Responsive image
博碩士論文 etd-1006114-152835 詳細資訊
Title page for etd-1006114-152835
論文名稱
Title
橢圓曲面無影燈結合金屬玻璃薄膜與自由曲面透鏡製作
Fabrication of shadow-less lamp with ellipse curved surface combined with metallic glass thgin film and free-form lens
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
122
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-11-05
繳交日期
Date of Submission
2014-11-07
關鍵字
Keywords
自由曲面、發光二極體、透鏡設計、手術無影燈、橢圓曲面、金屬玻璃薄膜
LED, lens design, freeform, thin film metallic glass, elliptical curve, surgical shadowless lamp
統計
Statistics
本論文已被瀏覽 5642 次,被下載 0
The thesis/dissertation has been browsed 5642 times, has been downloaded 0 times.
中文摘要
傳統的手術無影燈大多以投射式的方式來達到無影的目的,此種設計方法仰賴數十顆由不同方向將光線投射至目標照明面上。但大量的燈泡數量不僅會造成汞汙染,同時也會因其發光波段包含會使照明面溫度上升的紅外光波段,故在整體結構上還需額外增加一層用來濾掉紅外光的光學薄片,產生光線能量被吸收且成本上升缺點。本論文以發光二極體 (Light-Emitting Diode, LED) 取代傳統汞燈作為手術無影燈之光源,並提出兩種以橢圓曲面公式為基礎的設計方法來建構手術無影燈之反射面,其中各層橢圓之焦點以同軸/非同軸的方式排列。並結合一自由曲面均光透鏡來解決LED本身出光場型不均勻的問題,使目標照明面上之均勻度得以提升。另外選用銀銅鋁金屬玻璃薄膜 (thin film metallic glass, TFMG) 作為反射層之材料,此材料不但具有高機械性質,抗刮、抗磨損及高抗腐蝕性,且在可見光波段之反射率可達88%,而包含銀基之金屬玻璃薄膜材料更能達到手術房中需抗菌的要求。根據光學模擬軟體之模擬結果可得由非同軸法所設計層數為3之手術無影燈在整體擁有最佳的效能,其中央照度可達141,780lux,在單/雙遮片下之無影度分別為63.6%及57.1%,而在照傷管中之無影度則分別為59.6%及61%,同時d50/d10為60.8%工作深度則為36cm。而在結合均光曲面透鏡之後因透鏡材料吸收的關係,中央照度略降為130,410lux,但在d50/d10的部分則提升至65%,在單/雙遮光片的無影度則提升至65.7%及53.6%,而在照傷管中之無影度單遮光片為61.8%,雙遮光片為58.7%,工作距離則略微提高至36.5cm。以CNC銑床加工出實體手術無影燈後,利用照度計及光譜儀測量其實際出光情形。根據實際量測的結果,銀銅鋁金屬玻璃薄膜反射後的情況下則為110,500lux,而d50/d10為59.9%,單/雙遮光片下之無影度為58.96%及56.16%,而在照傷管的情況下為57.46%及58.03%,其工作深度為32.8cm。
Abstract
Traditional surgical shadowless lamps are generally designed as projection type with many light bulbs as light source, but this kind of structures will not only occur mercury pollution but also heat radiation that increase the temperature on the target plane. An additional filter that will absorb the energy of light is necessary to block the radiation. In this thesis, LED (Light-Emitting Diode) is applied to replace the halogen lamp, and two different methods of designing surgical shadowless lamp are present, that is based on elliptical equation. A freeform uniform lens is designed to fix the problem of Lambertian distribution of LED, that prove the uniformity on the target plane. Besides, thin film metallic glass (TFMG), is applied as the material of reflective layer. TFMG have great mechanical properties that can extend the life term of lamp and the Ag-based TFMG is anti-bacterial. According to the result of simulation, the most outstanding model is the one with 3 elliptical curves designed by un-coaxial method, which central illuminance is 141,7801lux, and the d50/d10 is 60.8%, 36cm in depth of working. The shadow dilution with one/double masks are 63.6% and 57.1%, while 59.6% and 61% in a tube with one/double masks. After combination with freeform uniform intensity lens, central illuminance lightly decrease to 130,140lux, which is because the absorption of lens material. But d50/d10 have increased to 65% and the shadowless dilution with one/double masks are 65.7% and 53.6%, while 61.8% and 58.7% in a tube with one/double masks. And the depth of working is 36.5cm. Computer numerical control milling machine was used to fabricate the actual surgical shadowless lamp, illuminometer and spectrum were applied to measure the emission result. According to the measurement result, Ec is 110,500lux with 59.9% in d50/d10, shadow dilution with single/double masks are 58.96% and 56.16%, respectively, and 57.46% and 58.03% with a tube. The working depth is 32.8cm.
