Responsive image
博碩士論文 etd-1007102-180409 詳細資訊
Title page for etd-1007102-180409
論文名稱
Title
聚對位亞苯乙烯衍生物之分子疊積對發光性質的影響
Molecular Packing and Its Effects on Light-emitting Properties of Poly(1,4-phenylenevinylene)s
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
121
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2002-09-20
繳交日期
Date of Submission
2002-10-07
關鍵字
Keywords
聚集、光致發光光譜、吸收光譜、層狀結構、六方柱狀結構、超分子組裝、分子疊積
layered structure, aggregate, hexagonal columnar structure, molecular packing, supramolecular assembly, potoluminescence spectrum, absorption spectrum
統計
Statistics
本論文已被瀏覽 5751 次,被下載 2342
The thesis/dissertation has been browsed 5751 times, has been downloaded 2342 times.
中文摘要
本論文主要研究PPV衍生物在不同溫度熱處理而形成的結構對其發光性質的影響。材料之選擇為具不同主鏈結構及相同主鏈但接上不同長度側鏈。主要研究工具為偏光顯微鏡、X光繞射、穿透式電子顯微鏡、紫外光-可見光光譜儀及光致發光光譜儀。所得之結果可歸類於以下五點:
(1) 在偏光顯微鏡下呈現向列型液晶紋理且具雙軸光性,但在型態上則為層狀結構或六方柱狀結構。這結果符合剛硬主鏈傾向排成向列型結構而接上的側鏈傾向排成層列型結構。
(2) 由吸收及光致發光光譜得知在稀薄溶液中形成的聚集(aggregate) 與固態的超分子自組裝(supramolecular assembly) 具有相似的共軛長度,這意味著它們有相似的結構。這種剛硬主鏈與柔軟側鏈傾向於彼此分離的現象與介面活性劑自我有序的行為相當一致。
(3) 這些含有柔軟側鏈的共軛高分子形成聚集的過程並不侷限於溶劑的好壞,更廣泛的說,亦可發生在溶劑緩慢的乾燥過程。這現象與Flory在30年前所提出硬桿高分子溶液系統傾向相分離的看法相符。
(4) 這一系列PPV衍生物以類似液向型或熱向型液晶分子自組裝方式來作分子疊積,其分子構型如圖4-42及4-43所示,主鏈以螺旋方式繞成柱狀,側鏈排列傾向填滿柱子間的空隙。當側鏈長度增長,因凡德瓦力使得側鏈間彼此吸引,使得主鏈相對而言變得較為伸展,故而傾向形成層狀結構。
(5) 基本上,側鏈長度的增加或主鏈的剛硬度增加都會強化超分子的聚集,而使得共軛長度更為延伸或使在基態及激發態的
Abstract
ABSTRACT
Structural evolution and its effect on optical absorption/emission behavior of derivative of PPVs upon isothermal heat treatment at elevated temperatures were studied by means of a combination of polarized light microscopy, x-ray diffraction, transmission electron microscopy, ultraviolet-visible spectroscopy, and photoluminescence spectroscopy.
The main physical picture drawn from results of this study over a series of PPVs with flexible side-chains may be summarized as the following:
(1) They are generally liquid-crystalline in nature, typically biaxially nematic in optical texture but morphologically characterized as of lamellar or hexagonal columnar structure. This is consistent with the nematogenic nature one would expect from the rigid backbone as well as the smectogenic nature one would expect from the aliphatic side-chains.
(2) The aggregates formed in solutions and the supramolecular assemblies formed in the bulk state are structurally similar (in terms of the similar level of conjugation), and hence possibly of the same thermodynamic origin. This surfactant-like self-ordering behavior is consistent with the tendency towards segregation between the aromatic, rigid backbone and the aliphatic, flexible side-chains.
(3) The collapse of these conjugated polymers with flexible side-chains into aggregates appears to be a general phenomenon upon slow to moderate solvent removal and not limited to the present case of poor solvency power. This is consistent with the strong tendency toward phase separation in rigid rod solutions delineated by Flory some 30 years ago.
(4) All the above observations may be explained in terms of lyotropic or thermotropic self-assembly of hairy-rod chains into coiled helical conformation with ellipsoidal cross section for the conjugated backbone as shown schematically in Figure 4-42 and 4-43. The flexible side-chains generally tend to fill the space within the ellipsoidal cylindrical structure. As the side-chain length is increased, the increased Van der Waals attraction among side-chains results in more extended period of helical twist or more straighten backbone conformation, rendering preference of lamellar structure over hexagonal helical structure.
