Responsive image
博碩士論文 etd-1008105-005216 詳細資訊
Title page for etd-1008105-005216
論文名稱
Title
金奈米粒子標記物在免疫分析、DNA 序列分析及微管道晶片系統分析上的應用
The applications of gold-nanoparticles in immunoassay, DNA assay and microchip analysis
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
176
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-10-01
繳交日期
Date of Submission
2005-10-08
關鍵字
Keywords
電化學分析、無電電鍍、免疫分析、微晶片、金奈米粒子、晶片電泳、DNA分析、金奈米組合電極、方波剝除伏安法
electrochemical analysis, DNA assay, microchip, gold nanoelectrode ensemble, electroless, GNEE, square wave stripping voltammetry, immunoassay, lab-on-chip, gold-nanoparticle
統計
Statistics
本論文已被瀏覽 5690 次,被下載 5300
The thesis/dissertation has been browsed 5690 times, has been downloaded 5300 times.
中文摘要
生物標記物質在生物檢測上是非常重要的。而隨著奈米科技(Nano-technology)的發展,許多奈米物質被應用於生物檢驗上,金奈米粒子(Gold-nanoparticles)即是最常被利用的一種。另外本研究亦開發了一種增強金奈米粒子之電化學訊號的簡單方法,就是利用還原劑將金離子沉積在金奈米粒子表面,使得金奈米粒子放大而進一步增加電化學偵測訊號。
實驗分別利用三明治型免疫分析法(Sandwich immunoassay)及藉由蛋白質間(Streptavidin-biotin)的鍵結能力將兔子免疫球蛋白(RIgG)及 DNA 序列片段固定在免疫分析盤(Microtiter plate)上,再利用已標記金奈米粒子(直徑分別為 5,10 nm)之二級抗體(Anti-RIgG labeled gold-nanoparticles)及 Streptavidin 將標記物質接上,接著把金奈米粒子放大後再將金粒子溶下來,以電化學方波剝除法(Square wave stripping voltammetry)來偵測溶液中的金離子而完成電化學偵測。實驗結果在抗體偵測部份 RIgG 濃度 1 ~ 500 pg/mL 範圍中得到一良好的線性範圍(R2 = 0.9975),而此系統偵測極限約為 0.25 pg/mL,且偵測訊號之再現性非常好,在空白溶液(Blank solution)及 RIgG 濃度為 20 pg/mL 的溶液下其相對標準偏差值(R.S.D.)分別為 2.8 %(n = 11)及 2.4 %(n = 9)。而在 DNA 的偵測部份,實驗是針對甲狀腺乳突癌(Papillary thyroid carcinomas)檢體中所含有的 DNA 變異(Mutant)片段來檢測,結果不僅能區分互補或其他非互補之 DNA 片段,對微量 DNA 片段亦良好的定量結果(線性範圍在 0.52 ~ 1300 aM 之間,R2 = 0.9982),在真實樣品的偵測方面本系統也能明顯區分出有無變異之 DNA 片段樣品,且此分析方法擁有極靈敏的檢測能力(偵測極限約為 0.52 aM,訊號再現性於空白溶液及 DNA 濃度為 130 aM 的溶液之 R.S.D. 值分別為 2.1 %,n = 11 及 2.4 %,n = 12)。
本研究另外開發出將其生化偵測系統移至微晶片(Microchip)中,結合奈米組合電極(GNEE,Gold nanoelectrode ensemble)及微管道系統來進行電化學即時偵測。實驗主要是利用不同物質因受電場影響而其在微管道中的遷移速率(Mobility)會不同,使得其不同物質會在微管道中混合反應,接著反應產物即可在管道下游被電化學系統所偵測。實驗先用尿素(Urea)及尿素酶(Urease)二種物質在微管道中混合測試,再用已標記金奈米粒子之蛋白質(Streptavidin-Au)、還原劑及金離子溶液同時在微管道中混合偵測。對於未混合前的待測物偵測結果(氨離子:R.S.D. = 2.5 %,n = 6、濃度線性範圍為 0.02 ~ 5.0 mM,R2 = 0.9778;金離子:R.S.D. = 1.9 %,n = 3、濃度線性範圍為 0.0375 ~ 3.75 g/mL,R2 = 0.9842)可證明此系統之偵測能力,且應用在混合後之生物樣品檢測結果也相當好(尿素:線性範圍為 0.1 ~ 50 mM,R2 = 0.9657;Streptavidin-Au:線性範圍為 0.2 ~ 100 ng/mL,R2 = 0.9507),顯示本實驗成功開發出奈米組合電極微管道晶片系統,未來可藉由金奈米粒子的標記對於不同檢測目標設計,應用性可大幅提高。
Abstract
Determination of bio-material by using enzyme, fluorophore or metal-nanoparticles as markers is very important. Generally, gold-nanoparticles have been used frequently as marker for increasing the sensitivity in bio-chemical assay.
