Responsive image
博碩士論文 etd-1005104-164207 詳細資訊
Title page for etd-1005104-164207
論文名稱
Title
電漿顯示器資料分配器與快速雙極性數值內積乘法器之設計實做
Hardware Implementation of Plasma Display Panel Data Dispatcher and Fast Bipolar-valued Inner Product Processor
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
109
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-09-27
繳交日期
Date of Submission
2004-10-05
關鍵字
Keywords
唯讀記憶體解碼器、電漿顯示器、內積乘法器、微電刺激器
ROM decoder, Plasma display panel, micro-stimulator, inner product
統計
Statistics
本論文已被瀏覽 5653 次,被下載 0
The thesis/dissertation has been browsed 5653 times, has been downloaded 0 times.
中文摘要
首先,本論文提出一低成本之電漿顯示器資料分配器用於增加影像畫質。在定址與顯示分離技術之下,使用10個子畫面並將資料重新分配,使得我們的設計得以降低20%的電漿顯示器資料分配器成本,並且解決了動態假輪廓線的問題。

其次,我們提出一個用於類神經網路之關聯性記憶體的雙極性數值內積乘法器,設計用來計算兩個雙極性數值的內積。從我們的分析當中,可以發現本內積乘法器的延遲比先前的設計改進許多,從O(2n) 降到 O(n)。

此外,我們亦針對P+離子植入之唯讀記憶體提出3維位址解碼架構,使得其相對應的資料單元可以用自然排列方式編碼與儲存。不只是其面積可以縮小,包含存取時間以及功率消耗都減少很多。因此,其非常適合用於植入式元件。

最後,我們介紹一多種參數之神經介面微電刺激器系統,其包含了外部控制模組、傳輸規格與系統單晶片。在這個系統當中,主要是完成外部所給予的指令去電刺激相對應的神經。另一方面,未來其可以感測並傳輸相對應的神經訊號給外部的監測儀器。
Abstract
In this thesis, we firstly present a low-cost plasma display panel (PDP) data dispatcher for image enhancement. By taking advantage of the proposed ADS method with 10 subfields and data reordering, our design can reduce 20% of the PDP dispatcher cost and resolve the “dynamic false contour” problem.

Secondly, a bipolar-valued inner product processor for associative memory neural networks is proposed to compute the inner product of two bipolar-valued vectors. Our analysis shows that the delay of inner product is reduced significantly from O(2n) to O(n).

We also propose a 3-dimensional address decoding structure associated with a corresponding data cell encoding arrangement for P+implant ROMs such that the data words are encoded and stored in the ROMs in a natural pattern. Not only is the size of the entire decoder shrunk, the access time and power dissipation is also greatly reduced, which is very suitable to be utilized in implantable devices.

Finally, we introduce a multi-parameter implantable neural interface micro-stimulator system, including the external control module, the protocol, and the SOC (system-on-chip) chip. The proposed system is expected to carry out the externally given commands to stimulate the corresponding neural trunks. On the other way around, it can sense and deliver the response of the neural trunks to an external monitoring device in the future.