(5) As a consequence, supramolecular aggregation is basically enhanced by increased side-chain length or backbone rigidity. This in turn results in more extended conjugation length or more fully developed
目次 Table of Contents
Table of Contents

List of Illustrations III
Chapter 1. Background 1
1.1. Conjugated polymers with flexible side-chains and supramolecular assemblies 1
1.2. Mechanism of light emission 2
1.2.1. Band gap of conjugated polymers 3
1.2.2. Optical absorption 3
1.2.3. Recombination 3
1.2.4. Light emission 4
1.2.5. Other related photophysical events 4
1.2.6. Excimers and Aggregate emission 5
1.3. Objective of this work 5
Chapter 2. Poly(2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene) 9
2.1. Introduction 9
2.2. Experimental section 10
2.2.1 Material 10
2.2.2. Instrumental 10
2.2.3. Specimen preparation 11
2.3. Results and discussion 11
2.3.1. Supramolecular aggregation in the bulk state 11
2.3.2. Aggregate formation in dilute solutions 15
2.4. Concluding remarks 18
Chapter 3. Poly(2,5,2',5'-tetrahexyloxy-8,7'-dicyano-di-p-phenylenevinylene) 29
3.1. Introduction 29
3.2. Experimental section 30
3.3. Results and discussion 30
3.3.1. Supramolecular aggregation in bulk state 30
3.3.2. Aggregate formation in dilute solutions 32
3.4. Concluding Remarks 35
Chapter 4. Poly(2,3-diphenyl-5-alkyl-1,4-phenylene vinylene)s 43
4.1. Introduction 43
4.2. Experimental 44
4.2.1. Materials and Instruments 44
4.2.2. Specimen preparation 44
4.3. Results and discussion 45
4.3.1. C5DP-PPV 45
4.3.1.1. Phase behavior in the bulk state 45
4.3.1.2. Optical properties of dilute solutions 50
4.3.1.3. Optical properties of cast films 52
4.3.2. C6DP-PPV 68
4.3.2.1. Phase behavior 68
4.3.2.2. Light emitting properties 72
4.3.3 C10DP-PPV 88
4.3.3.1. Phase behavior 88
4.3.3.2. Light emitting properties 91
4.3.4. Molecular simulation 94
4.3.5. Further Discussion 95
4.3.5.1. Molecular packing 95
4.3.5.2. Single-chromophore emission vs. 'aggregate' emission 97
4.3.6. Concluding remarks 97
Chapter 5. Conclusions 114
References and Notes 116

List of Illustrations
Figure 1-1. Illustration of the relationship between molecular self-assembly systems and several disciplines. 7
Figure 1-2. The representative hexagonal columnar phases: (a) discotics, (b) backbone helix. 7
Figure 1-3. One form of a Jabłoński diagram. 8
Figure 2-1. Chemical structure of MEH-PPV. 20
Figure 2-2. Polarized light micrographs of solution-cast MEH-PPV film at a fixed heating/cooling rate of 20 oC/min in the temperature range of ambient to 300 oC: (a) as-cast film at room temperature, (b) heated to 100 oC, (c) 180 oC, and (d) 260 oC before passing the isotropization temperature of 290 oC. During cooling from 300 oC, the optical texture and the thermochromism were reversibly observed. 20
Figure 2-3. DSC thermogram of MEH-PPV at a heating rate of 20 oC/min after annealing at 50 oC for 12 hours. 21
Figure 2-4. DSC thermogram of MEH-PPV at various annealing temperatures: (a) 50 oC for 30 minutes, (b) 80 oC for 30 minutes, (c) 130 oC for 30 minutes, (d) 180 oC for 30 minutes, (e) 230 oC for 10 minutes, (f) 260 oC for 10 minutes, (g) 280 oC for 5 minutes, (h) 50 oC for 12 hours; the heating rate is 20 oC/min. 21
Figure 2-5. XRD profiles of solution-cast MEH-PPV film upon fast cooling to room temperature during a sequence of 5-min heat treatments at stepwise increased Ta. 22
Figure 2-6. Selected-area electron diffraction patterns of shear-oriented specimens (with the shear direction parallel to the meridian) showing (a, a') inner equatorial spots corresponding to nematic streak or primitive layer spacing of ca. 1.5 or 1.6 nm and (b, b') outer equatorial spots corresponding to nematic streak or primitive layer spacing of ca. 0.5 or 0.4 nm, in addition to meridional streaks (varying with shear condition) corresponding to dimeric registering in the direction of shear. 23
Figure 2-7. Normalized absorption spectra of of solution-cast MEH-PPV film upon fast cooling to room temperature during a sequence of 5-min heat treatments at stepwise increased Ta. Note that the thermal history exactly parallels that of the XRD study in Figure 2-5. 24
