開關訊號之導通比 (Duty-ratio) 作為控制力,再由估測器計算轉換器同步整流開關電流
為零之時間,
而轉換器開關切換的頻率即為導通比除以開關電流為零的時間。
如此調整開關切換的頻率來達到穩定轉換器輸出端電壓,且對於負載改變或是輸入電壓變動時仍可穩定輸出端電壓於參考值附近,
同時維持轉換器上功率開關作柔性切換。整個控制電路架構包含現場可程式邏輯閘陣列 (Field Programmable Gate Array, FPGA) 、開關驅動電路、
電流估測電路、類比/數位轉換器及雙併式降壓轉換器。
Abstract
The purpose of this thesis is to design and implement a linear quadratic optimal controller for a twin-buck converter with zero-voltage-transition (ZVT). The controller calculates duty ratio every cycle based on voltage and current feedback, as well as estimates the time instances when the synchronous rectification power switch current is zero. These time instances are crucial for ZVT operation. Via frequency modulation, the controller is designed to automatically regulate the output voltage to a desired value under load and voltage source variation. Simulations indicate that the proposed control design works. The controller is implemented using a Field Programmable Gate Array (FPGA). The experimental results match the simulations, which further verifies the applicability of the proposed voltage regulation strategy.
目次 Table of Contents
中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . .ii
英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . .iii
目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . .iv
圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . .vi
表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . .viii
第1章 緒論. . . . . . . . . . . . . . . . . . . . . . . . .1
1.1 研究背景、動機與目的 . . . . . . . . . . . . . . . . .1
1.2 文獻回顧. . . . . . . . . . . . . . . . . . . . . . . .3
第2章 具同步整流之雙併式降壓電源轉換器架構與分析. . . . . .7
2.1 直流對直流降壓轉換器 . . . . . . . . . . . . . . . . . 7
2.1.1 基本降壓轉換器 . . . . . . . . . . . . . . . . . . . 7
2.1.2 同步整流降壓式轉換器. . . . . . . . . . . . . . . . .9
2.1.3 多相式降壓轉換器. . . . . . . . . . . . . . . . . . .10
2.1.4 具同步整流之雙併式降壓轉換器. . . . . . . . . . . . .11
2.2 雙併降壓式電源轉換器模型分析. . . . . . . . . . . . . .14
第3章 最佳控制應用於雙併式降壓轉換器. . . . . . . . . . . .18
3.1 LQR 控制器設計與分析. . . . . . . . . . . . . . . . . .18
3.2 雙併式降壓轉換器之控制器設計. . . . . . . . . . . . . .20
3.3 雙併式降壓轉換器同步開關之零電流截止時間計算. . . . . .24
3.4 雙併式降壓轉換器之控制器模擬. . . . . . . . . . . . . .27
第4章 控制器之實現與實驗結果. . . . . . . . . . . . . . . .35
4.1 雙併式降壓轉換器整體控制架構介紹. . . . . . . . . . . .35
4.1.1 電感電流估測電路. . . . . . . . . . . . . . . . . . .36
4.1.2 A/D 轉換器電路. . . . . . . . . . . . . . . . . . . .37
4.1.3 隔離電路及驅動電路. . . . . . . . . . . . . . . . . .38
4.2 實驗結果. . . . . . . . . . . . . . . . . . . . . . . .39
第5章 結論與未來展望. . . . . . . . . . . . . . . . . . . .42
5.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . .42
5.2 未來展望. . . . . . . . . . . . . . . . . . . . . . . .42
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . .43
附錄. . . . . . . . . . . . . . . . . . . . . . . . . . . .47
A.1 雙併式降壓轉換器實驗電路. . . . . . . . . . . . . . . .47
參考文獻 References
[1] D. w. Hart, Introduction to power electronics. pearson education taiwan Ltd,
2005.
[2] N. Kondrath and M. Kazimierczuk, “Comparison of wide-frequency and highfrequency
duty ratio-to-inductor current transfer functions of dc-dc pwm buck
converter in ccm,” IEEE Transactions on Industrial Electronics, no. 99, pp. 1–
1, 2011.
[3] D. Diallo, F. Belkacem, and E. Berthelot, “Design and control of a low power
dc-dc converter fed by a photovoltaic array,” in IEEE International Electric
Machines & Drives Conference, vol. 2, pp. 1288–1293, IEEE, 2007.
[4] K. Zou, M. J. Scott, and J. Wang, “The analysis of dc-dc converter topologies
based on stackable voltage elements,” in IEEE Energy Conversion Congress
and Exposition, pp. 4428–4433, IEEE, 2010.
[5] 原田耕介, 新型柔性切換式電源技術入門.全華科技圖書股份有限公司,民
國92年.
[6] 陳妤甄, 雙併式降壓轉換器.國立中山大學電機工程學系碩士論文, 民國98年.
[7] C. S. Moo, Y. J. Chen, H. L. Cheng, and Y. C. Hsieh, “Twin-buck converter with
zero-voltage-transition,” IEEE Transactions on Industrial Electronics, no. 99,
pp. 1–1, 2009.
[8] G. Hua and F. C. Lee, “Soft-switching techniques in pwm converters,” IEEE
Transactions on Industrial Electronics, vol. 42, no. 6, pp. 595–603, 1995.
[9] J. Y. Zhu and D. Ding, “Zero-voltage-and zero-current-switched pwm dc-dc
converters using active snubber,” IEEE Transactions on Industry Applications,
vol. 35, no. 6, pp. 1406–1412, 1999.