In this research, gold-nanoparticles were used as marker for immunoassay, DNA sequence assay, and protein analysis. However, the size of gold-nanoparticles affects directly the results of electrochemical detection. For improving the sensitivity of electrochemical method, enlargement of gold-nanoparticles was used in this study. By electroless deposition, Au will be deposited on the surface of gold-nanoparticles. The electrochemical response will thus be increased substantially.
In immunoassay and DNA sequence assay, traditional 96-wells microtiter plate was used for immobilizing antibody or oligonucleotide, and the gold-nanoparticles were marked subsequently base on the immunoreaction or protein reaction of streptavidin and biotin. After gold-nanoparticles were enlarged, they were dissolved and transferred to an electrochemical cell for square wave stripping voltammetry(SWSV)analysis. Under optimal experimental condition, dynamic range of 1 ~ 500 pg/mL and 0.52 ~ 1300 aM were found respectively for RIgG and Target DNA analysis, and a good linear relationship(R2 = 0.9975 and 0.9982). The relative standard deviation(R.S.D.) of blank were 2.8 % and 2.4 %(n = 11)for immunoassay and DNA assay, respectively. And the variance was 2.4 %(n = 9)and 2.4 %(n = 12)for immunoassay and DNA assay, respectively. The detection limit(based on S/N = 3)of RIgG and DNA were 0.25 pg/mL and 0.52 aM, respectively. They are very competitive compared with similar results reported in the literature.
Additional, a gold nanoelectrode ensemble(GNEE)coupled microchip system was developed for bio-electrochemical analysis. Due to the difference in mobility of urea and urease were mixed and allowed the enzymatic reaction to proceed in microchannel. The enzymatic product NH4+ was determined by the coupled GNEE at the outlet of the channel. Another experiment of streptavidin conjugated gold-nanoparticles(streptavidin-Au), reductant and gold-ion(Au3+)solution was be applied here, too. The product, NH4+ or Au3+ was passed through downstream of microchannel and detected by GNEE of electrochemical system. Satisfactory linear relationship(R2 = 0.9778 and 0.9657)were found from 0.1 mM to 50 mM for NH4+ and urea in the range of 0.02 mM to 5.0 mM, respectively. The other satisfactory linear relationship(R2 = 0.9842 and 0.9507) were found between 3.75 mg/mL and 3.75 g/mL for Au3+ and streptavidin-Au in the range of 0.2 ng/mL to 100 ng/mL, respectively. Variances of 2.5 %(n = 6)was found for analysis of with the microchip system.