Figure 2-8. Normalized emission spectra of of solution-cast MEH-PPV film upon fast cooling to room temperature during a sequence of 5-min heat treatments at stepwise increased Ta. Note that the thermal history exactly parallels that of the XRD study in Figure 2-5. 24
Figure 2-9. FT-IR spectra of MEH-PPV cast films with heat treatment procedure parallel to XRD measurement in Figure 2-5. 25
Figure 2-10. Variations of normalized absorption (a) and emission (b, excited at 480 nm) spectra of the dilute MEH-PPV/ p-xylene solution during room-temperature standing up to ca. 8 days, followed by 5-min sonication at 43 kHz at the end of the 8th day. 26
Figure 2-11. Variations of normalized absorption (a) and emission (b, excited at 480 nm) spectra of the dilute MEH-PPV/NMP solution during room-temperature standing up to ca. 8 days, followed by 5-min sonication at 43 kHz at the end of the 8th day. 27
Figure 2-12. Dependence of normalized emission spectrum on excitation wavelength of (a) the dilute MEH-PPV/p-xylene solution and (b) the dilute MEH-PPV/NMP solution with additional room-temperature standing of 53 days beyond the 8th-day sonification. In the latter case, significant precipitation of MEH-PPV had occurred, leaving an extremely low level of aggregates remaining suspended in the solution. Given as insets are the original spectra before normalization. 28
Figure 3-1. Chemical structure of CN-PPV. 36
Figure 3-2. X-ray diffraction profiles of solution-cast CN-PPV film upon fast cooling to room temperature during a sequence of 5-min heat treatments at stepwise increased Ta. 37
Figure 3-3. Selected-area electron diffraction patterns (taken at different camera lengths of shear-oriented specimens (shear direction parallel to the meridian), showing (a) sharp equatorial arcs corresponding to layer spacing of ca. 2.08 nm and (b) two sets of meridional arcs corresponding to monomeric registering of ca. 0.70 nm and (broad and diffuse) inter-sidechain spacing of ca. 0.47 nm, respectively, along the mean backbone direction. 38
Figure 3-4. Normalized absorption and emission spectra of a piece of solution-cast CN-PPV film upon fast cooling to room temperature during a sequence of 5-min heat treatments at stepwise increased Ta. Note that the thermal history here follows generally that of the XRD study in Figure 3-2. 39
Figure 3-5. Variations of normalized absorption (a) and emission (b, excited at 480 nm) spectra of the dilute CN-PPV/p-xylene solution during room-temperature standing up to ca. 11 days, followed by 5-min sonification at 43 kHz at the end of the 11-day storage. 40
Figure 3-6. Variations of normalized absorption (a) and emission (b, excited at 480 nm) spectra of the dilute CN-PPV/NMP solution during room-temperature standing up to ca. 11 days, followed by 5-min sonification at 43 kHz at the end of the 11-day storage. 41
Figure 3-7. Dependence of emission spectrum on excitation wavelength in (a) the dilute CN-PPV/p-xylene solution and (b) the dilute CN-PPV/NMP solution after 113 h of room-temperature standing. 42
Figure 4-1. Chemical structures of (a) C5DP-PPV, (b) C6DP-PPV and (c) C10DP-PPV. 53
Figure 4-2. Polarized light micrographs of solution-cast C5DP-PPV film at a fixed heating/cooling rate of 20 oC/min in the temperature range of ambient to 320 oC: (a) as-cast film at room temperature, (b) heated to 195 oC, (c) 320 oC, and (d) cooled to room temperature. 54
Figure 4-3. DSC thermogram of C5DP-PPV at a scan rate of 20 oC/min after annealing at 140 oC for 2 hours. 54
Figure 4-4. XRD profile of as received C5DP-PPV powder measured at room temperature. 55
Figure 4-5. High temperature XRD profiles of solution-cast C5DP-PPV film measured at various temperatures. (a) Heating sequence, (b) cooling sequence and (c) d-spacing variation. 57
Figure 4-6. XRD pattern (right, the two-way arrows indicate shear direction) of oriented C5DP-PPV film with the incident beam in direction 2 (left). 58
Figure 4-7. XRD pattern (right, the two-way arrows indicate shear direction) of oriented C5DP-PPV film with the incident beam in direction 3 (left). 58
