Responsive image
博碩士論文 etd-1008113-000248 詳細資訊
Title page for etd-1008113-000248
論文名稱
Title
以氫化物汽相磊晶法在鎵酸鋰基板上磊晶生長 非極性氮化銦
Growth and characterization of nonpolar InN epitaxial films on LiGaO2 substrates by hydride vapor phase epitaxy
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
238
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-10-28
繳交日期
Date of Submission
2013-11-08
關鍵字
Keywords
氮化銦、非極性、柴氏提拉法、氫化物汽相磊晶、鎵酸鋰、磊晶
epitaxy, nonpolar, Cz, HVPE, LGO, InN
統計
Statistics
本論文已被瀏覽 5695 次,被下載 0
The thesis/dissertation has been browsed 5695 times, has been downloaded 0 times.
中文摘要
本研究目的為利用氫化物汽相磊晶法(hydride vapor phase epitaxy, HVPE)生長非極性氮化銦薄膜,並嘗試提升所生長之薄膜品質。所使用的磊晶基板為β相鎵酸鋰(β-LiGaO2, LGO)單晶基板。而基板為由柴氏提拉法生長獲得。本實驗發現,在LGO的生長過程中,經過適當的生長溫度梯度控制、生長環境氣氛的控制以及加入少量的特定雜質於原料當中,可以分別有效解決在生長大尺寸LGO晶體時因熱膨脹係數之異向性所造成晶體龜裂、所生長晶體呈現黑色不透明以及晶體外型生長成螺旋狀等問題。最後成功尋找出生長大尺寸且無龜裂LGO單晶晶體的生長參數。所生長的晶體其直徑達60 mm,長度約為140 mm。經XRD分析,所生長之LGO單晶其XRC 半高寬為(100)= 53.64 sec-1,(010)= 41.40 sec-1以及(001)= 48.24 sec-1。
本研究成功利用HVPE在自行生長的LGO基板上生長非極性InN,並且尋找到一組最佳生長參數,其生長速率約0.3 μm/hr。經TEM分析,非極性InN磊晶晶向與LGO基板的晶向的關係為[10-10]InN // [100]LGO以及[11-20]InN //[0-10]LGO。使用現成InCl3粉末磊晶源(source)在LGO基板上所生長的非極性InN其光學品質甚差。而In金屬、HCl氣體以及NH3氣體做為source在LGO基板上所生長的非極性InN其光學品質相較而言較佳。在與最佳生長參數所生長的非極性InN膜做為比較基礎下,本研究進行了生長溫度、V/III以及生長時間對於非極性InN於LGO基板上生長行為的影響。在最佳參數的生長下,在(100) LGO基板上生長的非極性M-InN,其XRC半高寬為32.6 min-1,表面粗糙度於3 μm × 3 μm的範圍內RMS值為1.758 nm。而在(010) LGO基板上生長的非極性A-InN其XRC半高寬為58.9min-1,表面粗糙度於3 μm × 3 μm的範圍內RMS值為2.355 nm。經由拉曼分析所生長的非極性InN膜,得知膜皆存在有應力。所生長的非極性InN在0.6~ 0.65eV處有量測到CL發光訊號,但在0.65eV以上亦發現可能因缺陷而造成的發光訊號。該些缺陷造成的發光訊號強度,可藉由生長時增加NH3流量而獲得一些改善。
Abstract
The purpose of this work was to grow the nonpolar InN by HVPE and to find the process to increase the crystal properties of the as-grown nonpolar InN epitaxial films. The substrates used in the nonpolar InN growth in this work were LGO (β-LiGaO2) single crystals which were grown by Czochralski pulling technique. Spiral growth, black color, and cracks were the main problems. The black color could be removed by adjusting the atmosphere in the growth condition. With the proper adjustment of the temperature gradient, the cracks could be reduced completely. The spiral growth could be eliminated by doping a small amount of specific impurities. Finally, a crack-free and epitaxy-level LGO single crystal with 60 mm in diameter and 150 mm in length was grown successfully. The FWHM values of XRCs of the as-grown LGO were 53.64 sec-1, 41.40 sec-1, and 48.24 sec-1 at (100), (010), and (001) plane. Nonpolar M-InN and A-InN single crystal films were grown on LGO substrates by HVPE successfully. The source materials were In metal, HCl gas, and NH3 gas and mixed by a specific mixed chamber which was very different from the chamber used in GaN-HVPE. The growth rate was 0.3 μm/hr. The epitaxial relationship between InN and LGO was [10-10]InN // [100]LGO and [11-20] InN //[0-10]LGO. The optimal FWHM values of XRC of M-InN and A-InN were 32.6 min-1 and 58.9 min-1 respectively. The surfaces of the as-grown nonpolar InN were very smooth. The RMS roughness of M-InN and A-InN were 1.758 and 2.355 nm respectively. Raman analysis results indicated that these nonpolar InN films on LGO were under compressive stress. The room temperature CL analysis results indicated that the band gap of the as-grown nonpolar InN was located at 0.6~ 0.65 eV, but the defect emission was also observed. The defect emission could be reduced by increasing the NH3 flow in HVPE growth.