目次 Table of Contents
論文提要....................................................................................................................................i
英文摘要(Abstract).............................................................................................................iii
誌謝...........................................................................................................................................v
目錄..........................................................................................................................................vi
附圖目錄...................................................................................................................................x
圖目錄......................................................................................................................................xi
表目錄....................................................................................................................................xiii
第壹章 、緒論..........................................................................................................................1
一、前言...................................................................................................................................1
二、免疫分析簡介...................................................................................................................1
1. 免疫分析的基本理論...........................................................................................................1
2. 酵素免疫分析.......................................................................................................................2
3. 免疫球蛋白簡介...................................................................................................................4
三、DNA 簡介..........................................................................................................................7
1. DNA 的基本理論..................................................................................................................7
2. DNA 的結合與其構造........................................................................................................10
四、酵素簡介.........................................................................................................................13
五、晶片電泳簡介.................................................................................................................14
1. 毛細管電泳.........................................................................................................................14
2. 微機電晶片.........................................................................................................................17
六、無電電鍍方法簡介.........................................................................................................18
1. 無電電鍍.............................................................................................................................18
2. 奈米組合電極的特性.........................................................................................................22
七、金奈米粒子放大方式簡介.............................................................................................24
八、實驗目的.........................................................................................................................26
第貳章 、免疫分析................................................................................................................27
一、前言.................................................................................................................................27
二、實驗.................................................................................................................................28
1. 藥品與溶液配製.................................................................................................................28
(1)藥品...............................................................................................................................28
(2)溶液之配製...................................................................................................................30
2. 儀器設備.............................................................................................................................32
3. 電化學系統.........................................................................................................................34
4. 實驗操作流程及電化學偵測.............................................................................................34
(1)實驗操作步驟...............................................................................................................34
(2)電化學偵測...................................................................................................................37
三、結果與討論.....................................................................................................................38
1. 金奈米粒子放大結果.........................................................................................................38
(1)以電子顯微鏡觀測金奈米粒子之放大效果...............................................................38
(2)以電化學方式觀測金奈米粒子之放大效果...............................................................40
2. 實驗各項參數之探討.........................................................................................................42
(1)電化學方波剝除伏安法之各項參數探討...................................................................42
(2)電化學方波剝除伏安法之電沉積時間.......................................................................43
(3)金離子溶液及還原劑之比例.......................................................................................45
(4)金奈米粒子之放大時間...............................................................................................47
(5)GaRIgG-Au 培養濃度的影響.......................................................................................49
3. 實驗結果.............................................................................................................................51
(1)電化學方波剝除伏安法之訊號再現性.......................................................................51
(2)RIgG 的定量偵測.........................................................................................................52
(3)真實樣品中之干擾物影響..........................................................................................56
(4)和文獻中相似分析方法比較......................................................................................58
四、結論................................................................................................................................60
第參章 、DNA 分析..............................................................................................................61
一、前言................................................................................................................................61
二、實驗................................................................................................................................62
1. 藥品與溶液配製................................................................................................................62
(1)藥品..............................................................................................................................62
(2)溶液之配製..................................................................................................................63
2. 儀器設備............................................................................................................................65
3. 電化學系統........................................................................................................................66
4. 實驗操作流程及電化學偵測............................................................................................66
(1)實驗操作步驟..............................................................................................................66