目次 Table of Contents
1 Introduction 1
1.1 Motivation ...................................... 1
1.2 Related Prior Works ................................ 2
1.2.1 Plasma display panel data dispatcher ................... 2
1.2.2 Neural computation and bio-medical chip design ............. 2
1.3 Organization of the Dissertation .......................... 5
2 A Low-cost Plasma Display Panel Data Dispatcher for Image Enhancement 6
2.1 Principle of Plasma Display Panel ......................... 6
2.1.1 Method for driving plasma display panel ................. 8
2.1.2 Address display separated driving method ................ 9
2.1.3 Dynamic false contours ........................... 11
2.2 Plasma Display Panel Data Dispatcher ...................... 12
2.2.1 Input data format .............................. 13
2.2.2 Average picture level (APL) module ................... 15
2.2.3 8-to-10 sub-field translator ......................... 17
2.2.4 Control module ............................... 17
2.2.5 SRAM module ............................... 18
2.2.6 High-voltage data driver IC ........................ 20
2.2.7 Output buff'er ................................ 22
2.2.8 High-voltage control signal generator ................... 22
2.3 Comparison and Implementation ......................... 23
2.3.1 PDP dispatcher accomplishment ...................... 23
2.4 Summary . ..................................... 25
3 A Fast Bipolar-valued lamer Product Processor 29
3.1 Associative Memory Networks ........................... 29
3.2 High-speed Bipolar-valued Vector Inner Product Processor ........... 31
3.2.1 Inner product term generator ....................... 32
3.2.2 (2n - 1)-to-n compressor unit ....................... 33
3.2.2.1 basic 3-2 compressor building block ............... 34
3.2.2.2 framework of (2n - 1)-to-n compressor ............. 34
3.2.3 Bipolar-to-binary converter ........................ 36
3.2.4 Inner product adjustment unit ....................... 37
3.3 Performance Analysis ................................ 38
3.3.1 Chip implementation and measurement .................. 39
3.3.2 Physical chip testing ............................ 40
3.4 Summary ...................................... 41
4 An Area-saving Decoder Structure for ROMs 43
4.1 Area-saving Decoder for ROMs .......................... 43
4.1.1 Strnetures of ROMs ............................ 43
4.1.2 1-dimensional decoder strncture of ROMs ................ 44
4.1.3 2-dimensional decoder strncture ...................... 44
4.1.4 3-dimensional decoder strncture ...................... 47
4.1.5 Performance analysis ............................ 49
4.1.5.1 transistor count .......................... 49
4.1.5.2 speed analysis .......................... 53
4.1.6 Chip implementation: 256~8 ROM .................... 53
4.2 Simulation and Testing ............................... 54
4.2.1 Speed (Delay) simulation .......................... 54
4.2.2 Power dissipation simulations ....................... 57
4.2.3 Physical chip testing ............................ 57
4.3 Summary ...................................... 57
5 Multi-parameter Neural Interface Micro-stimulator System 60
5.1 The Architecture of Neural Interface Micro-stimulator System ......... 60
5.1.1 Magnetic flux and inductance ....................... 61
5.1.2 Mutual inductance ............................. 62
5.1.3 Class-E amplifier .............................. 64
5.1.4 Internal power receiver ........................... 66
5.2 Multi-parameter Micro-stimulator Chip ...................... 67
5.2.1 Power regulator ............................... 68
5.2.2 On-chip C-less ASK demodulator ..................... 69
5.2.3 Packet format ................................ 72
5.2.4 Baseband schematic design ......................... 75
5.2.4.1 built-in clock generator ..................... 76
5.2.4.2 built-in reset and FSM ...................... 73
5.2.4.3 data and clock recoveW ..................... 78
5.2.4.4 serial to parallel converter .................... 79
5.2.4.5 decoder .............................. 80
5.2.4.6 DAC (digital-to-analog converter) ................ 81
5.3 Simulation and Testing ............................... 81
5.3.1 On-chip regulator .............................. 81
5.3.2 On-chip C-less ASK demodulator ..................... 82
5.3.3 Multi-parameter micro-stimulator chip .................. 83
5.4 Summary ..................................... 84
6 Conclusions and Future Works 88
6.1 Conclusions ..................................... 88
6.2 Future Works .................................... 89
Bibliography 90
參考文獻 References
[1] C. H. Park, D. H. Kim, S. H. Lee, J. H. Ryu, and J. S. Cho, "A New method to reduce addressing time in a large AC plasma display panel," IEEE Trans. Electron Devices, vol. 48, no. 6, pp. 1082-1086, June 2001.
[2] T. Tokunaga, H. Nakamura, M. Suzuki, and N. Saegusa, "Development of new drving method for AC-PDPs," in Proc. International Display Workshops (IDW '99), pp. 787-
790, Dec. 1999.
[3] T. Shigeta, N. Saegusa, H. Honda, T. Nagakubo, and T. Akiyama, "Improvement of moving-video image quality on PDPs by reducing the dynamic false contour," in Proc. 1998 SID International Symposium, Digest of Technical Papers, pp. 287-290, May 1998.
[4] S.-R. Tong, "Digital data processing system of plasma display panel," M.S. Thesis, National Taiwan University, Taipei, Taiwan, 2000.