目次 Table of Contents
學位論文審定書 I
致謝 II
中文摘要 IV
Abstract V
圖次 VIII
表次 XIV
第一章 前言 1
研究目的 1
第二章 文獻回顧 2
2-1. HVPE方法生長InN之文獻 2
2-2. 不同氣氛對於InN磊晶的影響 6
2-3. 磊晶基板 7
第三章 大尺寸LGO單晶生長 11
3-1. 柴氏提拉法的原理 11
3-2. 生長參數 12
3-3. 生長結果與討論 14
3-4. 晶體XRD分析 17
第四章 非極性InN磊晶生長 20
4-1. HVPE磊晶原理 20
4-2. HVPE周邊設備 21
4-3. 實驗準備 22
A. 機台清洗 22
B. 基板清洗 22
C. HVPE爐真空度 22
4-4. 量測設備 23
4-5. InN磊晶生長 23
Part A. 以現成InCl3粉末做為source 23
A-1. 生長溫度的影響 27
A-2. NH3流量的影響 30
A-3. 非極性InN膜的TEM分析 34
A-4. 拉曼及PL分析 37
Part B. 以In金屬、HCl替代現成InCl3粉末 39
Part C. 針對使用In金屬、HCl和NH3 做為source修改HVPE設計 52
C-1. 沈積位置的尋找 53
C-2. 最佳參數的尋找 55
C-3. 生長溫度對非極性InN生長之影響 62
C-4. V/III對非極性InN生長之影響 66
C-4a. NH3流量的影響 68
C-4b. HCl流量的影響 71
C-5. 生長時間非極性M-InN生長之影響 74
C-6. 非極性InN膜的AFM分析 78
C-7. 非極性InN膜的拉曼分析 83
C-8. 非極性InN膜的CL分析 87
第五章 總結 90
第六章 未來工作 93
第七章 參考文獻 94
附錄A. 英文論文 99
附錄B. 簡歷 215
附錄C. Autobiography 221
參考文獻 References
[1] S. Fu, Y. Chen, Appl. Phys. Lett., 85 (2004) 1523
[2] B. Foutz, S. O’Leary, M.S. Shur, L. Eastman, J. Appl. Phys., 85 (1999) 7727
[3] V. Davydov, A. Klochikhin, R. Seisyan, V. Emtsev, S. Ivanov, F. Bechstedt, J. Furthmüller, H. Harima, A. Mudryi, J. Aderhold, O. Semchinova, J. Graul, Phys. Stat. Sol. (b), 229 (2002) R1
[4] J. Wu, W. Walukiewicz, K. Yu, J. Ager, E. Haller, H. Lu, W. Schaff, Y. Saito, Y. Nanishi, Appl. Phys. Lett., 80 (2002) 3967
[5] S. Gwo, C. Wu, C. Shen, W. Chang, T. Hsu, J. Wang, J. T. Hsu, Appl. Phys. Lett., 84(2004) 3765
[6] J. MacChesney, P. Bridenbaugh, P. O'Connor, Mater. Res. Bull., 5 (1970) 783
[7] R. Jones, K. Rose, J. Phys. Chem. Solids, 48 (1987) 587
[8] H. Miwa , A. Hashimoto, A. Yamamoto, Phys. Stat. Sol. (c), 3 (2006) 1536
[9] K. Osamura, S. Naka, Y. Murakami, J. Appl. Phys., 46 (1975) 3432
[10] W. Schmidt, N. Wittekindt, Appl. Phys. Lett., 20 (1972) 71
[11] T. Matsuoka, H. Tanaka, A. Katsui, Inst. Phys. Conf. Ser., 106 (1990) 141
[12] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, E. Kurimoto, Appl. Phys. Lett., 81 (2002) 1246
[13] Y. Nanishi, Y. Saito, T. Yamaguchi, Jpn. J. Appl. Phys., 42 (2003) 2549
[14] Y. Sato, S. Sato, J. Cryst. Growth, 144 (1994) 15
[15] A. Syrkin, A. Usikov, V. Soukhoveev, O. Kovalenkov, V. Ivantsov, V. Dmitriev, C. Collins, E. Readinger, N. Shmidt, V. Davydov, S. Nikishin, V. Kuryatkov, D. Song, D. Rosenbladt, M. Holtz, Phys. Stat. Sol. (c), 3 (2006) 1444