Figure 4-8. XRD pattern (right) of oriented C5DP-PPV film with the incident beam in direction 1 (left). 59
Figure 4-9. SAED pattern of oriented C5DP-PPV film. 59
Figure 4-10a. Layering in shear-oriented C5DP-PPV film observable to incident x-ray beam in direction 2 (film normal). 60
Figure 4-10b. Layering in shear-oriented C5DP-PPV film observable to incident x-ray beam in direction 3 (neutral axis). 60
Figure 4-10c. Schematic representation of the 2-D hexagonal phase with lattice vector a = 1.76 nm. 61
Figure 4-11. Variations of normalized absorption (a) and emission (b, excited at 350 nm) spectra of the dilute C5DP-PPV/p-xylene solution during room-temperature standing up to ca. 95 days. 62
Figure 4-12. Variations of normalized absorption (a) and emission (b, excited at 350 nm) spectra of the dilute C5DP-PPV/NMP solution during room-temperature standing up to ca. 95 days. 63
Figure 4-13. Normalized PL spectra of the dilute C5DP-PPV/p-xylene solution (a) and C5DP-PPV/NMP solution (b) during room-temperature standing up to ca. 95 days excited at various wavelengths; (c) p-xylene and NMP solvent excited at 490 and 480 nm, respectively. 65
Figure 4-14a. X-ray diffraction profiles of solution-cast C5DP-PPV film upon fast cooling to room temperature during a sequence of 5-min heat treatments at stepwise increased Ta. 66
Figure 4-14b. Normalized UV-vis absorption spectra of C5DP-PPV after a sequence of heat treatments parallel to Figure 4-14a. 67
Figure 4-14c. Normalized PL spectra of C5DP-PPV after a sequence of heat treatments parallel to Figure 4-14a. 67
Figure 4-15. Polarized light micrographs of solution-cast C6DP-PPV film at a fixed heating/cooling rate of 20 oC/min in the temperature range of ambient to 360 oC: (a) as-cast film at room temperature, (b) heated to 300 oC, (c) 360 oC, and (d) cooled to room temperature. 75
Figure 4-16. DSC thermogram of C6DP-PPV at a scan rate of 20 oC/min after annealing at 120 oC for 3 hours. 76
Figure 4-17. XRD profile of as received C6DP-PPV powder measured at room temperature. 76
Figure 4-18. XRD profiles of solution-cast C6DP-PPV film measured at various temperatures: (a) the heating sequence, (b) the cooling sequence and (c) d-spacing variation. 78
Figure 4-19. Room-temperature XRD profiles of solution-cast C6DP-PPV film after additional isothermal treatments at 300, 310, and 320 oC, each for 10 minutes before fast cooling to the ambient temperature. 78
Figure 4-20. XRD pattern (right) with the incident beam entering in direction 2, i.e., along the film normal (left). Two-way arrows indicate the shear direction, i.e., direction 1. 79
Figure 4-21. XRD pattern (right) with the incident beam entering in direction 3, i.e., along the neutral axis (left). Two-way arrows indicate the shear direction, i.e., direction 1. 79
Figure 4-22. XRD pattern (right) with the incident beam entering in direction 1, i.e., along the shear direction. Two-way arrows indicate the shear direction, i.e., direction 1. 80
Figure 4-23. SAED pattern of C6DP-PPV sheared film. 80
Figure 4-24a. Proposed model of layer arrangement for C6DP-PPV sheared film as observable by x-ray beam incident along direction 2, i.e., the direction of film normal: a, b and c indicate lattice vectors in the pseudo-monoclinic packing of side-chains. 81
Figure 4-24b. Proposed model of molecular packing for C6DP-PPV sheared film in the direction of neutral axis. 81
Figure 4-24c. Schematic representation of the hexagonal packing where the a-axis is 1.77 nm. 82
Figure 4-25. Variations of normalized absorption (a) and emission (b, excited at 400 nm) spectra of the dilute C6DP-PPV/p-xylene solution during room-temperature standing up to ca. 62 days. 83
Figure 4-26. Variations of normalized absorption (a) and emission (b, excited at 400 nm) spectra of the dilute C6DP-PPV/NMP solution during room-temperature standing up to ca. 62 days. 84
Figure 4-27. Excitation dependence of normalized PL spectra of dilute C6DP-PPV/p- xylene (a) and C6DP-PPV/NMP (b) solutions during room-temperature standing up to ca. 62 days. 85