[5] H. Ando, M. Hoshikawa, H. Kida, K. Hirata, and H. Mochizuki, "Development of signal processing ICs for AC plasma displays," in Proc. International Display Workshops (IDW'97), pp. 507-510, Nov. 1997.
[6] K. Wahl, "A novel driving scheme and panel design for realization of a picture quality equivalent to CRTs," in Proc. International Display Workshops (IDW '99), pp. 775-778, Dec. 1999.
[7] J. Kim, T. M. Roh, S. G. Kim, Q. S. Song, D. W. Lee, J. G. Koo, K. I. Cho, and D. S. Ma, "High-voltage power integrated circuit technology using SOI for driving plasma
display panels," IEEE Trans. Electron Devices, vol. 48, no. 6, pp. 1256-1263, June 2001.
[8] S. Mikoshiba, "Dynamic false contours on PDPs - fatal or curable ?," in Proc. International Display Workshops (IDW '96), pp. 251-254, Nov. 1996.
[9] K. Kang, J. Lee, S. Lee, H. Kim, N. Jung, K. Whang, and C. Park "A new 42-in. AC PDP using MAoD II driving scheme," in Proc. 2001 SID International Symposium, Digest of Technical Papers, pp. 1130-1133, June 2001.
[10] S. Mikoshiba, "Visual artifacts generated in frame-seqential display device: an overview," in Proc. 2000 $ID International Symposium, Digest of Technical Papers, pp. 384-387, May 2000.
[11] M. Yamamada, K. Saws, T.shiga, S. Mikoshiba, T. Ohe, K. Toda, Ueda, and K. Kariya, "Doubling of PDP resolution for moving pictures by use of a virtual pixel technique," in Proc. International Display Workshops (IDW '00), pp. 703-706, Nov. 2000.
[12] K. Saws, T. Shiga, and S. Mikoshiba, "Evaluation of motion artifacts on PDPs appearing with arbtrary motion of observation points," in Proc. 2000 SID International Symposium, Digest of Technical Papers, pp. 392-395, May 2000.
[13] T. Makino, A. Mochizuki, M. Tajima, T. Ueda, K. Ishida, and K. Kariya, "Improvement of video image quality in AC-Plasma display panel by suppressing the unfavorable coloration effect with sufficient gray shades capability," in Proc. ASIA DISPLAY '95, pp. 381-384, Oct. 1995.
[14] J. Ryeom, S. W. Kim, B. H. Lee, Y. B. Roh, and C. B. Park, "An image data rearranged sub-field method for reducing dynamic false contours in PDPs," in Proc. International Display Workshops (IDW '93), pp. 547-550, Nov. 1998.
[15] T. Yamamoto, Y. Takano, K. Ishii, T. Koura, H. Kokubun, K. Majima, t. Kurita, K. Yamaguchi, K. Kobayashi, and H. Murakami, "Improvement of moving-picture quality on a 42-in.-diagonal PDP for HDTV," in Proc. 1997 SID International Symposium, Digest of Technical Papers, pp. 217-220, May 1997.
[16] J. J. Lees, S. H. Janga, H. S. Taea, and K. C. Choib "Effects of Phosphor Layer Morphology on Discharge Characteristics of Red, Green, and Blue Cells in AC-PDP," Journal of Information Display, vol. 2, no. 2, pp. 52-56, 2001.
[17] K. Yoshikawa, Y. Kanazawa, M. Wakitani, T. Shinoda, and A. Ohtsuka, "A full-color AC plasma display with 256 gray scale," in Proc. Japan Display, pp. 605-608, Oct. 1992.
[18] Fujitsu, Plasma Display Technology. [Online]. Available: http://www.fmal.fujitsu.com/services/display plasma tech01.html
[19] D. L. Bitzer, and M. G. Slottow, "The Plasma Display Panel - A Digitally Addressable Display with Inherent Memory," in Proc. AFIPS Fall Joint Computer Conference, vol. 29, pp.541-547, 1966.
[20] Y. Kanazawa, "Method and Apparatus for Driving Display Panel, United States Patent no. 5,420,602, May 30, 1995.
[21] L. F. Weber, and R. C. Younce, "Independent sustain and address plasma display panel," United States Patent, no. 4,772,884, Sep. 20, 1988.