[16] D. Song, V. Kuryatkov, M. Basavaraj, D. Rosenbladt, S. Nikishin, M. Holtz, A. Syrkin, A. Usikov, V. Ivantsov, V. Dmitriev, J. Appl. Phys., 99 (2006) 116103
[17] A. Syrkin, V. Ivantsov, A. Usikov, V. A. Dmitriev, G. Chambard, P. Ruterana, A. Davydov, S. Sundaresan, E. Lutsenko, A. Mudryi, E. Readinger, G. Chernmetcalfe, M. Wraback, Phys. Stat. Sol. (c), 5 (2008) 1792
[18] Y. Kumagaia, J. Kikuchib, Y. Nishizawab, H. Murakamia, A. Koukitua, J. Cryst. Growth, 300 (2007) 57
[19] J. Kikuchi, Y. Nishizawa1, H. Murakami, Y. Kumagai, A. Koukitu, Phys. Stat. Sol. (c), 4 (2007) 2419
[20] Y. Kumagai, H. Adachi, A. Otake, Y. Higashikawa, R. Togashi, H. Murakami, A. Koukitu, Phys. Stat. Sol. (c), 7 (2010) 2022
[21] R. Togashi, H. Murakami, Y. Kumagai, A. Koukitu, J. Cryst. Growth, 312 (2010) 651
[22] N. Takahashi, J. Ogasawara, A. Koukitu, J. Cryst. Growth, 172 (1997) 298
[23] N. Takahashi, R. Matsumoto, A. Koukitu, H. Seki, Jpn. J. Appl. Phys., 36 (1997) L743
[24] Y. Kumagai, K. Takemoto, A. Koukitu, H. Seki, J. Cryst. Growth, 222 (2001) 118
[25] J. Kikuchi, Y. Nishizawa, H. Murakami, Y. Kumagai, A. Koukitu, Jpn. J. Appl. Phys., 45 (2006) L1203
[26] A. Yamamoto, K. Sugita, Y. Nagai, A. Hashimoto, Phys. Stat. Sol. (c), 5 (2008) 1762
[27] R. Togashi, T. Kamoshita, Y. Nishizawa, H. Murakami, Y. Kumagai, A. Koukitu, Phys. Stat. Sol. (c), 5 (2008) 1518
[28] A. Bhuiyan, A. Hashimoto, A. Yamamoto, J. Appl. Phys., 94 (2003) 2779
[29] A. Yamamoto, N. Imai, K. Sugita, A. Hashimoto, J. Cryst. Growth, 261 (2004) 271
[30] F. Lai, S. Kuo, W. Lin, W. Chen, C. Hsiao, Y. Liu, J. Shen, J. Cryst. Growth, 320 (2011) 32
[31] O. Briot, S. Ruffenach, M. Moret, B. Gil, C. Giesen, M. Heuken, S. Rushworth, T. Leese, M. Succi, J. Cryst. Growth, 311 (2011) 2787
[32] P. Waltereit,O. Brandt, A. Trampert, H. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, K.H.Ploog, Nature, 406 (2000) 865
[33] H. Murakami, H. Cho, M. Suematsu, R. Togashi, Y. Kumagai, R. Toba, A. Koukitu, J. Cryst. Growth, 318 (2011) 479
[34] H. Cho, M. Suematsu, H. Murakami, Y. Kumagai1, R. Tob, A. Koukitu, Phys. Stat. Sol. (c), 8 (2011) 1
[35] Y. Kumagai, A. Tsuyuguchi, H. Naoi, T. Araki, H. Na, Y. Nanishi, Phys. Stat. Sol (b), 243 (2006) 1468