Figure 4-28a. X-ray diffraction profiles of solution-cast C6DP-PPV film upon fast cooling to room temperature during a sequence of 5-min heat treatments at stepwise increased Ta. 86
Figure 4-28b. Normalized UV-vis absorption spectra of C6DP-PPV after a sequence of heat treatments parallel to Figure 4-28a. 87
Figure 4-28c. Normalized PL spectra of C6DP-PPV after a sequence of heat treatments parallel to Figure 4-28a. 87
Figure 4-29. Polarized light micrographs of solution-cast C10DP-PPV film at a fixed heating/cooling rate of 20 oC/min in the temperature range of ambient to 330 oC: (a) as-cast film at room temperature, (b) heated to 260 oC, and (c) cooled to 200 oC, (d) room temperature. 98
Figure 4-30. DSC thermogram of C10DP-PPV at a scan rate of 20 oC/min after annealing at 80 oC for 5 hours. 98
Figure 4-31. XRD profile of as received C10DP-PPV powder measured at room temperature. 99
Figure 4-32. High temperature XRD profiles of solution-cast C10DP-PPV film measured at various temperatures. (a) Heating sequence, (b) cooling sequence and (c) d-spacing variation. 101
Figure 4-33. XRD pattern of the incident beam normal to the sheared film. 101
Figure 4-34. XRD pattern of the incident beam perpendicular to the shear direction. 102
Figure 4-35. XRD pattern of the incident beam along the shear direction. 102
Figure 4-36a. SAED pattern of C10DP-PPV sheared film. 103
Figure 4-36b. SEAD pattern of C10DP-PPV sheared film measured in another area with shorter camera length. 103
Figure 4-37a. Proposed model of molecular packing for C10DP-PPV sheared film in the direction of film normal. In which a, b and c are the three axes of the unit cell of side-chains pseudo-monoclinic packing. 104
Figure 4-37b. Proposed model of molecular packing for C10DP-PPV sheared film in the direction of neutral axis. 104
Figure 4-38. Variations of normalized absorption (a) and emission (b, excited at 400 nm) spectra of the dilute C10DP-PPV/p-xylene solution during room-temperature standing up to ca. 61 days. 105
Figure 4-39. Variations of normalized absorption (a) and emission (b, excited at 400 nm) spectra of the dilute C10DP-PPV/NMP solution during room-temperature standing up to ca. 61 days. 106
Figure 4-40. Normalized PL spectra of the dilute C10DP-PPV/p-xylene solution (a) and C10DP-PPV/NMP solution (b) excited at various wavelengths after 61 days of room- temperature standing. 107
Figure 4-41a. X-ray diffraction profiles of solution-cast C10DP-PPV film upon fast cooling to room temperature during a sequence of 5-min heat treatments at stepwise increased Ta. 108
Figure 4-41b. Normalized UV-vis absorption spectra of C10DP-PPV after a sequence of heat treatments parallel to Figure 4-41a. 109
Figure 4-41c. Normalized PL spectra of C10DP-PPV after a sequence of heat treatments parallel to Figure 4-41a. 109
Figure 4-42. Energy-minimized hexagonal packing of C6DP-PPV chains: (a) top-view of the hexagonal unit cell (scale bar = 2 nm), (b) the corresponding side-view (scale bar = 3 nm), (c) global top-view along the cylindrical axis (scale bar = 8 nm), and (d) the corresponding XRD pattern. 111
Figure 4-43. Energy-minimized lamellar packing of C6DP-PPV chains: (a) top-view of the hexagonal unit cell (scale bar = 3 nm), (b) the corresponding side-view (scale bar = 3 nm), (c) global top-view along the cylindrical axis (scale bar = 8 nm), and (d) the corresponding XRD pattern. 113
參考文獻 References
References and Notes

1. Pope, M.; Kallmann, H. and Magnante, P. Journal of Chemical Physics, 1963, 38, 2042.
2. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burn, P. L.; Holmes, A. B. Nature, 1990, 347, 539.
3. Tran, V. H.; Massardier, V.; Nguyen, T. P.; Davenas, J. Polymer, 1996, 37, 2061.
4. Chen, Z. K.; Huang, W.; Wang, L. H.; Kang, E. T.; Chen, B. J.; Lee, C. S.; Lee, S. T. Macromolecules, 2000, 33, 9015.
5. Osaheni, J. A.; Jenekhe, S. A. Chem. Mater., 1992, 4, 1282.
6. Roberts, M. F.; Jenekhe, S. A. Chem. Mater., 1994, 6, 135.
7. Watanabe, J.; Harkness, B. R.; Sone, M.; Ichimura, H. Macromolecules, 1994, 27, 507.
8. Wise, D. L.; Wnek, G. E.; Trantolo, D. J.; Cooper, T. M.; Gresser, J. D. Photonic Polymer Systems, Marcel Dekker: New York, 1998.