[22] L. F. Weber, and R. C. Younce, "Independent sustain and address plasma display panel," United States Patent, no. 4,924,218, May 8, 1990.
[23] T.-H. Tsai, "Image Defects of Plasma Display Panel," M.S. Thesis, National Taiwan University, Taipei, Taiwan, 2000.
[24] C.-T. Tseng, "Analysis of Image Defect on Plasma Display Panel," M.S. Thesis, National Taiwan University, Taipei, Taiwan, 1999.
[25] M. T. Hagan, H. B. Demuth, and M. H. Beale, Neural network design, Boston: PWS Publishing Company, 1996.
[26] T. Kohonen, "Self-Organization and associative memory," New York: Springer-Verlag New York, Inc., 1987.
[27] K. A. Boahen, P. O. Pouliquen, A. G. Anderou, and R. E. Jenkins, "A heteroassociative memory using current-mode MOS analog VLSI circuits," IEEE Trans. Circuits Syst., vol. 36, no. 5, pp. 747-755, May 1989.
[28] A. Johannet, L. Personnaz, G. Dreyfus, J.-D. Gascuel, and M. Weinfeld, "Specification and implementation of a digital Hopfield-type associative memory with on-chip training," IEEE Trans. Neural Networks, vol. 3, no. 4, pp. 529-539, July 1992.
[29] M. Jabri, S. Pickad, P. Leong, and Y. Xie, "Algorithms and implementation issues in analog low power learning," J. of VLSI Signal Processing, vol. 6, no. 1, pp. 67-76, June 1993.
[30] D. Liu, and A. N. Michel, "Sparsely interconnected neural networks for associative memories with application to cellular neural networks," IEEE Trans. Circuits Syst. II, vol. 41, no. 4, pp. 295-307, Apr. 1994.
[31] T. Kohonen, "Correlation matrix memories," IEEE Trans. Comput., vol. 21, no. 4, pp. 353-359, Apr. 1972.
[32] C.-C. Wang, C.-J. Huang, and P.-M. Lee, "A comparison of two alternative architectures of digital ratioed compressor design for inner product processing," in Proc. 1999 Inter. Syrup. on Circuits and Systems, vol. I, pp. 161-164, June 1999.
[33] C.-C. Wang, and C.-R. Tsai, "Data compression by the recursive algorithm of exponential bidirectional associative memory," IEEE Trans. Syst., Man, Cybern. B, vol. 28, no. 2, pp. 125-134, Apr. 1998.
[34] C.-C. Wang, and Y.-C. Chen, "Hardware realization of multi-valued exponential bidirectional associative memory using current-mode circuits," in Proc. 1996 IEEE Inter. Symp. on Circuits and Systems, vol. III, pp. 503-506, May 1996.
[35] J. Austin, and S. O'Keefe, "Application of an associative memory to the analysis of document fax images," in Proc. British Machine Vision Conference, vol. 1, pp. 315-325, 1994.
[36] K. Nakano, "Associatron-a model of associative memory," IEEE Trans. Syst., Man, Cybern., vol. SMC-2, no. 3, pp.380-388, 1972.
[37] Y. Zhang, Z. He, and C. Wei, "Stability analyzing of chaotic neural network for associative memory," in Proc. 2002 Inter. Joint Conference on Neural Networks, vol. 1, pp. 659-664, May 2002.
[38] B. Kosko "Bidirectional associative memories," IEEE Trans. Syst., Man, Cybern., vol. 18, no. 1, pp. 49-60, Jan./Feb. 1988.
[39] C.-J. Huang, "Hardware realization of fast arithmetic elements for signal processing applications," Ph.D thesis, National Sun Yat-sen University, Ksohsiung, Taiwan, 2000.
[40] C.-T. Sun, Neural Network Course, National Chiao Tung University, Hsinchu, Taiwan. [Online]. Available: http://cindy.cis.nctu.edu.tw/NN/NN2/paper4.html
[41] E. Bertagnolli, F. Hofmann, J. Willer, R. Mary, F. Lau, P.W. yon Basse, M. Bollu, R. Thewes, U. Kollmer, U. Zimmermann, M. Hain, W.H. Krautschneider, A. Rusch, B. Hasler, A. Kohlhase, and H. Klose, "ROS: an extremely high density mask ROM technology based on vertical transistor cells," 1996 Symp. on VLSI Technology Digest of Technical Papers, pp. 58-59, 1996.
