Responsive image
博碩士論文 etd-1008107-182140 詳細資訊
Title page for etd-1008107-182140
論文名稱
Title
p-type透明導電氧化物CuAlO2薄膜之製備與分析
Fabrication and characterization of p-type transparent conducting oxide CuAlO2 thin film
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
88
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-09-27
繳交日期
Date of Submission
2007-10-08
關鍵字
Keywords
薄膜反應、電洞型透明導電氧化物、二氧化鋁銅
thin film reaction, CuAlO2, p-type transparent conducting oxide
統計
Statistics
本論文已被瀏覽 5789 次,被下載 3984
The thesis/dissertation has been browsed 5789 times, has been downloaded 3984 times.
中文摘要
本論文探討以薄膜反應法製作CuAlO2薄膜以快速熱退火(RTA)的方式使Al2O3/Cu2O/sapphire三明治薄膜結構在1000℃以上發生反應形成CuAlO2薄膜。我們探討薄膜成長的條件對其結晶結構、反應機制、光及電性的研究中發現,CuAlO2薄膜以磊晶方式成長在Sapphire(0001)的基板上使用1100℃在空氣氣氛的反應條件。另外,以薄膜反應法製作CuAlO2薄膜是決定於RTA的氣氛、升溫速率及反應溫度。我們發現單一相的CuAlO2薄膜是在空氣的氣氛中,以快速升溫的方式在1000℃以上的條件下形成。較慢的升溫速率與純氧的氣氛下將導致二次相CuAl2O4的形成。
薄膜反應所得之CuAlO2薄膜的能隙值為3.75eV,而可見光的穿透率是取決於薄膜反應的溫度。最高的可見光穿透率為60%是使用1100℃的退火溫度在空氣的氣氛下。光激光譜(PL)與陰極激光光譜(CL)的量測顯示以薄膜反應法所得之CuAlO2薄膜在激發狀態下可發出兩個波長分別為3.4及1.8eV。
CuAlO2薄膜的導電率與薄膜中的氧含量的關係可由事後熱退火(Post-annealing)的實驗中得知。我們發現薄膜的片電阻在真空下800℃的退火條件下會隨著退火時間的增長而變大。將真空下退火的試片再回空氣下退火即可回復原來的片電阻。在本研究中CuAlO2薄膜最高的導電率為0.57 S/cm.
金屬-CuAlO2薄膜接觸的研究也在本論文中探討。電流-電壓特性的量測顯示Cu、Al、Ni及Au與CuAlO2薄膜接合的電性傾向歐姆接觸(Ohmic contact)。最低的接觸電阻是使用Al金屬使為接點。然而事後熱退火的處理後會使得這些金屬接點的接觸電阻變高。
Abstract
In this thesis, we investigate the synthesis of CuAlO2 on sapphire (0001) substrate by rapid thermal annealing of an Al2O3/Cu2O/sapphire structure above 1000oC. We examine the effects of growth conditions on the structural, formation mechanism, and optical and electrical properties of CuAlO2 thin film. The film prepared at 1100 oC in air was with epitaxial structure as verified by X-ray diffraction methods. Gas ambient, temperature ramp rate and reaction temperature are crucial parameters for the formation of CuAlO2 film. We found that single-phase CuAlO2 thin films formed in air ambient by a rapid temperature ramp rate above 1000oC. A slow temperature ramp rate and a pure oxygen ambient might lead to the appearance of second phase such as CuAl2O4.
Optical gap of our films were determined to be 3.75 eV. Optical transmittance depended on the temperature of thin film reaction. The best transmittance obtained was 60 % by annealing at 1100 oC in air. Photoluminescence and cathodoluminescence measurements showed that the two peaks obtained are around 3.4 eV and 1.8 eV corresponding to UV and red emission. As a result of CuAlO2 has an indirect gap about 1.8 eV.
The electrical conductivity of the film related to the oxygen content was investigated by the annealing experiments in oxygen-deficient (vacuum) and oxygen-excess (air) ambient. The sheet resistance of CuAlO2 increases consistently with an increase in the duration of the vacuum annealing. Further annealing in air restores the sheet resistance to the original value. The highest conductivity obtained in this work was 0.57 S/cm.
