Responsive image
博碩士論文 etd-1008108-032911 詳細資訊
Title page for etd-1008108-032911
論文名稱
Title
低溫高壓技術於改善高介電常數材料之研究
Improvement on low-temperature deposited high-k materials by high-pressure treatment
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
58
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-10-02
繳交日期
Date of Submission
2008-10-08
關鍵字
Keywords
低溫高壓技術、高介電常數材料
high-pressure, high-k, HfO2, ZrO2
統計
Statistics
本論文已被瀏覽 5647 次,被下載 1778
The thesis/dissertation has been browsed 5647 times, has been downloaded 1778 times.
中文摘要
在這個研究裡,低溫高壓氧(臭氧)可以有效改善低溫成長金屬氧化物的介電特性。在實驗中利用sputter在常溫下沉積厚度大約為5nm的HfO2和ZrO2,再使用低溫處理技術來取代傳統高溫退火。而經
過UV光照射下,氧反應形成臭氧,在文獻上臭氧的氧化能力是比氧來的強,藉由高氧化力的臭氧可以進一步抑制漏電流以及改善電容特性。由XPS材料分析指出經過高氧化力的臭氧處理是可以有效增強Hf-O-Hf及Zr-O-Zr的鍵結,由於缺陷的減少,漏電流降為10-8,而載子傳輸機制也由原來的trap-assisted tunneling 轉變Schottky thermal emission 主導。
所有的實驗流程都是控制在150度下,這種低溫高壓氧及利用高氧化力的臭氧來改善介電質的技術是相當新穎的,將來也有機會應用於對低溫製程有很大的要求的可撓式基板上。
Abstract
In this study, high-pressure oxygen (O2 and O3) technologies were employed originally to effectively improve the properties of low-temperature-deposited metal oxide dielectric films. In this work, 5 nm ultra-thin HfO2 and ZrO2 films were deposited by sputtering method at room temperature. Then, the low temperature high-pressure oxygen treatments at 150 °C were used to replace the conventional high temperature annealing for HfO2 and ZrO2 improvement. From the experimental results, O3 produced by UV light illumination in O2 ambient has the superior passivation ability than O2, and it can further suppress leakage current density and improve capacitance characteristics.
According to the XPS analyses, the absorption peaks of Hf-O and Zr-O bonding energies apparently raise and the quantity of oxygen in HfO2 and ZrO2 film also increases from XPS measurement. In addition, both the leakage current density of 5nm HfO2 and ZrO2 film can be improved to 10-8 A/cm2 at |Vg| = 3 V, and the conduction mechanisms were transferred from trap-assisted tunneling to thermal emission because of the significantly reduction of defects.
All the experiment processes in this study, the temperatures were controlled below 150 °C. The proposed low-temperature and high pressure O2 or O3 treatment for improving high-k dielectric films is novel and applicable for the future flexible electronics.
目次 Table of Contents
English Abstract  --------------------------i
Chinese Abstract  ------------------------ iii
Chinese Acknowledgment ------------------ iv
Contents  ------------------------------------------ v
Table Captions ---------------------------------- vii
Figure Captions -------------------------------- viii
Chapter 1 Introduction
1.1 Gate dielectric ------------------------------------------------------------------- 1
1.2 Requirement of an alternative gate dielectric --------------------------------- 2
1.3 Motivation  ------------------------------------------------------------------------ 3
Chapter 2 Low-Temperature Enhancement of Sputter-Deposited HfOx Films by high-pressure oxygen treatment
2.1 Fabrication of Metal-Insulator-Silicon (MIS) and Experiment Process --- 5
2.2 Analysis of Material and Discussion  -----------------------------------------5
2.2.1 X-ray Photoelectron Spectroscopy (XPS) Analysis ------------------6
2.2.2 Transmission Electron Microscopy (TEM) Analysis  -------------- 7
2.3 Analysis of Electrical Characteristics and Discussion  -------------- 7
2.3.1 The current density-voltage (J-V) characteristics  ------------------ 7
2.3.2 Conduction Mechanism  ------------------------------------------------ 8
2.3.3 The capacitance-voltage (C-V) characteristics --------------------12
2.4 Summary  ----------------- 13
Chapter 3 Low-Temperature Enhancement of Sputter-Deposited ZrOx Films by high-pressure oxygen treatment
3.1 Fabrication of Metal-Insulator-Silicon (MIS) and Experiment Process - 14
3.2 Analysis of Material and Discussion  ---------------------------------------- 14
3.2.1 X-ray Photoelectron Spectroscopy (XPS) Analysis ----------------- 14
3.2.2 Transmission Electron Microscopy (TEM) Analysis  -------------- 15
3.3 Analysis of Electrical Characteristics and Discussion  ------------------ 16
3.3.1 The current density-voltage (J-V) characteristics  ------------------ 16
3.3.2 Conduction Mechanism  ------------------------------------------------ 16
3.3.3 The capacitance-voltage (C-V) characteristics ----------------------- 18