(2)電化學偵測..................................................................................................................69
三、結果與討論....................................................................................................................70
1. 金奈米粒子放大結果........................................................................................................70
(1)以電子顯微鏡觀測金奈米粒子之放大效果..............................................................70
(2)以電化學方式觀測金奈米粒子之放大效果..............................................................73
2. 實驗各項參數之探討........................................................................................................75
(1)Coating DNA 培養濃度之影響....................................................................................75
(2)遮敝試劑(BSA-Biotin)之濃度探討.........................................................................77
(3)遮敝試劑(BSA-Biotin)之培養時間.........................................................................78
(4)DNA 雜交(Hybridization)時間探討........................................................................80
(5)Streptavidin-Au 之濃度探討.........................................................................................82
(6)Streptavidin-Au 之培養時間.........................................................................................83
3. 實驗結果.............................................................................................................................85
(1)電化學方波剝除伏安法之訊號再現性.......................................................................85
(2)Target DNA 的定量偵測...............................................................................................87
(3)真實樣品之偵測...........................................................................................................90
(4)和文獻中相似分析方法比較.......................................................................................93
四、結論.................................................................................................................................95
第肆章 、微管道晶片系統之生物分析................................................................................96
一、前言.................................................................................................................................96
二、實驗.................................................................................................................................98
1. 藥品與溶液配製.................................................................................................................98
(1)藥品...............................................................................................................................98
(2)溶液之配製...................................................................................................................99
1 金奈米組合電極製備所需之溶液......................................................................................99
2 微管道晶片製作所需之溶液............................................................................................101
3 微管道系統所需之溶液....................................................................................................101
2. 儀器設備...........................................................................................................................103
三、結果與討論...................................................................................................................107
1. 金奈米組合電極...............................................................................................................107
(1)金奈米組合電極製備.................................................................................................107
(2)金奈米組合電極特性.................................................................................................108
2. 微管道晶片製作...............................................................................................................111
(1)光罩製作.....................................................................................................................111
(2)石英玻璃母模製作.....................................................................................................113
(3)微管道晶片熱壓程序.................................................................................................115
(4)壓克力底板電極製作.................................................................................................116
(5)壓克力上之金奈米組合電極.....................................................................................120
(6)壓克力化學接合過程.................................................................................................121
(7)完成微管道晶片製作步驟.........................................................................................122
(8)微管道晶片系統暨電化學偵測系統.........................................................................125
3. 在微管道晶片系統中做尿素偵測...................................................................................126
(1)金奈米組合電極對 NH4+ 之反應性.........................................................................126
(2)微管道晶片系統的偵測步驟.....................................................................................128
(3)微管道晶片系統對 NH4+ 之反應性.........................................................................130
(4)分離電壓對分析物的影響.........................................................................................132
(5)NH4+ 在微管道晶片系統中的定量偵測...................................................................134
(6)微管道晶片系統中酵素催化的影響及樣品訊號再現性.........................................136
(7)尿素在微管道晶片系統中的定量偵測.....................................................................137
4. 在微管道晶片中做蛋白質偵測.......................................................................................140
(1)對金離子溶液反應之還原劑選擇.............................................................................140
(2)微管道晶片系統的偵測步驟.....................................................................................140
(3)微管道晶片系統對金離子(Au3+)之反應性........................................................142
(4)分離電壓對分析物的影響.........................................................................................143
(5)Au3+ 在微管道晶片系統中的定量偵測...................................................................145
(6)微管道晶片系統中的再現性測試.............................................................................146
(7)Streptavidin-Au 在微管道晶片系統中的定量偵測...................................................148
四、結論與未來展望...........................................................................................................150
第伍章 、總結......................................................................................................................152
第陸章 、參考文獻..............................................................................................................154
參考文獻 References
1. Engvall, E. and Perlmann, P. J. Immunol. 1972, 109, 129.
2. Avrameas, S. Scand. J. Immunol. 1978, 8, 7.
3. Meyerhoff, M. and Rechnitz, G. Meth. Enzymol. 1980, 70, 439.
4. Engvall, E. Methods in Enzymology 1980, 70, 419.
5. Wilsdom, G. Clin. Chem. 1976, 22, 1243.
6. Lasalle, A. L.; Limoges, B.; Degrand, C. and Brossier, P. Anal. Chem. 1995, 67, 12.
7. Lu, B.; Iwuoha, E. I.; Smyth, M. R. and O’Kennedy, R. Anal. Chim. Acta 1997, 345, 59.
8. 廖國棠, “聚苯胺蛋白質-A 修飾電極在免疫分析上的應用”, 碩士論文, 中山大學化學研究所, 2001.
9. Garrett, R. H. and Grisham, C. M. Biochemistry, Saunders College Publishing, 1995.
10. Becker, W. M.; Kleinsmith, L. J. and Hardin, J. The World of The Cell, 4th ed., The Benjamin/Cummings Publishing Company, San Francisco, 2000.
11. 唐自強, “以電化學法及化學冷光法對 DNA 分析之研究”, 博士論文, 中山大學化學研究所, 1999.
12. 陳國誠, “微生物酵素工程學”, 藝軒出版社, 1992.
13. Scheller, F. and Schvbert, F. Techniques and Instrumentation in Analytical Chemistry: Biosensers, Elserver, 1992.
14. 邱文俊, “聚苯胺尿素酵素修飾電極在生化分子偵測上之應用”, 碩士論文, 中山大學化學研究所, 1996.
15. 陳美成, “電化學偵測法在毛細管電泳分析上之應用”, 博士論文, 中山大學化學研究所, 1996.
