Responsive image
博碩士論文 etd-1007108-213618 詳細資訊
Title page for etd-1007108-213618
論文名稱
Title
可撓曲式非晶矽薄膜電晶體在不同溫度下的可靠度與電性研究
Reliability and Electrical Analysis on the Mechanical Strain of a-Si:H Thin Film Transistor under Varied Temperature
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
79
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-10-02
繳交日期
Date of Submission
2008-10-07
關鍵字
Keywords
薄膜電晶體
TFT
統計
Statistics
本論文已被瀏覽 5665 次,被下載 0
The thesis/dissertation has been browsed 5665 times, has been downloaded 0 times.
中文摘要
非晶矽薄膜電晶體及多晶矽薄膜電晶體已經用於製造液晶顯示器的畫素開關,尤其以非晶矽薄膜電晶體更是已經大量的運用在製造大面積的顯示面板。而因使用上的方便性,傳統的平面顯示器預估將被可曲撓式顯示器所取代。當非晶矽薄膜電晶體長時間操作在偏壓下時,元件的溫度會上升,因此探討其元件在不同溫度下可靠度的改變是十分重要的,另外,可曲撓示顯示器必須承受外加的機械應力。有鑑於此,本論文將研究非晶矽薄膜電晶體應用於可曲撓式顯示器在不同溫度、應力下可靠度的研究。
量測结果顯示,非晶矽的可靠度裂化程度直流偏壓的劣化明顯大於交流偏壓。為了探討兩種不同的劣化機制,我們利用能態密度的變化來探討。且由於其活化能會因不同的能態增加而不同,因此我們進一步利用變温量測粹取元件活化能(Ea)以確認非晶矽薄膜電晶體的裂化機制。
為了了解元件在不同溫度下劣化的程度,我們將元件在低溫(77K)、室溫(300K)、高溫(400K)下做可靠度的實驗。結果發現隨著溫度的提高,載子獲得的動能會越大,使的劣化更加嚴重。
最後在張應力下實驗,可以發現在受到張應力下的非晶矽薄膜電晶體較不受應力的非晶矽薄膜電晶體劣化更為嚴重,尤其交流偏壓下更為明顯,因此在彎曲的情形下其裂化機制和交流頻率呈現性關係和一般平面時有所不同。
Abstract
Amorphous silicon thin film transistor(a-Si TFT) and poly silicon thin film transistor(p-Si TFT) have already been used for making the plain switch of picture of
the liquid crystal display, especially that amorphous silicon thin film transistor has been widely applied in the large area display panel. And the traditional display would be replaced by flexible display for the convenience. When the a-Si TFT device is operated for a long time, the temperature of the device will increase thereupon, t is very important to probe into the change of the reliability in different temperature, in
addition, flexible display should bear the extra mechanical stress. In view of this, we will research the reliability and electrical analyses of a-Si:H Thin Film Transistor under mechanical strain and varied temperature.
The result shows that the degradation of reliability of a-Si TFT under direct current is more serious than that of alternating current. , And we use the change of density of state (DOS) to probe the mechanism. Because the active energy varies with the DOS, we measured the device at different temperature to get the active energy (Ea) to confirm the main degradation mechanism for a-Si TFT.
In order to investigate the relationship of degradation and temperature, we stressed the device at low temperature (77K), room temperature (300K), and high temperature (400K), respectively.The result shows that the degradation is more serious at high temperature due to the higher energy of the carriers.
And we also found that the degradation of a-Si TFT under tensile bending is more serious than flatting, especially in alternating current stress. Thus, under bending condition the degradation mechanisms are dependent on frequency and different with flat condition.
目次 Table of Contents
Chinese Abstract……………………………………………...i
English Abstract……………………………………………..iii
Contents…………………………………………………….…v
Figures Captions…………………………………………… v
Chapter One
1.1 Introduction…………………………………………………1
1.1.1 Introduction……………………………………………………....1
1.1.2 Hydrogenated Amorphous Silicon…………………………………..2
1.1.3 Atomic Structure and the Electron Density of States………………..2
1.2 Substrate Material…………………………………………..3
1.2.1 Plastic Substrate………………………………………………………6
1.2.2 Metal Substrate…………………………………………………..…...7
1.2.3 Thin Glass Substrate………………………………………….……..9
1.3 Defined Bending Direction…………………….......................10
1.4 Motivation……………………………………………….…....10
Chapter Two
2.1 Apparatus………………………………………………......12
2.2 Setup instruments for I-V…………………………….….13
2.3 Method of Device Parameter Extraction………….……14
2.3.1 Determination of the threshold voltage……………………..…….14
2.3.2 Determonation of the subthreshold swing……………………..….14
2.3.3 Determination of the field-effect mobility…………………………15
2.4 Density of States……………………………………………17
Chapter Three
3.1 Deposition of Hydrogenated Amorphous Silicon by PECVD
………………………………………………………………19
3.2 Deposition of SiNx by PECVD…………………………….23
3.3 Deposition of n+ Hydrogenated Amorphous Silicon by PECVD
………………………………………………………………25
3.4 Process Flow………………………………………………..26
Chapter Four
4.1 Introduction…………..……………………………………….29
4.1.1Hydrogenated amorphous silicon…………………………………..….29
4.1.2 Bending experiment Discussion………………………………...…30
4.2Motivation
4.2.1 Hydrogenated amorphous silicon……………………………………30
4.2.2 Bending experiment………………………………………………30
4.3Experiments…………………………………………………...31
4.4 The Degradation of amorphous thin film transistor……….32
4.4.1 The constant bias stress…………………………………..…………….32
4.4.2. under pulse bias………………………………………………………...33
4.4.3 under different temperature……………………………………………35
4.4.4 Bending experiment…………………………………………………….36
Chapter Five
5.1 DC & AC Stress……………………………………………..37
5.2 Different temperature……………………………....……….37
5.3 Bending condition………...………………………………...37
Reference……………………………………………………..38
Figures………………………………………………………...46
參考文獻 References
Chapter One – Introduction
1. R. Baeuerle, J. Baumbach, E. Lueder, and J. Siegordner, in SID’99 Digest, Society
of Information Display, p. 14 (1999).