[36] X. Zhu, L. Guo, M. Peng, B. Ge, J. Zhang, G. Ding, H. Jia, H. Chen, J. Zhou, J. Cryst. Growth, 310 (2008) 3726
[37] M. Laskar, A. Kadir, A. Rahman, A. Shah, N. Hatui, M. Gokhale, A. Bhattacharya, J. Cryst. Growth, 312 (2010) 2033
[38] B. Zhang, H. Song, J. Wang, C. Jia, J. Liu, X. Xu, X. Liu, S. Yang, Q. Zhu, Z. Wang, J. Cryst. Growth, 319 (2011) 144
[39] M. Laskar, T. Ganguli, A. Kadir, N. Hatui, A. Rahman, A. Shah, M. Gokhale, A. Bhattacharya, J. Cryst. Growth 315 (2011) 233
[40] G. Koblmüller, A. Hirai, F. Wu, C. Gallinat, G. Metcalfe, H. Shen, M. Wraback, J. S. Speck, Appl. Phys. Lett., 93 (2008) 171902
[41] C. Hsiao, J. Chen, H. Hsu, Y. Liao, P. Tseng, Y. Chen, Z. Feng, L. Tu, M. Chou, L. Chen, K. Chen, J. Appl. Phys., 107 (2010) 073502
[42] X. Zili, Z. Rong, F. Deyi, L. Bin, X. Xiangqian, H. Xuemei, Z. Hong, C. Peng, H. Ping, Sci. China-Phys Mech. Astron., 55 (2012) 1249
[43] D. Fu, R. Zhang, B. Liu, Z. Xie, X. Xiu, S. Gu, H. Lu, Y. Zheng, Y. Chen, Z. Wang, J. Phys. D: Appl. Phys. 44 (2011) 245402
[44] M. Marezio, Acta Cryst., 18 (1965) 481
[45] L. Liu, J. Edgar, Materials Science and Engineering R, 37 (2002) 61
[46] J. Remeika, A. Ballman, Appl. Phys. Lett., 5 (1964) 180
[47] T. Ishii, Y. Tazoh, S. Miyazawa, J. Crystal Growth, 186 (1998) 409
[48] W. Lin, M. Chou, J. Wu, J. Electrochem. Soc., 158 (1) (2011) D28
[49] R. Schuber, M. Chou, P. Vincze, T. Schimmel, D. Schaadt, J. Cryst. Growth, 312 (2010) 1665
[50] M. Chou, C. Chen, D. Hang , W. Yang, Thin Solid Films, 519 (2011) 5066
[51] M. Chou, D. Hang, C. Chen, Y. Liao, Thin Solid Films, 519 (2011) 3627
[52] T. Huang, S. Zhou, H. Teng, H. Lin, J. Wang, P. Han, R. Zhang, J. Cryst. Growth, 310 (2008) 3144
[53] 李居安,國立中山大學材料與光電科學研究所碩士論文 (2009)
[54] 盧勁維,國立中山大學材料與光電科學研究所碩士論文 (2010)
[55] 廖帥吾,國立中山大學材料與光電科學研究所碩士論文 (2011)
[56] V. Davydov, A. Klochikhin, V. Emtsev, D. Kurdyukov, S. Ivanov, V. Vekshin, F. Bechstedt, J. Furthmüller, J. Aderhold, J. Graul, A. Mudryi, H. Harima, A. Hashimoto, A. Yamamoto, E. Haller, Phys. Stat. Sol. (b), 234 (2002) 787
[57] K. Xu, P. Deng, J. Xu, G. Zhou, W. Liu, Y. Tian, J. Cryst. Growth, 216 (2000) 343
[58] O. Kryliouk, M. Reed, T. Dann, T. Anderson, B. Chai, Materials Science and Engineering, B66 (1999) 26