16. Manz, A.; Graber, N. and Widmer, H. M. Sens. Actuators. B Chem. 1990, 1, 244.
17. Ashton, R. and Kane, R. S. Current Opinion Biotechnology 2003, 14, 479.
18. Service, R. F. Science 1998, 282, 396.
19. Ramsey, R. S.; Culbertson, C. T. and Ramsey, J. M. Anal. Chem. 2000, 72, 2285.
20. Cho, K.; Shin, Y. S.; Lim, S. H.; Chung, S.; Park, S. J.; Chung, C.; Han, D. C. and Hang, J. K. Journal of Micromechanics and Microengineering : Structures, Devices, and Systems 2003, 13, 768.
21. Buks, E. and Roukes, M. L. Journal of Microelectro-mechanical System 2002, 11, 801.
22. Lemoff, A. V. and Lee, A. P. Sens. Actuators. B Chem. 2000, 63, 178.
23. Menon, V. P. and Martin, C. R. Anal. Chem. 1995, 67, 1920.
24. Hulteen, J. C. and Martin, C. R. J. Mater. Chem. 1997, 7, 1075.
25. Lowenheim, F. A. Electroplating, McGraw-Hill, Inc., 1978.
26. Forrer, P.; Schlotting, F.; Siegenthaler, H. and Textor, M. J. Appl. Electrochem. 2000, 30, 533.
27. Hulteen, J. C.; Menon, V. P. and Martin, C. R. J. Chem. Soc., Faraday trans. 1996, 92, 4029.
28. Ugo, P.; Moretto, L. M.; Bellom, S.; Menon, V. P. and Martin, C. R. Anal. Chem. 1996, 68, 4160.
29. Brunetti, B. ; Ugo, P.; Moretto, L. M. and Martin, C. R. J. Electro. Chem. 2000, 491, 166.
30. 梁俊彥, “以板模輔助合成法制備金奈米電極陣列以及其在電化學分析上的應用”, 碩士論文, 中山大學研究所, 2002
31. Lvov, Y. and Caruso, F. Anal. Chem. 2001, 73, 4212.
32. Dre, S. M. and Wrightman, M. S. J. Electroanal. Chem. 1991, 317, 117
33. Bento, M. F.; Medeiros, M. J.; Montenegro, M. L.; Beriot, C. and Pletcher, D. J. Electroanal. Chem. 1993, 345, 273
34. Otsuka, H.; Akiyama, Y.; Nagasaki, Y. and Kataoka, K. J. Am. Chem. Soc. 2001, 123, 8226.
35. Frederix, F.; Friedt, J.-M.; Choi, K.-H.; Laureyn, W.; Campitelli, A.; Mondelaers, D.; Maes, G. and Borghs, G. Anal. Chem. 2003, 75, 6894.