[10] K. H. Liu and F. C. Y. Lee, “Zero-voltage switching technique in dc/dc converters,”
IEEE Transactions on Power Electronics, vol. 5, no. 3, pp. 293–304,
1990.
[11] F. C. Schwarz, “A method of resonant current pulse modulation for power
converters,” IEEE Transactions on Industrial Electronics and Control Instrumentation,
no. 3, pp. 209–221, 1970.
[12] R. D. Middlebrook and S. Cuk, “A general unified approach to modelling
switching-converter power stages,” in Power Electronics Specialists Conference,
vol. 1, pp. 18–34, 1976.
[13] N. Kondrath and M. Kazimierczuk, “Comparison of wide-frequency and highfrequency
duty ratio-to-inductor current transfer functions of dc-dc pwm buck
converter in ccm,” IEEE Transactions on Industrial Electronics, no. 99, pp. 1–
1, 2011.
[14] H. Mao, J. Abu-Qahouq, S. Luo, and I. Batarseh, “Zero-voltage-switching halfbridge
dc-dc converter with modified pwm control method,” IEEE Transactions
on Power Electronics, vol. 19, no. 4, pp. 947–958, 2004.
[15] K. I. Hwu and Y. T. Yau, “Improvement of one-comparator counter-based pfm
control for dc-dc converter,” in IEEE International Symposium on Industrial
Electronics, pp. 1604–1607, IEEE, 2009.
[16] A. Morra, M. Piselli, M. Flaibani, and A. Gola, “A buck converter operating
in pfm mode, mathematical model and simulation analysis,” in International
Telecommunications Energy Conference, pp. 23–26, IEEE, 2007.
[17] Z. Bi and W. Xia, “A pwm/pfm switch technique of dual-mode buck converter,”
in International Communication Conference on Wireless Mobile and Computing,
pp. 357–360, IET, 2009.
[18] B. Sahu and G. A. Rincón-Mora, “An accurate, low-voltage, cmos switching
power supply with adaptive on-time pulse-frequency modulation (pfm) control,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 54, no. 2,
pp. 312–321, 2007.
[19] M. B. Poodeh, S. Eshtehardiha, and M. Namnabat, “Optimized state controller
on dc-dc converter,” in Internatonal Conference on Power Electronics, pp. 153–
158, IEEE, 2008.
[20] F. H. F. Leung, P. K. S. Tam, and C. K. Li, “An improved lqr-based controller
for switching dc-dc converters,” IEEE Transactions on Industrial Electronics,
vol. 40, no. 5, pp. 521–528, 1993.
[21] H. K. Ji and H. J. Kim, “Active clamp forward converter with mosfet synchronous
rectification,” in IEEE Power Electronics Specialists Conference,
pp. 895–901, IEEE, 1994.
[22] A. Fernández, J. Sebastián, P. Alou, J. A. Cobos, and M. Rascón, “Low output
voltage ac/dc converter with a new scheme of synchronous rectification that
complies with iec 1000-3-2 regulations,” IEEE Transactions on Power Electronics,
vol. 18, no. 4, pp. 966–974, 2003.
[23] F. Lima, M. Santos, J. Barata, and J. Aguiar, “Dead-time control system for
a synchronous buck dc-dc converter,” in International Conference on Power
Engineering, Energy and Electrical Drives, pp. 423–428, IEEE, 2007.
[24] L. Yao, H. Mao, J. Liu, and I. Batarseh, “Zero-voltage-switching buck-flyback
isolated dc-dc converter with synchronous rectification,” in IEEE Applied Power
Electronics Conference and Exposition, pp. 6–pp, IEEE, 2006.
[25] W. Y. Wang, H. H. C. Iu, W. Du, and V. Sreeram, “Multiphase dc-dc converter
with high dynamic performance and high efficiency,” IET Power Electronics,
vol. 4, no. 1, pp. 101–110, 2011.
[26] N. Narayana, D. Kastha, and A. Patra, “Design principles of a symmetrically
coupled inductor structure for multiphase synchronous buck converters,” IEEE
Transactions on Industrial Electronics, vol. 58, no. 3, pp. 988–997, 2011.
[27] P. Xu, J. Wei, and F. C. Lee, “Multiphase coupled-buck converter-a novel
high efficient 12 v voltage regulator module,” IEEE Transactions on Power
Electronics, vol. 18, no. 1, pp. 74–82, 2003.
[28] P. Alou, A. Cobos, O. García, R. Prieto, and J. Uceda, “Input voltage influence
on voltage regulator modules based on multiphase buck and multiphase
half bridge topologies,” in IEEE Applied Power Electronics Conference and
Exposition, vol. 2, pp. 1282–1288, IEEE, 2004.
[29] H. Saadat, power system analysis. McGraw-Hill, 2004.
[30] H. Fujioka, C. Y. Kao, S. Almér, and U. Jonsson, “Lq optimal control for a
class of pulse width modulated systems,” Automatica, vol. 43, no. 6, pp. 1009–
1020, 2007.
[31] B. D. O. Anderson and J. B. Moore, optimal control linear quadratic methods.
prentice Hall, 1990.
[32] S. H. Yu and M. H. Tseng, “Optimal control of a nine-level class-d audio amplifier
using sliding-mode quantization,” IEEE Transactions on Industrial Electronics,
vol. 58, no. 7, pp. 3069–3076, 2011.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code