[59] 林垣劭,國立中山大學材料科與光電科學研究所碩士論文 (2011)
[60] D. Ehrentraut, E. Meissner, M. Bockowski, Technology of Gallium Nitride Crystal Growth, Springer Series in Materials Science, p31~ p117
[61] T. Nomura, K. Okumura, H. Miyake, K. Hiramatsu, O. Eryu, Y. Yamada, J. Cryst. Growth, 350 (2012) 69
[62] J. Wu, Y. Katagiri, K. Okuura, D. Li, H. Miyake, K. Hiramatsu, J. Cryst. Growth, 311 (2009) 3801
[63] J. Tajima, Y. Kubota, R. Togashi, H. Murakami, Y. Kumagai, A. Koukitu, Phys. Stat. Sol. (c), 5 (2008) 1515
[64] J. Wu, K. Okuura, K. Fujita, K. Okumura, H. Miyake, K. Hiramatsu, J. Cryst. Growth, 311 (2009) 4473
[65] Y. Kumagai, Y. Enatsu, M. Ishizuki, Y. Kubota, J. Tajima, T. Nagashima, H. Murakami, K. Takada, A. Koukitu, J. Cryst. Growth, 312 (2010) 2530
[66] Y. Katagiri, S. Kishino, K. Okuura, H. Miyake, K. Hiramatu, J. Cryst. Growth, 311 (2009) 2831
[67] O. Kovalenkov, V. Soukhoveev, V. Ivantsov, A. Usikov, V. Dmitriev, J. Cryst. Growth, 281 (2005) 87
[68] N. M, Y. Zhizhen, L. Jiawei, X. Yabou, Journal of Microwaves and Optoelectronics, 2 (2001) 22
[69] L. Marasina, I. Pichugin, M. Tlaczara, Kristall Tech. 12 (1977) 541.
[70] K. Takemotoa, N. Takahashi, T. Nakamura, Solid State Communications, 134 (2005) 617
[71] D. Kisailus, F. Lange, J. Mater. Res., 16 ( 2001) 2077
[72] X. Wang, S. Che, Y. Ishitani, A. Yoshikawa, Appl. Phys. Lett., 89 (2006) 171907
[73] 黃榮茂,化學化工大辭典,曉園出版社,初版第一刷,第516頁 (2000)
[74] O. Ambacher, J. Phys. D: Appl. Phys. 31 (1998) 2653
[75] M. Callaghan, E. Patterson, B. Richards, C. Wallace, J. Cryst. Growth, 22 (1974) 85
[76] H. Scott Fogler, Elements of Chemical Reaction Engineering, Third Edition, Prentice Hall PTR, Page 11 and 40
[77] 王欽輝,國立中山大學材料科與光電科學研究所碩士論文 (2012)
[78] 王邦民,國立中山大學材料科與光電科學研究所碩士論文 (2012)
[79] 張世郁,國立中山大學材料科與光電科學研究所碩士論文 (2012)
[80] 張致瑋,國立中山大學材料科與光電科學研究所碩士論文 (2012)
[81] 楊文福,國立中山大學材料科學研究所碩士論文 (2008)
[82] K. Wang, R. Reeber, Appl. Phys. Lett., 79 (2001) 1602
[83] R. Togashi, A. Otake, Y. Higashikawa, H. Murakami, Y. Kumagai, A. Koukitu, Jpn. J. Appl. Phys., 52 (2013) 08JD05
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.144.143.31
論文開放下載的時間是 校外不公開

Your IP address is 3.144.143.31
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code