目次 Table of Contents
第一章 緒論 1
1.1 前言 1
1.2 研究背景 1
1.3 研究目的 2
1.4 本文架構 3
第二章 文獻回顧 4
2.1 手術燈 4
2.2 發光二極體和二次光學透鏡 10
2.3 金屬玻璃 12
第三章 理論基礎 18
3.1 幾何光學理論 18
3.1.1 發光點 18
3.1.2 光線 18
3.1.3 光線之反射現象 19
3.1.4 光線之全反射現象 20
3.2光度學與輻射度量學 21
3.2.1 通量 22
3.2.2 照度 23
3.2.3 強度 23
3.2.4 亮度 24
3.3 手術燈法規 25
3.3.1 中央照度 (central illuminance, Ec) 26
3.3.2 光型分布 (light distribution) 26
3.3.3 無影度 (shadow dilution) 27
3.3.4 照明深度 (depth of illumination) 29
3.3.5色溫 (color temperature) 30
3.3.6演色性 (color rendering index) 30
3.4 金屬玻璃 31
3.5 光源模擬設定 31
第四章 研究方法與步驟 33
4.1研究流程 33
4.2同軸焦點橢圓曲面設計 35
4.3非同軸焦點橢圓曲面設計 39
4.4 均光透鏡設計 43
4.5 PROE建模及TRACEPRO光學軟體模擬 47
4.6 手術無影燈製作 50
4.7 反射面鍍膜 54
4.8 手術無影燈及LED光型量測系統架設 56
第五章 結果與討論 60
5.1 LED晶片出光場型檢測 60
5.2同軸法之手術無影燈模擬結果 61
5.2.1 中央照度分析 62
5.2.2 無影度 65
5.2.3 d50/d10 69
5.2.4 工作深度 73
5.2.5 小結 73
5.3非同軸法之手術無影燈模擬結果 74
5.3.1 中央照度 74
5.3.2 無影度 77
5.3.3 d50/d10 80
5.3.4 工作深度 83
5.3.5 小結 84
5.4 結合自由曲面均光透鏡之出光模擬 84
5.5 實際量測結果 92
5.5.1 經鋁薄膜與銀銅鋁金屬玻璃反射後之光譜、色溫、演色性及色座標 92
5.5.2 EC及d50/d10比較 95
5.5.3 無影度及工作深度比較 97
5.5.4 小結 100
第六章 結論與展望 101
6.1結論 101
6.2未來展望 102
參考文獻 103
參考文獻 References
[1] K. F. Ilzig, K. M. Junginger and A. Rieth, “Surgical operating lamp with individual spot-lights,” U.S. PATENT 3887801, 1975.
[2] W. H. Dorman, “Lighting device for dental and surgical procedures,” U.S. PATENT 3511983, 1970.
[3] W. H. Dorman, “Reflector,” U.S. PATENT 4149227, 1979.
[4] E. W. Ellett, “Operating room surgical lamp,” U.S. PATENT 4280167, 1981.
[5] Y. Osamu and H. Kazuomi, “Shadow-free lamp assembly,” U.S. PATENT 4459647, 1984.
[6] W. Harry, “Reflector for dental and surgical operating room lighting fixtures,” U.S. PATENT 4942507, 1990.
[7] J. Planchon, “Faceted reflector,” U.S. PATENT 3700882, 1972.
[8] Y. F. Chuang, “Profiles of shadowless reflector for operating lighting,” U.S. PATENT 6135602, 2000.