2. S. D. Theiss and S. Wagner, IEEE Electron Device Lett. 17, 264 (1996)
3. M. Wu, K. Pangal, J. C. Sturm, and S. Wagner, Appl. Phys. Lett. 75, 2244(1999).
4. B. G. Streetman, Solid State Electronic Devices, Chapter 1.3, London: Prentice
Hall, 1990
5. M. J. Powell, “ The Physics of Amorphous-silicon Thin-film Transistors, ” IEEE
Trans. Electron. Devices, 36, 2753 (1989).
6. Y. Kuo, The Film Transistors – Material and Processes, vol. 1, p17, Texas A&M
University, U.S.A. 2004.
7. W. H. Zachariasen, “The Atomic Arrangement in Glass, ” J. Am. Chem. Soc., 54, 3841
(1932).
8. W. E. Spear and P. G. LeComber, “Substitutional Doping of Amorphous Silicon, ”
Solid State Comm., 17, 1193 (1975).
9. Y. Kuo, The Film Transistors – Material and Processes, vol. 1, p17, Texas A&M
University, U.S.A. 2004.
10. Y. Kuo, The Film Transistors – Material and Processes, vol. 2, p428, Texas A&M
University, U.S.A. 2004.
11. Y. Kuo, The Film Transistors – Material and Processes, vol. 2, p430, Texas A&M
University, U.S.A. 2004.
12. A. Weber, S. Deutschbein, A. Plichta, and A. Habeck, Society of Information
Display, Digest of Technical Papers, 200th International Symposium at Boston, Ma,
53-55, May 2002.
13. Y. Kuo, The Film Transistors – Material and Processes, vol. 2, p430, Texas
A&M University, U.S.A. 2004.

Chapter Two – Apparatus and Parameters
1. R. A. Street, Hydrogenated Amorphous Silicon, Cambridge University Press, 1991.
2. W. E. Spear and P. G. Le Comber, “Investigation of the Localized State Distribution
in Amorphous Si Film, ” J. Non-Cryst. Solids, 8-10, 727-738 (1972).
3. M. J. Powell, “Analysis of Field-effect-conductance Measurements on Amorphous
Semiconductors, ” Phil. Mag. B, 43 (1), 93 (1981).
4. C. Y. Huang, S. Guha, and S. J. Hudgen, “Study of Gap States in Hydrogenated
Amorphous Silicon by Transient and Steady-state Photoconductivity Measurement, ”
Phys. Rev. B, 27 (12), 7460 (1983)
5. J. D. Cohen, D. V. Lang, and J. P. Harbison, “Direct Measurement of the Bulk
Density of Gap States in n-type Hydrogenated Amorphous Silicon, ” Phys. Rev. Lett.,
45 (3), 197 (1980).
6. M. Hirose, T, Suzuki, and G. H. Döhler, “Electronic Density of States in
Discharge-produced Amorphous Silicon, ” Appl. Phys. Lett., 34 (3), 234 (1979).
7. P. Viktorovitch and G. Moddel, “Interpretation of the Conductance and Capacitance
Frequency Dependence of Hydrogenated Amorphous Silicon Schottky Barrier
Diodes, ” J. Appl. Phys., 51 (9), 4847 (1980).
8. M. Shur and M. Hack, “Physics of Amorphous Silicon Based Alloy Field-effect
Transistors, ” J. Appl. Phys., 55 (10), 3831 (1984).
9. S. Kishida, Y. Naruke, Y. Uchida, and M. Matsumura, “Theoretical Analysis of
Amorphous-silicon Field-effect-transistors, ” Jpn. J. Appl. Phys., 22 (3), 511 (1983).
10. J. G. Shaw and M. Hack, “An Analytical Model for Calculating Trapped Charge in
Amorphous Silicon, ” J. Appl. Phys., 64 (9), 4562 (1988).