Metal contacts to CuAlO2 were also studied in this work. The current-voltage characteristics showed that Cu, Al, Ni or Au could form Ohmic contact to CuAlO2. The lowest contact resistance was using Al metal. However, when the contacts were post-annealed above 300oC, the contact resistance was increased.
目次 Table of Contents
1 Introduction 1
1-2 Applications of CuAlO2 1
1-3 Aim of this work 2
2 Structure and properties of CuAlO2 4
2-1 Crystal structure of delafossite material 4
2-2 The theory of CMVB 7
2-3 Phase diagram of CuAlO2 9
2-4 Preparation methods of CuAlO2 12
2-5 Electrical properties of CuAlO2 14
2-6 Optical properties of CuAlO2 14
3 Growth of CuAlO2 thin film 16
3-1 Principle of reactive sputtering 16
3-2 Film formation of CuAlO2 17
4 Characterization techniques of CuAlO2 thin film 19
4-1 X-ray diffraction methods 19
4-2 Electron Spectroscopy for Chemical analysis 19
4-3 Transmission electron microscope and scanning electron microscope 20
4-4 UV-Visible spectrometer 21
4-5 Photoluminescence and cathodoluminescence 22
4-6 Electrical analysis of CuAlO2 thin film 22
5 Results and discussions I - preparation of CuAlO2 thin film 27
5-1 Establishment of hysteresis curve for Cu2O and Al2O3 27
5-2 Thin film reaction by Cu2O/sapphire (0001) structure 35
5-3 Thin film reaction by amorphous alumina (a-Al2O3)/ Cu2O/ sapphire configuration 39
5-4 Formation mechanism of CuAlO2 thin film by thin film reaction 46
6 Results and discussions II – structure and properties of CuAlO2 thin film 52
6-1 Microstructure analysis of CuAlO2 thin film 52
6-2 Electronic structure of CuAlO2 57
6-3 Electrical properties of CuAlO2 61
6-4 Optical properties of CuAlO2 thin film 69
7 Conclusions 77
References 79
參考文獻 References
1. H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi and H. Hosono, Nature 389, 939 (1997).
2. K. Ueda, T. Hase, H. Yanagi, H. Kawazoe, H. Hosono, H. Ohta, M. Orita, and M. Hirano, J. Appl. Phys. 89, 1790 (2001).
3. H. Yanagi, T. Hase, S. Ibuki, K. Ueda, and H. Hosono, Appl. Phys. Lett. 78, 1583 (2001).
4. K. Tonooka, N. Kikuchi, Thin Solid Films 515, 2415 (2006).
5. Y. Kakehi, K. Satoh, T. Yotsuya, S. Nakao, T. Yoshimura, A. Ashida, and N. Fujimura, J. Appl. Phys. 97, 083535 (2005).
6. H. Hiramatsu, K. Ueda, H. Ohta, T. Kamiya, M. Hirano, and H. Hosono, Appl. Phys. Lett. 87, 211107 (2005).
7. A. Kudo, H. Yanagi, H. Hosono, and H. Kawazoe, Appl. Phys. Lett. 73, 220 (1998).
8. M. Dekkers, G. Rijnders, and D. H. A. Blank, Appl. Phys. Lett. 90, 021903 (2007).
9. A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, Nat. Mater. 4, 42 (2005).
10. J. D. Ye, S. L. Gu, F. Li, S. M. Zhu, R. Zhang, Y. Shi, Y. D. Zheng, X. W. Sun, G. Q. Lo, and D. L. Kwong, Appl. Phys. Lett. 90, 152108 (2007).