36. Hrapovic, S.; Liu, Y.; Male, K. B. and Luong, J. H. T. Anal. Chem. 2004, 76, 1083.
37. Harriman, A.; Millward, G. R.; Neta, P.; Richoux, M. C. and Thomas, J. M. J. Phys. Chem. 1988, 92, 1286.
38. Creighton, J. A.; Blatchford, C. G. and Albrecht, M. G. J. Chem. Soc. Faraday Trans. II 1979, 75, 790.
39. Cai, H.; Xu, Y.; Zhu, N.; He, P. and Fang, Y. Analyst 2002, 127, 803.
40. Gonzalez-Carcia, M. B. and Costa-Garcia, A. Biosens. Bioelectron. 2000, 15, 663.
41. Karyakin, A. A.; Presnova. G. V.; Rubtsova, M. Y. and Egorov, A. M. Anal. Chem. 2000, 72, 3805.
42. Cobbe, S.; Connolly, S.; Ryan, D.; Nagle, L.; Eritja, R. and Fitzmaurice, D. J. Phys. Chem. B 2003, 107, 470.
43. Liao, K. T. and Huang, H. J. Anal. Chim. Acta 2005, 538, 159.
44. Cai, H.; Wang, Y.; He, P. and Fang, Y. Anal. Chim. Acta 2002, 469, 165.
45. Weizmann, Y.; Patolsky, F.; Popov, I. and Willner, I. Nano Lett. 2004, 4, 787.
46. Ma, Z. and Sui, S. F. Angew. Chem. Int. Ed. 2002, 41, 2176.
47. Wang, J.; Xu, D.; Kawde, A. N. and Polsky, R. Anal. Chem. 2001, 73, 5576.
48. Weizmann, Y.; Patolsky, F. and Willner, I. Analyst 2001, 126, 1502.
49. Brown, K. R. and Natan, M. J. Langmuir 1998, 14, 726.
50. Wang, J.; Xu, D. and Polsky, R. J. Am. Chem. Soc. 2002, 124, 4208.
51. Wang, J.; Polsky, R. and Xu, D. Langmuir 2001, 17, 5739.
52. Alexandre, I.; Hamels, S.; Dufour, S.; Collet, J.; Zammatteo, N.; Longueville, F. D.; Gala, J. L. and Remacle, J. Anal. Biochem. 2001, 295, 1.
53. Taton, T. A.; Mirkin C. A. and Letsinger, R. L. Science 2000, 289, 1757.
54. Edwards, R. in: C. P. Price, D. J. Newman (Eds.), Principles and Practice of Immunoassay, 2nd ed., Macmillan Regerence Ltd., New York, 1997, pp. 325 ~ 348.
55. Tang, T. C.; Deng, A. P. and Huang, H. J. Anal. Chem. 2002, 74, 2617.
56. Liu, C. H.; Liao, K. T. and Huang, H. J. Anal. Chem. 2000, 72, 2925.
57. Santandreu, M.; Cespedes, F.; Alegret, S. and Martinez-Fabregas, E. Anal. Chem. 1997, 69, 2080.
58. Wang, J.; Pamidi, P. V. A. and Rogers, K. R. Anal. Chem. 1998, 70, 1171.
59. Sole, S.; Alegret, S.; Cespedes, F.; Martinez-Fabregas, E. and Diez-Caballero, T. Anal. Chem. 1998, 70, 1462.
60. Nistor, C.; Oubina, A.; Marco, M. P.; Barcelo, D. and Emnesu, D. J. Anal. Chim. Acta 2001, 426, 185.
61. Loescher, F.; Boehme, S.; Martin, J. and Seeger, S. Anal. Chem. 1998, 70, 3202.
62. Murakami, S.; Ito, K.; Goto, T.; Kamadi, S. and Maeda, M. Anal. Chim. Acta 1998, 361, 19.
63. Brown, R. C.; Weeks, I.; Fisher, M.; Harbron, S.; Taylorson, C. J. and Woodhead, J. S. Anal. Biochem. 1998, 259, 142.
64. Cais, M.; Dani, S.; Eden, Y.; Gandolfi, O.; Horn, M.; Isaacs, E. E.; Josephy, Y.; Saar, Y.; Slovin, E. and Snarskt, L. Nature 1977, 270, 534.