11. M. S. Shur, M. D. Jacunski, H. C. Slade, and M. Hack, “Analytical Models for
Amorphous-silicon and Poly-silicon Thin-film Transistors for
High-definition-display Technology, ” J. of the SID, 3-4, 223 (1995)
12. Y. Kuo, The Film Transistors – Material and Processes, vol. 1, p83, Texas A&M
University, U.S.A. 2004.
13. S. H. Won, J. K. Chung, C. B. Lee, H. C. Nam, J. H. Hur, and J. Jang, Journal of
Electrochemical Society, 151 (3), G167-G170 (2004).

Chapter Three – Fabrication
1. W. M. M. Kessels, A. H. M. Smets, D. C. Marra, E. S. Aydil, D. C. Schram, and M.
C. M. van de Sanden, “ On the growth mechanism of a-Si:H,” Thin Solid Films,
vol.383, pp. 154-160, 2000.
2. K. Nomoto, Y. Urano, J. L. Guizot, G.. Ganguly, and A. Matsuda. “ Role of hydrogen
atoms in the formation process of hydrogenated microcrystalline silicon,” Jpn. J.
Appl. Phys., vol.29, pp. L1372-L1375, 1990.
3. A. Asano, “Effects of hydrogen atoms on the network structure of hydrogenated
amorphous and microcrystalline silicon thin films,” Appl. Phys. Lett., vol.56,
pp.533-535, 1990.
4. C. C. Tasi, G. B. Anderson, and R. Thompson, “ Growth of amorphous,
microcrystalline, and epitaxial silicon in low-temperature plasma deposition,” Mat.
Res. Soc. Symp. Proc., vol.192, pp.475-480, 1990.
5. J. Mort and F. Jansen, “Plasma-Deposited Thin Films,” p.28-33 (CRC Press, Boca
Raton, FL, 1986).
6. F. J. Kampas and R. W. Griffith, “ Hydrogen elimination during the glow- discharge
deposition of a-Si:H alloys,” Appl. Phys. Lett., vol.39, pp.407-409,1981
7. F. J. Kampas, “Reactions of atomic hydrogen in the deposition of hydrogenated
amorphous silicon by glow discharge and reactive sputtering,” J. Appl. Phys., vol.
53, pp.6408-6412, 1982.
8. P. A. Longeway, “Semiconductors and Semimetals 21A,” pp.179-193 (In: J. I.
Pankove, ed., Academic Press, New York, 1984).
9. F. Giorgis, C. F. Pirri, and E. Tresso, “Structural properties of a-Si1-xNx:H films
grown by plasma-enhanced chemical vapor deposition by SiH4 + NH3 + H2 gas
mixtures,” Thin Solid Films, vol.307, pp.298-305, 1997.
10. R. Ishihara, H. Kanoh, Y. Uchida, O. Sugiura, and M. Matsumura,
“Low-temperature chemical vapor deposition of silicon nitride from tetrasilane and
hydrogen azide,” Mat. Res. Soc. Symp. Proc., vol.284, pp.3-8, 1992.
11. S. Yamakawa, S. Yabuta, A. Ban, M. Okamoto, M. Katayama, Y. Ishii, and M.
Hijikigawa, “The effect of plasma treatment on the off-current characteristics of a-Si
TFTs,” SID 98 Digest, pp.443-446, 1998.
12. K. Takechi, H. Uchida, and S. Kaneko, “Mobility-improvement mechanism in a-Si:H
TFTs with Smooth a-Si:H/SiNx Interface,” Mat. Res. Soc. Symp. Proc., vol.258,
pp.955-960, 1992.
13. C. R. Kagan, P. Andry, The Film Transistors, p52-p57, IBM T. J. Watson Research
Center, Yorktown Heights, New York, U.S.A. 2003.
14. M. C. Wang ,T. C. Chang, P. T. Liu, S. W. Tsao, and J. R. Chen, Electrochemical and
Solid-State Letters, 10 (3) J49-J51 (2007)

Chapter Four – Bending experiment
1. R. Baeuerle, J. Baumbach, E. Lueder, and J. Siegordner, in SID’99 Digest, Society of
Information Display, p. 14 (1999).
2. S. D. Theiss and S. Wagner, IEEE Electron Device Lett. 17, 264 (1996)
3. M. Wu, K. Pangal, J. C. Sturm, and S. Wagner, Appl. Phys. Lett. 75, 2244(1999).
4. M.J.powell, C.van Berkel, and A.R.FranklinPhysical review B volume 45, number8
(1992)
5. Chun-Yao HUANG, Teh-Hung TENG, Jun-Wei TSAI Jpn. J. Appl. Phys. Vol. 39
(2000)
6. Navakanta Bhat, Min Cao, Member, IEEE TRANSACTIONS ON ELECTRON
DEVICES, VOL. 44, NO. 7, ( 1997)
7. M.J.powell, C.van Berkel, and I.D. French Physical review B volume 45, number8
(1987)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 13.58.39.23
論文開放下載的時間是 校外不公開

Your IP address is 13.58.39.23
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code