[42] D. A. Hodges, and H. G. Jackson, Analysis and design of digital integrated circuits, New York: 2nd ed., McGraw-Hill Publishing Company, 1988.
[43] R. Kahan, A. Guyot, B. Hochet, and M. Del clercq, "A divided decoder-matrix (DDM) structure ans its application to a 8Kb GaAs MESFET ROM," in Proc. 1997 IEEE Inter. Syrup. on Circuits and Systems, vol. 3, pp. 1888-1891, June 1997.
[44] Y. Naruke, T. Iwase, M. Takizawa, K. Saito, M. Asano, H. Nishmura, and T. Mochizuki, "A 16 Mb mask ROM with programmable redundancy," IEEE Inter. Solid-State Circuits Conference, Digest of Technical Papers, pp. 128-129, Feb. 1989.
[45] T. Sunaga, "A 30-ns cycle time 4-Mb mask ROM," IEEE J. of Solid-State Circuits, vol. 29, no. 11, pp. 1353-1358, Nov. 1994.
[46] H. Takahashi, S. Muramatsu, and M. Itoigawa, "A new contact programming ROM architecture for digital signal processor," 1998 Syrmp. on VLSI Circuits Digest of Technical
Papers, pp. 158-161, 1998.
[47] A. Tuminaro, "A 400MHz, 144Kb CMOS ROM macro for an IBM S/390-class microprocessor,' in Proc. 1997 Inter. Conf. on Computer Design, pp. 253-255, Oct. 1997.
[48] J.-N. Kao, "Memory device using natural-order encoding," R.O.C. Patent no. 366496, Taiwan, Aug. 1999.
[49] Y.-P. Chen, "A Area-Saving ROM Decoder and Design of Network Interface Controller," M.S. thesis, National Sun Yat-sen University, Ksohsiung, Taiwan, 2000.
[50] J. S. Walter, J. S. Wheeler, W. Cai, W. W. King, and R. D. Wurster, "Evaluation of a suture electrode for direct bladder stimulation in a lower motor neuron lesioned animal
mode," IEEE Trans. Rehab. Eng., vol. 7, no. 2, pp. 159-166, June 1999.
[51] S. K. Talwar, S. Xu, E. S. Hawley, S. A. Weiss, K. A. Moxon, and J. K. Chapin, "Rat navigation guided by remote control," Nature, no. 417, pp. 37-38, May 2002.
[52] P. Loizou, "Introduction to cochlear implants," IEEE Eng. Med. Biol. Mag., vol. 18, no. 1, pp. 32-42, 1999.
[53] S. J. Tange, and K. D. Wise, "A 16-channel CMOS neural stimulating array," IEEE J. Solid-State Circuits, vol. 27, no. 12, pp. 1819-1825, Dec. 1992.
[54] A. Kawana, and Y. Jimbo, "Neurointerface," in Proc. Twelfth IEEE Inter. Conference on Micro Electro Mechanical Systems, pp. 14-20, Jan. 1999.
[55] G. E. Leob, F. J. R. Richmond, W. H. Moore, and R. A. Peck, "Design and fabrication of hermetic microelectronic implants," in Proc. IEEE-EMBS Special Topic Conference on
Microtechnoloies in Medicine & Biology, pp. 455-459, 2000.
[56] S. Birleson, J. Esquivel, P. Nelsen, J. Norsworthy, and K. Richter, "Silicon single-chip television tuner technology," in Proc. IEEE Inter. Conf. on Consumer Electronics, pp. 38-39, June 2000.
[57] K. Lim, S. Pinel, M. Davis, A. Sutono, C.-H. Lee, H. Deukhyoun, A. Obatoynbo, J. Laskar, E. M. Tantzeris, and R. Tummala, "RF-system-on-package (SOP) for wireless communications," IEEE Microwave Magazine, pp. 88-99, March 2002.
[58] M. Dawkins, A. Payne, and N. Cowley, "Single chip tuner design for digital terrestrial television" in Proc. IEEE Inter. Symp. on Circuits and Systems(ISCAS), pp. 125-128, May 2001.