65. Leuvening, J. H. W.; Thal, P. S. H. M.; Van der Waart, M. and Schurs, A. H. W. M. J. Immunoassay 1980, 1, 77.[12]
66. Leuvening, J. H. W.; Goverde, B. C.; Thal, P. S. H. M. and Schurs, A. H. W. M. J. Immunol. Meth. 1983, 60, 9.[13]
67. Elghanian, R.; Storhoff, J. J.; Muclc, R. C.; Letsinger, R. L. and Mirkin, C. A. Science 1997, 277, 1078.
68. Tu, C. Y.; Kitamori, T.; Sawada, T.; Kimura, H. and Matsuzawa, S. Anal. Chem. 1993, 65, 3631.
69. Lyon, L. A.; Musick, M. D. and Natan, M. J. Anal. Chem. 1998, 70, 5177.
70. Cao, Y. C.; Jin, R. and Mirkin, C. A. Science 2002, 297, 1536.
71. Ni, J.; Lipert, R. J.; Dawson, G. B. and Porter, M. D. Anal. Chem. 1999, 71, 4903.
72. Dequaire, M.; Degrand, C. and Limoges, B. Anal. Chem. 2000, 72, 5521.
73. Wang, J.; Li, J. H.; Baca, A. J.; Hu, J. B.; Zhou, F. M.; Yan, W. and Pang, D. W. Anal. Chem. 2003, 75, 3941.
74. Roth, J.; Bendayan, M. and Orci, L. J. Histochem. Cytochem. 1978, 26, 1074.
75. Gevorgyan, A. M.; Vanyukov, V. V. and Akhnenko, V. S. V. J. Anal. Chem. 2002, 57, 253.
76. Lentner, C.; Lentner, C. and Wink, A. Geigy Scientific Tables(Vol. 3): Physical Chemistry Composition of Blood Hematology Somatometric Data, Ciba-Geigy Limited, Basle, Switzerland, 1984, pp.89-106.
77. Ozsoz, M; Erdem, A.; Kerman, K.; Ozkan, D.; Tugrul, B.; Topcuoglu, N.; Ekren, H. and Taylan, M. Anal. Chem. 2003, 75, 2181.
78. Burgess, J. R.; Skabo, S.; Mcardle, K. and Tucker, P. ANZ J. Surg. 2003, 73, 31.
79. Rocha, A. S.; Soares, P.; Seruca, R.; Maximo, V; Matias-Guiu, X.; Cameselle-Teijeiro, J. and Sobrinho-Simoes, M. J. Pathol. 2001, 194, 358.
80. Xu, B.; Yoshimoto, K.; Miyauchi, A.; Kuma, S.; Mizusawa, N.; Hirokawa, M. and Sano, T. J. Pathol. 2003, 199, 58.
81. Russell, J. P.; Shinohara, S.; Melillo, R. M.; Castellone, M. D.; Santoro, M. and Rothstein, J. L. Oncogene 2003, 22, 4569.
82. Soares, P.; Trovisco, V.; Rocha, A. S.; Lima, J.; Castro, P.; Preto, A.; Maximo, V.; Botelho, T. Seruca, R. and Sobrinho-Simoes, M. Oncogene 2003, 22, 4578.
83. Davies, H.; Bignell, G. R.; Cox, C.; Stephens, P.; Edkins, S.; Clegg, S.; Teague, J.; Woffendin, H.; Garnett, M. J.; Bottomley, W.; Davis, N.; Dicks, E.; Ewing, R.; Floyd, Y.; Gray, K.; Hall, S.; Hawes, R.; Hughes, J.; Kosmidou, V.; Menzies, A.; Mould, C.; Parker, A.; Stevens, C.; Watt, S.; Hooper, S.; Wilson, R.; Jayatilake, H.; Gusterson, B. A.; Cooper, C.; Shipley, J.; Hargrave, D.; Pritchard- Jones, K.; Maitland, N.; Chenevix-Trench, G.; Riggins, G. J.; Bigner, D. D.; Palmieri, G.; Cossu, A.; Flanagan, A.; Nicholson, A.; Ho, J. W.; Leung, S. Y.; Yuen, S. T.; Weber, B. L.; Seigler, H. F.; Darrow, T. L.; Paterson, H.; Marais, R.; Marshall, C. J.; Wooster, R.; Stratton, M. R. and Futreal, P. A. Nature, 2002, 417, 949.
84. Dominguez, E.; Rincon, O. and Narvaez, A. Anal. Chem. 2004, 76, 3132.
85. Wang, J.; Polsky, R.; Merkoci, A. and Turner K. L. Langmuir 2003, 19, 989.
86. Hahm, J. I. and Lieber, C. M. Nano Lett. 2004, 4, 51.
87. Wang, J.; Liu, G. and Jan, M. R. J. Am. Chem. Soc. 2004, 126, 3010.
88. Hwang, S.; Kim, E. and Kwak, J. Anal. Chem. 2005, 77, 579.
89. Freemantle, M. Chem. Eng. News, 1999, Feb. 22, 27.
90. Kovacs, Z. G. T.; Petersen, K. and Albin, M. Anal. Chem. 1996, 68, 407A.
91. Wang, J. Trends Anal. Chem. 2002, 21, 226.
92. Wang, J.; Ibanez, A.; Chatrathi, M. P. and Escarpa, A. Anal. Chem. 2001, 73, 5323.
93. Reis Lima, M. J.; Fernandes, S. M. V. and Rangel, A. O. S. S. J. Agric. Food Chem. 2004, 52, 6887.
94. de Melo, J. V.; Cosnier, S.; Mousty, C.; Martelet, C. and Jaffrezic-Renault, N. Anal. Chem. 2002, 74, 4037.