11. H. S. Kang, G. H. Kim, D. L. Kim, H. W. Chang, B. D. Ahn, and S. Y. Lee, Appl. Phys. Lett. 89, 181103 (2006).
12. W. Guo, A. Allenic, Y. B. Chen, X. Q. Pan, Y. Che, Z. D. Hu, and B. Liu, Appl. Phys. Lett. 90, 242108 (2007).
13. D. C. Look and B. Claflin, Phys. Status Solidi B 241, 624 (2004).
14. O. Nakagawara, Y. Kishimoto, H. Seto, Y. Koshido, Y. Yoshino, and T. Makino, Appl. Phys. Lett. 89, 091904 (2006).
15. D. Sauter, U. Weimar, G. Noetzel, J. Mitrovics, and W. Gopel, Sens. Actuators B 69, 1 (2000).
16. S.-R. Kim, H.-K. Hong, C. H. Kwon, D. H. Yun, K. Lee, and Y. K. Sung, Sens. Actuators B 66, 59 (2000).
17. E. Gagaoudakis, M. Bender, E. Douloufakis, N. Katsuarakis, E. Natsakou, V. Cimalla, and G. Kiriakidis, Sens. Actuators B 80, 155 (2001)., M. Bender, E. Gagaoudakis, E. Douloufakis, N. Katsuarakis, E. Natsakou, V. Cimalla, G. Kiriakidis, E. Fortunato, P. Nunes, A. Marques, and R. Martins, Thin Solid Films 418, 45 (2002).
18. X. G. Zheng, K. Taniguchi, and A. Takahashi, Y. Liu and C. N. Xu, Appl. Phys. Lett. 85, 1728 (2004).
19. J. R. Monnier, M. J. Hanrahan, and G. Apai, Journal of catalysis 92, 119 (1985).
20. J. Christopher and C. S. Swamy, Journal of materials science 27, 1353 (1992).
21. J. Christopher and C. S. Swamy, Journal of molecular catalysis 62, 69 (1990).
22. N. Koriche, A. Bouguelia, A. Aider and M. Trari, Int. J. Hydrogen Energy 30, 693 (2005).
23. S. Ikeda, T. Takata, M. Komoda, M. Hara, J. N. Kondo, K. Domen, A. Tanaka, H. Hosono, and H. Kawazoe, Phys. Chem. Chem. Phys. 1, 4485 (1999).
24. G. Thomas, Nature 389, 907 (1997).
25. H. Hosono, H. Ohta, K. Hayashi, M. Orita and M. Hirano, J. Crystal Growth 237-239, 496 (2002).
26. H. Ohta, M. Kamiya, T. Kamiya, M. Hirano and H. Hosono, Thin Solid Films 445, 317 (2003).
27. K. Tonooka, H. Bando, Y. Aiura, Thin Solid Films 445, 327 (2003).
28. R. Brahimi, Y. Bessekhouad, A. Bouguelia, M. Trari, J. Photochem. Photobiol. A 186, 242 (2007).
29. K. Koumoto, H. Koduka and W-S. Seo, J. Mater. Chem. 11, 251 (2001).
30. R. E. Stauber, J. D. Perkins, P. A. Parilla, and D. S. Ginley, Electrochemical and solid-state letters 2, 654 (1999).
31. A. N. Banerjee, R. Maity, P. K. Ghosh, K. K. Chattopadhyay, Thin Solid Films 474, 261 (2005).
32. A. N. Banerjee and K. K. Chattopadhyay, J. Appl. Phys. 97, 084308 (2005).
33. J. Li, A. W. Sleight, C. Y. Jones, B. H. Toby, J. Solid State Chem. 178, 285 (2005).
34. M. S. Lee, T. Y. Kim, and D. Kim, Appl. Phys. Lett. 79, 2028 (2001).
35. J.-P. Doumerc, A. Ammar, A. Wichainchai, M. Pouchard, and P. Hagenmuller, J. Phys. Chem. Solids 48, 37 (1987).
36. B. U. Köhler and M. Jansen, Z. Anorg. Allg. Chem. 543, 73 (1986).
37. T. Ishiguro, A. Kitazawa, N. Mizutani, and M. Kato, J. Solid State Chem. 40, 170 (1981).
38. E. Mugnier, A. Barnabé and P. Tailhades, Solid State Ionics 177, 607 (2006).
39. R. J. Cava, H.W. Zandbergen, A. P. Ramirez, H. Takagi, C. T. Chen, J. J. Krajewski, W. F. J. Peck, J. V. Waszczak, G. Meigs, R.S. Roth, L. F. Schneemeyer, J. Solid State Chem. 104, 437 (1993).