[9] H. Ries and J. Muschaweck, “Tailored freeform optical surfaces,” Journal of the Optical Society of America, vol. 19, pp. 590-595, 2002.
[10] A. L. Timinger, J. A. Muschaweck and H. Ries, “Designing tailored free-form surfaces for general illumination,” Design of efficient illumination systems, 2003, pp. 128-132.
[11] J. C. Bortz, N. E. Shatz and D. Pitou, “Optimal design of a nonimaging projection lens for use with an LED source and a rectangular target,” Novel Optical Systems Design and Optimization III, 2000, pp. 130-138.
[12] J. C. Bortz, N. E. Shatz and M. Keuper, “Optimal design of a nonimaging TIR doublet lens for an illumination system using an LED source,” Nonimaging Optics and Efficient Illumination Systems, 2004, pp. 8-16.
[13] Y. Zhen, Z. Jia and W. Zhang, “The optimal design of TIR lens for improving LED illumination uniformity and efficiency,” Optical Design and Testing III, 2007, pp. 68342K-8.
[14] F. R. Fournier, W. J. Cassarly and J. P. Rolland, “Freeform reflector design using integrable maps, ” International Optical Design Conference, 2010, pp. 765221.
[15] C. Canavesi, W. J. Cassarly and J. P. Rolland, “Direct calculation algorithm for two-dimensional reflector design,” Optics Letters, vol. 37, issue 18, pp. 3852-3854, 2012.
[16] C. Jin, Z. Qian, C. Qiaoyun, L. Qingqing, Z. Xiangbing and Y. Benli, “Reflector design of Light Emitting Diode for uniform illuminance,” Photonics and Optoelectronics, 2012, pp. 1-4.
[17] J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O'Shea, M. J. Ludowise, G. Christenson, Y. C. Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Gotz, N. F. Gardner, R. S. Kern, and S. A. Stockman, “High-power AlGaInN flip-chip light-emitting diodes,” Applied Physics Letters, vol. 78, pp. 3379-3381, May 28 2001.
[18] H. Luo, J. K. Kim, E. F. Schubert, J. Cho, C. Sone, and Y. Park, “Analysis of high-power packages for phosphor-based white-light-emitting diodes,” Applied Physics Letters, vol. 86, Jun 13 2005.
[19] N. T. Tran and F. G. Shi, “LED package design for high optical efficiency and low viewing angle,” in Microsystems, Packaging, Assembly and Circuits Technology, 2007. IMPACT 2007. International, 2007, pp. 10-13.
[20] N. Holonyak and S. F. Bevacqua, “Coherent (Visible) Light Emission from Ga(As1-Xpx) Junctions,” Applied Physics Letters, vol. 1, pp. 82-83, 1962.
[21] M. George, “LEDs for solid state lighting and other emerging applications: status, trends, and challenges,” International Society for Optics and Photonics, pp. 594101-594101-10, 2005.
[22] S. Sakai, A. Mori, K. Ishiguchi, K. Kobayashi, T. Kokogawa, T. Sakamoto, and T. Yoneda, “A Thin LED Backlight System with High Efficiency for Backlighting 22-in TFT-LCDs,” SID Symposium Digest of Technical Papers, vol. 35, pp. 1218-1221, 2004.
[23] R. S. West, H. Konijn, S. Kuppens, N. Pfeffer, Q. V. Vader, Y. Martynov, T. Heemstra, J. Sanders, T. Yagi, and G. Harbers, “LED backlight for large area LCD TV's,” 10th International Display Workshops (IDW), 2003.
[24] K. R. Hardy, M. S. Olsson, J. R. Sanderson, K. A. Steeves, B. P. Lakin, J. E. Simmons, and P. A. Weber, “High Brightness Light Emitting Diodes for Ocean Applications,” OCEANS, pp. 1-4, 2007.
[25] K. R. Hardy, M. S. Olsson, B. P. Lakin, K. A. Steeves, J. R. Sanderson, J. E. Simmons, and P. A. Weber, “Advances in High Brightness Light Emitting Diodes in underwater applications,” OCEANS, pp. 1-5, 2008.