9. Yamagishi, T.; Fukuda, T.; Miyamoto, T.; Yakoh, Y.; Takashina, Y.; Watanabe, J. Liq. Crystals, 1991, 10, 467.
10. Watanabe, J.; Ono, H.; Uematsu, I.; Abe, A. Macromolecules, 1985, 18, 2141.
11. Kaufman, H. S.; Sacher, A.; Alfrey, T. Jr.; Fankuchen, I. J. Am. Chem. Soc., 1948, 76, 6280.
12. Jordan, E. F. Jr.; Feldeisen, D. W.; Wrigley, A. N. J. Polym. Sci., Pt. A-1, 1971, 9, 1835.
13. Jordan, E. F. Jr.; Artymyshyn, B.; Speca, A.; Wrigley, A. N. J. Polym. Sci., 1971, 9, 3349.
14. Geiniewski, C.; Moore, R. S. Macromolecules, 1970, 3, 97.
15. Eisberg, R.; Resnick, R. Quantum Physics, 2nd Ed.; John Wiley & Sons: New York, 1985.
16. Pierret, R. F. Semiconductor Device Fundamentals, Addison-Wesley: New York, 1996.
17. Kohler, B. E. Chemical Review, 1993, 93, 41.
18. Samuel, I. D. W.; Rumbles, G.; Collison, C. J. Phys. Rev. B, 1995, 52, R11573.
19. Roth, S. One-dimensional metals, VCH: Weinheim, 1995.
20. Kiess, H. G. Conjugated conducting polymers, Ed.; Springer-Verlag: Berlin, 1992.
21. Redecker, M.; Bradley, D.D.; Inbasekaran, M.; Woo, E.P. Appl. Phys. Lett., 1999, 74, 1400.
22. Blatchford, J. W.; Gustafson, T. L.; Epstein, A. J.; vanden Bout, D. A.; Kerimo, J.; Higgins, D. A.; Barbara, P. F.; Fu, D. K.; Swager, T. M.; MacDiarmid Phys. Rev. B, 1996, 54, 3683.
23. Nguyen, T. Q.; Doan, V.; Schwartz, B. J. J. Chem. Phys., 1999, 110, 4068.
24. Hu, D.; Yu, J.; Wong, K.; Bagchi, B.; Rossky, P. J.; Barbara, P. F. Nature, 2000, 405, 1030.
25. Shi, Y, ; Liu, J.; Yang, Y. J. Appl. Phys., 2000, 87, 4254.
26. Liu, J.; Shi, Y.; Ma, L.; Yang, Y. J. Appl. Phys., 2000, 88, 605.
27. Lee, T. W.; Park, O. O. Adv. Mater., 2000, 12, 801.
28. Funahashi, M.; Hanna, J. I. Appl. Phys. Lett., 1997, 71, 602.
29. Tokuhisa, H.; Era, M.; Tsutsui, T. Appl. Phys. Lett., 1998, 72, 2639.
30. Adam, D.; Schuhmacher, P.; Simmerer, J.; Haussling, L.; Siemensmeyer, K.; Etzbach, K. H.; Ringsdorf, H.; Haarer, D. Nature, 1994, 371, 141.
31. Prosa, T. J.; Moulton, J.; Heeger, A. J.; Winokur, M. J. Macromolecules, 1999, 32, 4000.
32. Kloppenburg, L.; Jones, D.; Claridge, J. B.; zur Loye, H. -C.; Bunz, U. H. F. Macromolecules, 1999, 32, 4460.
33. Grell, M.; Bradley, D. D. C.; Ungar, G.; Hill, J.; Whitehead, K. S. Macromolecules, 1999, 32, 5817.
34. Miteva, T.; Palmer, L.; Kloppenburg, L.; Neher, D.; Bunz, U. H. F. Macromolecules, 2000, 33, 652.
35. Lam, J. W. Y.; Kong, X.; Dong, Y.; Cheuk, K. K. L.; Xu, K.; Tang, B. Z. Macromolecules, 2000, 33, 5027.
36. Kraft, A.; Grimsdale, A. C.; Holmes, A. B. Angew. Chem. Int. Ed. Engl., 1998, 37, 402.
37. Friends, R. H.; Gymer, R. W.; Holmes, A. B.; Burroughes, J. H.; Marks, R. N.; Taliani, C.; Bradley, D. D. C.; dos Santos, D. A.; Gredas, J. L.; Loglund, M.; Salaneck, W. R. Nature, 1999, 397, 121.