40. F. A. Benko and F. P. Koff-Yberg, J. Phys. Chem. Solids 45, 57 (1984).
41. H. Ohta, H. Mizoguchi, M. Hirano, S. Narushima, T. Kamiya, and H. Hosono, Appl. Phys. Lett. 82, 823 (2003).
42. H. Yanagi, K. Ueda, H. Ohta, M. Orita, M. Hirano, and H. Hosono, Solid State Commun. 121, 15 (2002).
43. S. K. Misra and A. C. D Chaklader, J. Am. Ceram. Soc. 46, 509 (1963).
44. K. T. Jacob and C. B. Alcock, J. Amer. Ceram. Soc. 58, 192 (1975).
45. V. Patrick and G. Gavalas, J. Am. Ceram. Soc. 73, 358 (1990).
46. T. Fujimura and S. I. Tanaka, Acta Mater. 46, 3057 (1998).
47. R. D. Shannon, D. B. Rogers, and C. T. Prewitt, Inorg. Chem. 10, 713 (1971).
48. J. Cai and H. Gong, J. Appl. Phys. 98, 033707 (2005).
49. D. S. Kim and S. Y. Choi, Phys. Stat. Sol. (a) 202, R167 (2005).
50. C. Bouzidi, H. Bouzouita, A. Timoumi, and B. Rezig, Materials Science and Engineering B 118, 259 (2005).
51. A. N. Banerjee and K. K. Chattopadhyay, Thin Solid Films 440, 5 (2003).
52. D. Y. Shahriari, A. Barnabè, T. O. Mason, and K. R. Poeppelmeier, Inorg. Chem. 40, 5734 (2001).
53. N. Tsuboi, Y. Takahashi, S. Kobayashi, H. Shimizu, K. Kato, and F. Kaneko, J. Phys. Chemi. Solids 64, 1671 (2003).
54. L. Dloczik, Y. Tomm, R. Könenkamp, M.C. Lux-Steiner, and T. Dittrich, Thin Solid Films 451-452, 116 (2004).
55. R. D. Shannon, D. B. Rogers, C. T. Prewitt, and J. L. Gillson, Inorg. Chem. 10, 723 (1971).
56. B. J. Ingram, T. O. Mason, R. Asahi, K. T. Park, and A. J. Freeman, Phys. Rev. B 64, 155114 (2001).
57. H. S. Kim, B. S. Lee, S. H. Ji, H. Kim, D. Kim, Y. E. Ihm, and W. K. Choo, Phys. Stat. Sol. (b) 241, 1545 (2004).
58. R. S. Yu, S. C Liang, C. J. Lu, D. C. Tasi, and F. S. Shieu, Appl. Phys. Lett. 90, 191117 (2007).
59. A. N. Banerjee, C. K. Ghosh, and K. K. Chattopadhyay, Solar Energy Materials and Solar Cells 89, 75 (2005).
60. J. R. Heath, Science 270, 1315 (1995).
61. R. F. Egerton, “Electron energy-loss spectroscopy in the electron microscope”, New York, Plenum press (1996).
62. Z. H. Gan, G. Q. Yu, B. K. Tay, C. M. Tan, Z. W. Zhao, and Y. Q. Fu, J. Phys. D: Appl. Phys. 37, 81 (2004).
63. L. C. Leu, D. P. Norton, G. E. Jellison Jr., V. Selvamanickam, and X. Xiong, Thin Solid Films 515, 6938 (2007).
64. H. Yanagi, S. Inoue, K. Ueda, H. Kawazoe, and H. Hosono, J. Appl. Phys. 88, 4159 (2000).
65. M. Henyk, D. Wolfframm, and J. Reif, Appl. Surf. Sci. 168, 263 (2000).
66. B. G. Yacobi and D. B. Holt, “Cathodoluminescence microscopy of inorganic solids”, New York, Plenum press (1990).
67. Dieter K. Schroder, “Semiconductor material and device characterization”, John Wiley and Sons impress (1990).
68. A. Okamoto and T. Serikawa, Thin Solid Films 137, 143 (1986).
69. William G. Moffatt, “The handbook of binary phase diagrams”, Genium Pub. Corp., p1446 (1976).
70. D. J. Miller, R. P. Chiarello, H. K. Kim, T. Roberts, H. You, R. T. Kampwirth, J. Q. Zheng, S. Williams, R. P. H. Chang, and J. B. Ketterson, Appl. Phys. Lett. 59, 3174 (1991).