95. El Sherif, H.; Di Martino, S.; Travascio, P.; De Maio, A.; Portaccio, M.; Durante, D.; Rossi, S.; Canciglia, P. and Mita, D. G. J. Agric. Food Chem. 2002, 50, 2802.
96. Tujioka, K.; Lyou, S.; Hirano, E.; Sano, A.; Hayase, K.; Yoshida, A. and Yokogoshi, H. J. Agric. Food Chem. 2002, 50, 7467.
97. Martin, C. R. Science. 1994, 266, 1961.
98. Martin, C. R. Chem. Mater. 1996, 8, 1739.
99. Li, S. and Crooks, R. M. Langmuir 1999, 15, 738.
100. Baker, W. S. and Crooks, R. M. J. Phys. Chem. B 1998, 102, 10041.
101. Cheng, W.; Dong, S. and Wang, E. Anal. Chem. 2002, 74, 3599.
102. Conyers, J. L., Jr. and White, H. S. Anal. Chem. 2000, 72, 4441.
103. Jeoung, E.; Galow, T. H.; Schotter, J.; Bal, M.; Ursache, A.; Tuominen, M. T.; Safford, C. M.; Russell, T. P. and Rotello, V. M. Langmuir 2001, 17, 6396.
104. Hsia, T. H.; Liao, K. T. and Huang, H. J. Anal. Chim. Acta 2005, 537, 315.
105. Gasparac, R.; Taft, B. J.; Lapierre-Devlin, M. A.; Lazareck, A. D.; Xu, J. M. and Kelley, S. O. J. Am. Chem. Soc. 2004, 126, 12270.
106. Krishnamoorthy, K. and Zoski, C. G. Anal. Chem. 2005, 77, 5068.
107. Lin, C. H.; Fu, L. M.; Tsai, C. H.; Chao, C. H. and Lan, C. W. “Low azeotropic solvent sealing of PMMA microfluidic devices” IEEE Proc. Solid-state sensors and actuators workshop, 2005, 944-947.
108. 簡育生, “電驅動式微混合器及整合光鉗之細胞操控平台於生醫檢測之應用”, 碩士論文, 中山大學機械與機電工程研究所, 2005.
109. Lin, C. H.; Lee, G. B.; Lin, Y. H. and Chang, G. L. J Micromech. Microeng. 2001, 11, 726.
110. Bergveld, B. and Sibbald, A. In Analytical and Biomedical Applications of Ion-selective Field-effect Transistors; Svehla, G., Eds; Elsevier: Amsterdam/New York, 1988.
111. 林岳峰, “大氣電漿系統表面改質技術及其於微流體生物晶片製程之應用”, 碩士論文, 中山大學機械與機電工程研究所, 2005.
112. Wu, C. C.; Wu, R. G.; Huang, J. G.; Lin, Y. C. and Chang, H. C. Anal. Chem. 2003, 75, 947.
113. Lacher, N. A.; Lunte, S. M. and Martin, R. S. Anal. Chem. 2004, 76, 2482.
114. Lentner, C.; Lentner, C. and Wink, A. Geigy Scientific Tables(Vol. 1): Units of Measuremens, Body Fluids, Composition of the Body, Nutrition, Ciba-Geigy Limited, Basle, Switzerland, 1981, pp.62-78.
115. Liu, R. T.; Chen, Y. J.; Chou, F. F.; Li, C. L.; Wu, W. L.; Tsai, P. C.; Huang, C. C. and Cheng, J. T. Clin. Endocrinol. 2005, 63, 461.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code