[26] J. F. V. Derlofske, “Computer modeling of LED light pipe systems for uniform display illumination,” International Symposium on Optical Science and Technology, pp. 119-129, 2001.
[27] F. Zhao and J. V. Derlofske, “Side-Emitting Illuminators Using LED Sources,” International Society for Optics and Photonics, pp. 33-43, 2003.
[28] “http://www.nichia.co.jp/en/about_nichia/index.html,” (2013/07/07).
[29] A. L. Timinger, J. A. Muschaweck, and H. Ries, “Designing tailored free-form surfaces for general illumination,” in Optical Science and Technology, SPIE's 48th Annual Meeting, 2003, pp. 128-132.
[30] A. J. W. Whang, Y. Y. Chen, and Y. T. Teng, “Designing Uniform Illumination Systems by Surface-Tailored Lens and Configurations of LED Arrays,” Journal of Display Technology, vol. 5, pp. 94-103, Jan-Mar 2009.
[31] Y. Ding, P. F. Gu, and Z. R. Zheng, “The freeform reflector for uniform rectangular illumination,” Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, vol. 46, pp. 7771-7773, Dec 2007.
[32] A. Domhardt, U. Rohlfing, K. Klinger, K. Manz, D. Kooß, and U. Lemmer, “Optical design of LED-based automotive tail lamps,” in Optical Engineering+ Applications, 2007, pp. 66700L-66700L-10.
[33] N. Shatz, J. Bortz, J. Matthews, and P. Kim, “Advanced optics for LED flashlights,” in Proceedings of SPIE, the International Society for Optical Engineering, 2008, pp. 70590D. 1-70590D. 12.
[34] M. C. Simon, “Ray Tracing Formulas for Monoaxial Optical-Components,” Applied Optics, vol. 22, pp. 354-360, 1983.
[35] M. C. Simon and R. M. Echarri, “Ray Tracing Formulas for Monoaxial Optical-Components - Vectorial Formulation,” Applied Optics, vol. 25, pp. 1935-1939, Jun 15 1986.
[36] R. L. Cook, T. Porter, and L. Carpenter, “Distributed ray tracing,” in ACM SIGGRAPH Computer Graphics, 1984, pp. 137-145.
[37] L. Wang, K. Qian and Yi Luo, “Discontinuous free-form lens design for prescribed irradiance,” Applied Optics, 2007, vol. 46, issue 18, pp. 3716-3723.
[38] Y. Ding, P. F. Gu, W. Lu, and Z. R. Zheng, “Construction of freeform reflector through numerical solutions to differential equations,” Journal of Zhejiang University, vol. 41, 2007.
[39] F. Chen, S. Liu, K. Wang, Z. Liu and X. Luo, “Free-form lenses for high illumination quality light-emitting diode MR16 lamps,” Optical Engineering, 2009, vol. 48, pp. 123002.
[40] Y. Gu and N. Narendran, “Design and Evaluation of an LED-based Light Fixture,” in Optical Science and Technology, SPIE's 48th Annual Meeting, 2004, pp. 318-329.
[41] Z. G. Xie, J. G. Wu, C. Li and B. H. Yu, “Optical Lens Design 0f LED Side View Angle Based 0n Two Free Surface.”
[42] J. Chen, Q. Zhu, Q. Chen, Q. Luo, X. Zhu and B. Yu, “Reflector Design of Light Emitting Diode for Uniform Illuminance,” in Photonics and Optoelectronics (SOPO), 2012 Symposium on, 2012, pp. 1-4.
[43] G. Hass, “Filmed Surfaces for Reflecting Optics,” Journal of the Optical Society of America, vol. 45, pp. 945-952, 1955.
[44] M. Brogren, B. Karlsson, A. Roos and A. Werner, “Analysis of the effects of outdoor and accelerated ageing on the optical properties of reflector materials for solar energy applications,” Solar Energy Materials and Solar Cells, vol. 82, pp. 491-515, May 30 2004.
[45] M. H. Yang, A. Gatto and N. Kaiser, “Optical thin films with high reflectance, low thickness and low stress for the spectral range from vacuum UV to near IR,” Journal of Optics a-Pure and Applied Optics, vol. 8, pp. 327-332, Mar 2006.