71. D. C. Look, Electrical Characterization of GaAs Materials and Devices (Wiley, New York, 1989), Chapter 1.
72. K. Ogata, T. Kawanishi, K. Maejima, K. Sakurai, S. Fujita, and S. Fujita, Jpn. J. Appl. Phys., Part 2 40, L657 (2001).
73. J. F. Pierson, A. Thobor-Keck, and A. Billard, Appl. Surf. Sci. 210, 359 (2003).
74. E. J. Gonzalez and K. P. Trumble, J. Am. Ceram. Soc. 79, 114 (1996).
75. B. J. Ingram, G. B. González, T. O. Mason, D. Y. Shahriari, A. Barnabè, D. Ko, and K. R. Poeppelmeier, Chem. Mater. 16, 5616 (2004).
76. John F. Watts, John Wolstenholme, “An Introduction to Surface Analysis by XPS and AES”, Wiley impress.
77. D. J. Aston, D. J. Payne, A. J. H. Green, R. G. Egdell, D. S. L. Law, J. Guo, P. A. Glans, T. Learmonth, and K. E. Smith, Phys. Rev. B 72, 195115 (2005).
78. K. N. Tu, N. C. Yeh, S. I. Park, and C. C. Tsuei, Phys. Rev. B 39, 304 (1989).
79. G. Van Tendeloo, O. Garlea, C. Darie, C. Bougerol-Chaillout, and P. Bordet, J. Solid State Chem. 156, 428 (2001).
80. W. T. Lim, L. Stafford, P. W. Sadik, D. P. Norton, S. J. Pearton, Y. L. Wang, and F. Ren, Appl. Phys. Lett. 90, 142101 (2007).
81. K. Ip, G. T. Thaler, H. Yang, S. Y. Han, Y. Li, D. P. Norton, S. J. Pearton, S. Jang, and F. Ren, J. Crystal Growth 287, 149 (2006).
82. J-S. Jang, I-S. Chang, H-K. Kim, T-Y. Seong, S. Lee, and S-J. Park, Appl, Phys. Lett. 74, 70 (1999).
83. F. Zhuge, L. P. Zhu, Z. Z. Ye, D. W. Ma, J. G. Lu, J. Y. Huang, F. Z. Wang, Z. G. Ji, and S. B. Zhang, Appl. Phys. Lett. 87, 092103 (2005).
84. J. H. Lim, K. K. Kim, D. K. Hwang, H. S. Kim, J. Y. Oh, and S. J. Park, J. Electrochem. Soc. 152, G179 (2005).
85. A. Buljan, M. Llunell, E. Ruiz, and P. Alemany, Chem. Mater. 13, 338 (2001).
86. M. Ohring, “The Materials Science of Thin Films”, Acdemic Press., p524 (1992).
87. A. Sivasankar Reddy, P. Sreedhara Reddy, S. Uthanna, and G. Mohan Rao, J. Mater. Sci: Mater. Electron 17, 615 (2006).
88. J. Bhattacharyya, S. Ghosh, M. R. Gokhale, B. M. Arora, H. Lu, and W. J. Schaff, Appl. Phys. Lett. 89, 151910 (2006).
89. A. Jacob, C. Parent, P. Boutinaud, G. Le Flem, J. P. Doumerc, A. Ammar, M. Elazhari, and M. Elaatmani, Solid State Communication 103, 529 (1997).
90. D. Kan, T. Terashima, R. Kanda, A. Masuno, K. Tanaka, S. Chu, H. Kan, A. Ishizumi, Y. Kanemitsu, Y. Shimakawa, and M. Takano, Nat. Mater. 4, 816 (2005).
91. C. H. Ong and H. Gong, Thin Solid Films 445, 299 (2003).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code