38. Liu, Y.; Liu, M. S.; Li, X. C.; Jen, A. K. Y. Chem. Mater., 1998, 10, 3301.
39. Nguyen, T. Q.; Martini, I. B.; Liu, J.; Schwartz, B. J. J. Phys. Chem. B, 2000, 104, 237.
40. Nguyen, T. Q.; Schwartz, B. J.; Schaller, R. D.; Johnson, J. C.; Lee, L. F.; Haber, L. H.; Saykally, R. J. J. Phys. Chem. B, 2001, 105, 5153.
41. Tan, C. T.; Inigo, A. R.; Fann, W. S.; Wei, P. K.; Peng, G. Y.; Chen, S. A. Org. Electr., in press.
42. Collison, C. J.; Rothberg, L. J.; Treemaneekarn, V.; Li, Y. Macromolecules, 2001, 34, 2346.
43. Wudl, F., US Pat. No. 5189136, 1990; Chem. Abstr. 1993, 118, 255575p.
44. Teetsov, J.; Fox, M. A. J. Mater. Chem., 1999, 9, 2117.
45. Van Krevelen, D. W. Properties of Polymers, 3rd Ed.; Elsevier: Amsterdam, 1997.
46. Simha, R.; Boyer, R. F. J. Chem. Phys., 1962, 37, 1003.
47. Boyer, R. F. Macromol. Sci., 1973, B7, 487.
48. See, for example Fried, J. R. in Developments in Polymer Characterisation-4, Dawkins, J. V., Ed.; Applied Science: London, 1983; Ch. 2.
49. Sperling, L. H. Introduction to Physical Polymer Science, Wiley: New York, 1992.
50. Hutchinson, J. M. in The Physics of Glassy Polymers, 2nd Ed., Haward, R. N.; Young, R. J., Eds.; Chapman & Hall: London, 1997; Ch. 3.
51. Wetton, R. E.; MacKnight, W. J.; Fried, J. R.; Karasz, F. E. Macromolecules, 1974, 11, 158.
52. Gaur, U.; Wunderlich, B. Macromolecules, 1980, 13, 1618.
53. Stejskal, E. O.; Schaefer, J.; Sefcik, M.D.; McKay, R. A. Macromolecules, 1981, 14, 276.
54. Keller, H.; Hatz, R. Handbook of Liquid Crystals, Verlag: Weiheim, 1980.
55. Tosaka, M.; Hamada, N.; Tsuji, M.; Kohjiya, S.; Ogawa, T.; Isoda, S.; Kobayashi, T. Macromolecules, 1997, 30, 4132.
56. Yang, C. Y.; Hide, F.; Diaz-Garcia, M. A.; Heeger, A. J.; Cao, Y. Polymer, 1998, 39, 2299.
57. Unpublished results in this laboratory for a series of conjugated polymers with densely grafted alkyl side-chains (at least one alkyl substitution per backbone ring) indicated a general trend towards layered morphology, in which the lamellar spacing depends rather significantly on processing history and is slow in reaching its equilibrium value, a feature incommensurate with crystalline solids but in better resemblance to the mesophase structure of surfactants or the macrolattice structure block copolymers. This is also the reason we use terms such as 'supramolecular' assemblies or aggregates instead of terms such as 'crystalline' or 'solid-state' throughout this chapter.
58. Perahia, D.; Traiphol. R.; Bunz, U. H. F. Macromolecules, 2001, 34, 151.
59. Chen, S. H.; Su, A. C.; Huang, Y. F.; Su, C. H.; Peng, G. Y.; Chen, S. A. Macromolecules, 2002, 35, 4229.
60. Lemmer, U.; Heun, S.; Mahrt, R. F.; Scherf, U.; Hopmeier, M.; Siegner, U.; Gobel, E. O.; Mullen, K.; Bassler, H. Chem. Phys. Lett., 1995, 240, 373.
61. Halkyard, C. E.; Rampey, M. E.; Kloppenburg, L.; Studer-Martinez, S. L.; Bunz, U. H. F. Macromolecules, 1998, 31, 8655.