[59] J. K. Chapin, K. A. Moxon, R. S. Markowitz, and M.A.L. Nicolelis, "Real-Time Control of a Robot Arm Using Simultaneously Recorded Neurons in the Motor Cortex," Nature
Neurosciences, vol. 2, pp. 664-670, July 1999.
[60] J. R. Buitenweg, E. Marani, and W. L. C. Rutten, "Finite element modeling of the neuron-electrode interface: sealing resistance and stimulus transfer at transitions from complete to defect sealing," in Proc. IEEE 20th Inter. Cont. Eng. Medicine and Biology Society (TEEE-EMBS), vol. 6, pp. 2854-2857, Nov. 1998.
[61] J. J. Struijk, M. Thomsen, J. O. Larsen, T. Sinkjaer, "Cuff electrodes for long-term recording of natural sensory information," IEEE Eng. Med. Biol. Mag., vol. 18, no. 3, May/Jun 1999.
[62] R. J. Baker, H. W. Li, and D. E. Boyce, CMOS- circuit design, layout, and simulation, NY: IEEE Press, 1998.
[63] C.-K. Chen, "Design of wireless data and power transmission for nerve cuff stimulation," M.S. Thesis, National Cheng Kung University, Tainan, Taiwan, 2001.
[64] G.A. Rincon-Mora, P.E. Allen, "A low-voltage, low quiescent current, low drop-out regulator,' IEEE J. Solid-State Circuits, vol. 33, no. 1, pp. 36-44, Jan. 1998.
[65] C. Simpson, "A user's guide to compensating low-dropout regulators," in Proc. WESCON/97, pp. 270-275, Nov. 1997.
[66] J. S. Walter, J. S. Wheeler, W. Cai, W. W. King, and R. D. Wurster, "Evaluation of a suture electrode for direct bladder stimulation in a lower motor neuron lesioned animal
mode," IEEE Trans. Rehab. Eng., vol. 7, no. 2, pp. 159-166, Jun 1999.
[67] R. E. Isaacs, D. J. Weber, and A. B. Schwartz, "Work toward real-time control of a cortical neural prosthesis," IEEE Trans. Rehab. Eng., vol. 8, no. 2, pp. 196-198, June
2000.
[68] R. R. Tasker, "Deep brain stimulation is preferable to thalamotomy for tremor suppression," Surg Neurol, vol. 49, no. 2, pp. 145-153, Feb. 1998.
[69] G. E. Loeb, F. J. R Richmond, D. Olney, T. Cameron, A. C.Dupont, K. Hood, R. A. Peck, P. R. Troyk, and H. Schulman, "BION. Bionic neurons for functional and
therapeutic electrical stimulation," in Proc. IEEE 20th Inter. Cont. Eng. Medicine and Biology Society (IEEE-EMBS), vol. 5, pp. 2305-2309, Nov. 1998.
[70] R. G. Dennis, D. E. Dow, and J. A. Faulkner. "An implantable device for stimulation of denervated muscles in rats," Medical Engineering & Physics, vol. 25, no. 3, pp. 239-253, Apr. 2003.
[71] S. Salmons, G. T. Gunning, I. Taylor, S. R. Grainger, D. J. Hitchings, J. Blackhurst, and J. C. Jarvis, "ASIC or PIC ? Implantable stimulators based on semi-custom CMOS
technology or low-power microcontroller architecture," Medical Engineering & Physics, vol. 23, no. 1, pp. 37-43, Jan. 2001.
[72] S. Pourmehdi, P. Strojnik, H. Peckham, J. Buckett, and B. Smith, "A custom designed chip to control an implantable stimulator and telemetry system for control of paralyzed
muscles," Artif Organs., vol. 23, no. 5, pp. 396-398, May 1999.
[73] K. Arabi, and M. A. Sawan, "Electronic design of a multichannel programmable implant for neuromuscular electrical stimulation," IEEE Trans. Rehab Eng., vol 7, no. 2, pp. 204-214, June 1997.
[74] B. Ziaie, M. D. Nardin, A. R. Coghlan, and K. Najafi, "A single-channel implantable microstimulator for functional neuromuscular stimulation," IEEE Trans. Bio-Med. Eng., vol. 44, no. 10, pp. 909-920, Oct. 1997.