Chapter 4 conclusion----------------------------------------------------------20


參考文獻 References
[1] C. H. Lee, S. H. Hur, Y. C. Shin, J. H. Choi, D. G. Park, and K. Kim, Appl. Phys. Lett., vol. 86, 152908, 2005.
[2] G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys., vol. 89, pp. 5243, 2001.
[3] Chia-Wen Chang, Student Member ,IEEE ELECTRON DEVICE LETTERS, VOL. 29, NO. 1, 2008
[4] G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys., vol. 10 pp. 5243, 2001
[5] M. Liu, Q. Fang, G. He, L. Q. Zhu, and L. D. Zhang, J. Appl. Phys., vol. 101, 034107, 2007.
[6] D. Brassard, D. K. Sarkar, M. A. El Khakani, and L. Ouellet, J. Vac. Sci. Technol. A, vol. 22(3), pp. 851, 2004.
[7] Y. Ito, K. Suzulki, and R. Miura, SISPAD 2006., pp. 150, 2006.
[8] B. J. O’Sullivan, L. Pantisano, P. Roussel, R. Degraeve, G. Groeseneken, S. DeGendt, and M. M. Heyns, J. Appl. Phys., vol. 101, 044515, 2007.
[9] S. Jakschik, U. Schroeder, T. Hecht, M. Gutsche, H. Seidl, and J. W. Bartha, Thin Solid Films, vol. 425, pp. 216, 2003.
[10] J. Lu, and Y. Kuo, 2004 4th IEEE Conf. Nanotech., pp. 398, 2004.
[11] H. Y. Yu, N. Wu, M. F. Li, C. Zhu, B. J. Cho, D. L. Kwong, C. H. Tung, J. S. Pan, J. W. Chai, W. D. Wang, D. Z. Chi, C. H. Ang, J. Z. Zheng, and S. Ramanathan, Appl. Phys. Lett., vol. 81, pp. 3618, 2002.
[12] C. S. Yang, L. L. Smith, C. B. Arthur, and G. N. Parsons, J. Vac. Sci. Technol. B, vol. 18(2), pp. 683, 2000.
[13] P.S. Bagus, F. Illas, G. Paccghioni, F. Parmigiani, J. Electron Spectrosc. Related Phenom. 100 (1999) 215.


[14] H.Y. Yu, X.D. Feng, D. Grozea, Z.H. Lu, R.N.S. Sodhi, A.M. Hor,H. Aziz, Appl. Phys. Lett. 78 (2001) 2595.
[15] J.P. Chang, Y.S. Lin, J. Appl. Phys. 90 (2001) 2964.
[16] W. J. Zhu, Tso-Ping Ma, Takashi Tamagawa, J. Kim, and Y. Di, IEEE Electron Devices Lett. vol. 23, No. 2, 2002.
[17] Takeshi Yamaguchi, Hideki Satake, and Noburu Fukushima, IEEE Trans. Electron Devices, vol. 51, No. 5, 2004.
[18] M. Houssa, M. Tuominen, et al., J. Appl. Phys., vol. 87, No. 12, pp. 8615, 2000.
[19] Sanghun Jeon, Hyundoek Yang, Dae-Gyu Park, and Hyunsang Hwang, Jpn. J. Appl. Phys., vol. 31, pp. 2390-2393, 2002.
[20] Dieter K. Schrodr, Wiley-INTERSCIENCE, 1998.
[21] M. Lenzlinger, and E. H. Snow, J. Appl. Phys., vol. 40, pp. 278, 1969.
[22] R. Mahapatra, A. K. Chakraborty, N. Poolamai, A. Horsfall, S. Chattopadhyay, and N. G. Wright, J. Vac. Sci. Technol. B, vol. 25(1), pp. 217, 2007.
[23] P. R. Emtage, and W. Tantraporn, Phys. Rev. Lett., vol. 8, pp. 267, 1962.
[24] J. R. Yeargan, and H. L. Taylor, J. Appl. Phys., vol. 39, pp. 5600, 1968.
[25] T. FUKUDA, and H. YANAZAWA, Jpn. J. Appl. Phys., vol. 43 , pp. 936, 2004.
[26] S. W. Huang, and J. G. Hwu, IEEE Trans. Electron Devices, vol. 50, pp. 1658, 2003.
[27]Hoon Sang Choia, and Kwang Soo Seol, Vacuum 80 (2005) 310–316

電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code