62. Van Hutten, P. F.; Brouwer, H.-J.; Krasnikov, V. V.; Ouali, L.; Stalmach, U.; Hadziioannou, G. Syn. Met., 1999, 102, 1443.
63. Hsu, J. H.; Fann, W. S.; Tsao, P. H.; Chuang, K. R.; Chen, S. A. J. Phys. Chem. A, 1999, 103, 2375.
64. Scherf, U. J. Mater. Chem., 1999, 9, 1853.
65. Jakubiak, R.; Collinson, C. J.; Wan, W. C.; Rothberg, L. J.; Hsieh, B. R. J. Phys. Chem. A, 1999, 103, 2394.
66. Chang, R.; Hsu, J. H.; Fann, W. S.; Yu, J.; Lin, S. H.; Lee, Y. Z.; Chen, S. A. Chem. Phys. Lett., 2000, 317, 153.
67. Pschirer, N. G.; Bunz, U. H. F. Macromolecules, 2000, 33, 3961.
68. Teetsov, J.; vanden Bout, D. A. J. Phys. Chem. B, 2000, 104, 9378.
69. Inigo, A. R.; Tan, C. H.; Fann, W.; Huang, Y. S.; Peng, G. Y.; Chen, S. A. Adv. Mater., 2001, 13, 504.
70. Conwell, E. M.; Perlstein, J.; Shaik, S. Phys. Rev. B, 1996, 34, 2308.
71. Tretiak, S.; Saxena, A.; Martin, R. L.; Bishop, A. R. J. Phys. Chem. B, 2000, 104, 7029.
72. Hu, D.; Yu, J.; Barbara, P. F. J. Am. Chem. Soc., 1999, 121, 6936.
73. Peng, K. Y.; Chen, S. A,; Fann, W. S. J. Am. Chem. Soc., 2001, 123, 11388.
74. Pope, M.; Swenberg, C. E. Electronic Processes in Organic Crystals, Oxford University Press: New York, 1982.
75. Samuel, I. D. W.; Rumbles, G.; Collison, C. J.; Friend, R. H.; Moratti, S. C.; Holmes, A. B. Syn. Met., 1997, 84, 497.
76. Chen, S. A.; Chang, E. C. Macromolecules, 1998, 31, 4899.
77. Chen, S. H.; Su, A. C.; Chang, E. C.; Chen, S. A. Manuscript in preparation.
78. Tu, H.; Wan, X.; Liu, Y.; Chen X.; Zhang, D.; Zhou, Q. F.; Shen, Z; Ge, J. J.; Cheng, S. Z. D. Macromolecules, 2000, 33, 6315.
79. Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 2nd Ed.; Kluwer: New York, 1999.
80. Chen, S. H.; Huang, Y. F.; Su, A. C.; Chang, E.C.; Chen, S. A. Manuscript in preparation.
81. Imbusch, G. F. in Luminescence Spectroscopy, Lumb, M. D., Ed.; Academic: London, 1978; p. 1.
82. Bush, T. E.; Scott, G. W. J. Phys. Chem., 1981, 85, 144.
83. Blatchford, J. W.; Jessen, S. W.; Lin, L. B.; Gustafson, T. L.; Fu, D. K.; Wang, H. L.; Swager, T. M.; MacDiarmid, A. G. Phys. Rev. B, 1996, 54, 9180.
84. Baigent, D. R.; Holmes, A. B.; Moratti, S. C.; Friend, R. H. Syn. Met., 1996, 80, 119.
85. Rumbles, G.; Collison, C. J.; Russel, D. L.; Magnani, L. A.; Holmes, A. B.; Moratti, S. C.; Samuel, I. D. W. Syn. Met., 2000, 111-112, 501.
86. Hseih, B. R.; Antoniadis, H. Adv. Mater., 1995, 7, 36.
87. Wan, W. C.; Antoniadis, H.; Choong, V. E.; Razafitrimo, H.; Gao, Y.; Feld, W. A.; Hsieh, B. R. Macromolecules, 1997, 30, 6567.
88. Li, A. K.; Yang, S. S.; Jean, W. Y.; Hsu, C. S.; Hsieh, B. R. Chem. Mater., 2000, 12, 2741.
89. Hsieh, B. R., 2000 OLED Workshop in Taiwan, Hsinchu, 2000.
90. Huang, Y. F.; Yang, S. H.; Hsu, C. S.; Chen, S. A.; Su, A. C., ICMAT 2001 International Conference on Materials for Advanced Technologies, Singapore, 2001.
91. Flory, P. J. Proc. Roy. Soc., 1956, A234, 73.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code