[75] J. A. Von Arx, and K. Najafi, "A wireless single-chip telemetry-powered neural stimulation system," IEEE Inter. Solid-State Circuits Conference(ISSCC), Digest of Technical
Papers, pp. 214-215, Feb. 1999.
[76] W. Liu, K. Vichienchom, M. Clements, S. C. DeMarco, C. Hughes, E. McGucken, M. S. Humayun, E. De Juan, J. D. Wetland, and R. Greenberg,' "A neuro-stimulus chip with
telemetry unit for retinal prosthetic device," IEEE J. Solid-State Circuits, vol. 35, no. 10, pp. 1487-1497, Oct. 2000.
[77] M. Baru, H. Valdenegro, C. Rossi, and F. Silveira, "An ASK demodulator in CMOS technology," in Proc. IV Iberchip Workshop, pp. 37-42, 1998.
[78] H. Yu, and K. Najafi, "Circuitry for a wireless microsystem for neural recording microprobes,' in Proc. IEEE 23rd Inter. Cont. Eng. Medicine and Biology Society (IEEE-EMBS), vol. 1, pp. 761-764, Oct. 2001.
[79] T. Eken, and K. Gundersen, "Electrical stimulation resembling normal motor-unit activity: effects on denervated fast and slow rat muscles," Journal of Physiology, vol. 402, pp. 651-669, Aug. 1988.
[80] K. Gundersen, T. Eken, "The importance of frequency and amount of electrical stimulation for contractile properties of denervated rat muscles," Acta Physiol Scand, vol. 145, no. 1, pp. 49-57, May. 1992.
[81] C. Bohotin, M. Scholsem, S. Multon, D. Martin, V. Bohotin, and J. Schoenen, "Vagus nerve stimulation in awake rats reduces formalin-induced nociceptive behaviour and fos-
immunoreactivity in trigeminal nucleus caudalis," Pain, vol. 101, no. 1-2, pp. 3-12, Jan. 2003.
[82] C. H. Seif, P. M. Braun, S. Bross, J. Scheepe, J. Weiss, S. Schumacher, S. Zendler, P. A]ken, K. P. Junemann, "Selective block of urethral sphincter contraction using a modified Brind]ey electrode in sacral anterior root stimulation of the dog," Neurourol Urodynam,
vol. 21, no. 5, pp. 502-510, 2002.
[83] E. Ganio, A. R. Luc, G. Clerico, and M. Trompetto, "Sacral nerve stimulation for treatment of fecal incontinence: a novel approach for intractable fecal incontinence," Dis Colon Rectum, vol. 44, no. 5, pp. 619-629, May 2001.
[84] M. Sawan, M. M. Hassouna, J. S. Li, F. Dural, and M. M. Elhilali, "Stimulator design and subsequent stimulation parameter optimization for controlling micturition and
reducing urethral resistance, "IEEE Trans. Rehab Eng., vol. 4, no. 1, pp.39-46, Mar. 1996.
[85] B. Razavi, Design of analog CMOS integrated circuits, New York: McGraw-Hill, 2001, pp. 377-380.
[86] J. Parramon Piella, "Energy management, wireless and system solutions for highly integrated implantable," Ph.D Thesis, la Universitat Autonoma de Barcelona, Spain, Dec.
2001.
[87] K. Finkenzeller, RFID Handbook, Chichester, England: John Wiley & Sons Ltd., 2003, pp. 61-159.
[88] "Quality factor of components and approximate analysis of high-Q circuits," class notes for ELREB4002, Vilnius Gediminas Technical University, Lithuania. [Online]. Available:http://www.el.vtu.lt/en/studies/modules/sign_circuit/ch4.pdf
[89] C.-C. Wang, Y.-L. Tseng, T.-J. Lee, and R. Hu, "Low-variation 1.0 MHz clock generator with temperature compensation bias," in Proc. 2003 Workshop on Consumer Electronics (WCE2003), pp. 133 (CD-ROM version), Nov. 2003.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.119.199
論文開放下載的時間是 校外不公開

Your IP address is 3.145.119.199
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code