[46] W. Klement, R. H. Willens and P. O. L. Duwez, “Non-crystalline structure in solidified gold–silicon alloys,” 1960.
[47] H. H. Liebermann, “The dependence of the Geometry of glassy alloy ribbons on the chill block melt-spinning process parameters,” Materials Science and Engineering, vol. 43, issue 3, pp. 203–210, May 1980.
[48] A. C. Lund and C. A. Schuh, “Topological and chemical arrangement of binary alloys during severe deformation,” Journal of Applied Physics, vol. 95, pp. 4815-4822, May 1 2004.
[49] S. Mozgovoy, J. Heinrich, U. E. Klotz and R. Busch, “Investigation of mechanical, corrosion and optical properties of an 18 carat Au-Cu-Si-Ag-Pd bulk metallic glass,” Intermetallics, vol. 18, pp. 2289-2291, Dec 2010.
[50] M. Telford, “The case for bulk metallic glass,” Materials today, vol. 7, pp. 36-43, 2004.
[51] Y.P. Deng, Y.F. Guan, J.D. Fowlkes, S.Q. Wen, F.X. Liu, G.M. Pharr, P.K. Liaw, C.T. Liu and P.D. Rack, “A combinatorial thin film sputtering approach for synthesizing and characterizing ternary ZrCuAl metallic glasses,” Intermetallics, vol. 15, issue 9, pp. 1208–1216, September 2007.
[52] A. Inoue, X. M. Wang and W. Zhang, “Developments and applications of bulk metallic glasses,” Rev. Adv. Master. Sci., vol.18, pp.1-9, 2008.
[53] C.T. Pan, T.T. Wu, M.F. Chen, Y.C. Chang, C.J. Lee and J.C. Huang, “Hot embossing of micro-lens array on bulk metallic glass,” Sensors and Actuators A: Physical, vol. 141, issue 2, pp. 422-431, 15 February 2008.
[54] W. Chao, H. Cuiqun and M. Xiangshui, “Microstructure and Optical Properties of Al-based Metallic Glass Thin Film Fabricated by Magnetron Sputtering,”
[55] C.H. Lin, C.H. Huang, J.F. Chuang, H.C. Lee, M.C. Liu, X.H. Du, J.C. Huang, J.S.C. Jang and C.H. Chen, “Simulated body-fluid tests and electrochemical investigations on biocompatibility of metallic glasses,” Materials Science and Engineering: C, vol. 32, issue 8, pp. 2578–2582, 1 December 2012.
[56] Y. Liu, S. Hata, K. Wada and A. Shimokohbe, “Thermal, mechanical and electrical properties of Pd-based thin-film metallic glass,” Japanese Journal of Applied Physics, vol. 40, p. 5382, 2001.
[57] L. Shi, T. C. Chong, P. K. Tan, J. Li, X. Hu, X. Miao and Q. Wang, “Investigation on super-resolution near-field blu-ray-type phase-change optical disk with Sb2Te3 mask layer,” Japanese Journal of Applied Physics, vol. 44, p. 3615, 2005.
[58] T. T. Hu, J. H. Hsu, J. C. Huang, S. Y. Kuan, C. J. Lee and T. G. Nieh, “Correlation between reflectivity and resistivity in multi-component metallic systems,” Applied Physics Letters, vol. 101, Jul 2 2012.
[59] C. Horn, W. Little and E. Salter, “Relation of Distance to Candle-Power Distribution from Fluorescent Luminaires,” Illuminating Engineering, vol. 47, p. 99, 1952.
[60] W. B. Robert, “Radiometry and the detection of optical radiation,” Wiley-Interscience, 1983.
[61] I. E. Commission, “International Standard.” vol. IEC-60601-2-41, 2000.
[62] W. Klement, R. H. Willens and P. O. L. Duwez, “Non-crystalline structure in solidified gold–silicon alloys,” 1960.
[63] D. Turnbull, “Under what conditions can a glass be formed?,” Contemporary Physics, vol. 10, pp. 473-488, 1969.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.134.104.173
論文開放下載的時間是 校外不公開

Your IP address is 3.134.104.173
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code