Responsive image
博碩士論文 etd-1009107-124006 詳細資訊
Title page for etd-1009107-124006
論文名稱
Title
二氧化鈦閘極氧化層多晶矽及非晶矽薄膜電晶體之特性分析
Characterization of Titanium Oxide as Gate Oxides on Polycrystalline Silicon and Amorphous Silicon Thin Film Transistors
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
167
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-09-21
繳交日期
Date of Submission
2007-10-09
關鍵字
Keywords
液相沉積法、有機金屬化學氣相沉積法、二氧化鈦、薄膜電晶體、非晶矽、多晶矽
TFT, TiO2, a-Si, poly-Si, MOCVD, LPD
統計
Statistics
本論文已被瀏覽 5702 次,被下載 20
The thesis/dissertation has been browsed 5702 times, has been downloaded 20 times.
中文摘要
本研究論文的目的是探討二氧化鈦(TiO2)應用在薄膜電晶體(TFT)之閘極氧化層的生長機制與其特性。以基板種類可區分為非晶矽(a-Si)與多晶矽(poly-Si)基板。以TiO2生長的方式可區分為有機金屬化學氣相沉積法(MOCVD)與液相沉積法(LPD)。其中液相沉積法在鈦(Ti)原料上又可區分為六氟鈦銨((NH)2TiF6)與六氟鈦酸(H2TiF6)兩種原料。在內容討論上可區分為兩個部分,第一部分是探討TiO2薄膜之生長機制、物性、化性與MOS結構的電性。第二部分則是探討元件的製程步驟與電特性。
在第一部分,我們將探討同一種生長方式在不同基板上的特性與行為。以MOCVD成長方式的TiO2薄膜比較偏向多晶結構,多晶結構具有較好的介電常數,然而其晶界具有較多的缺陷與懸鍵,因此漏電流比較大。以LPD成長方式的TiO2薄膜比較偏向非晶結構,非晶結構雖然有較低的介電常數,但是卻有較低的漏電流特性。此外,在LPD製程中,(NH)2TiF6將生成TiO2薄膜,而H2TiF6將生成TixSi(1-x)Oy薄膜。溶液中過多的F離子與OH離子會嵌入至薄膜而影響電特性,但藉由低溫回火可使得OH與部分的F離子脫離薄膜,不過適當的F離子將有助於鈍化缺陷與懸鍵。而低溫回火的方式則採用氮氣(N2),氧氣(O2)以及金屬化後之退火處理(PMA)方式來改善其特性。
第二部分則是製作以共平面為主體的mesa結構元件,並探討TFT元件之電特性曲線行為。共平面結構具有簡易製程的優點但有較高的漏電流,可藉由mesa結構,並在過蝕刻的條件下,降低元件的漏電流。此外,此結構在離子佈植(ion implantation)的過程中更可在閘極區域使用自我校準(self-align)的方式摻雜源極與汲極,藉由減少Cgd的電容值進而降低回踢電壓。TFT的操作原理與金氧半場效電晶體(MOSFET)有些許的差異,因此在製作與量測上時的參數皆不同於MOSFET。由於a-Si與poly-Si是未摻雜且具有許多缺陷的基板,在操作上必須先將a-Si與poly-Si完全空乏(full depletion)才能進行反轉,此時通道才會發生。因此在製程上,其關鍵步驟在於a-Si與poly-Si必須維持的適當的厚度。太厚則不利於通道反轉,太薄則不利於蝕刻製程。在離子佈植部份,由於所設計的主動層厚度較薄,因此需要使用較低能量的離子能量來進行。離子活化的溫度與時間都需要適當的調配。初步的結果已經製作出以MOCVD-TiO2為閘極氧化層應用在多晶矽基板上。TFT元件特性曲線說明了為摻雜的多晶矽是屬於n型半導體。通道長度太短時亦可發現“Kink effect”存在。另外Ion/Ioff比率較小是後續能需努力的地方。
Abstract
The purpose of this study is using titanium dioxide (TiO2) as gate oxide on thin film transistor (TFT) and discussed with their physical, chemical and electrical properties. Amorphous silicon (a-Si) and polycrystalline silicon (poly-Si) are used as substrates. The metal-organic chemical vapor deposition (MOCVD) and the liquid phase deposition (LPD) are used as the TiO2 growth methods. About the LPD growth method, ammonium hexafluoro-titanate ((NH4)2TiF6) and hexafluorotitanic acid (H2TiF6) are used as Ti sources. We are interested in two parts: (1) the growth mechanisms, physics properties, chemical properties and electrical properties of MOS structure; (2) the fabrication processes and electrical properties of devices.
In the first part, we discuss the thin films characteristics on a-Si and poly-Si substrates. For the MOCVD growth method, the MOCVD-TiO2 film tends to form the poly structure. Poly structure has a higher dielectric constant, however, higher traps and dangling bonds also exist at the grain boundaries. Thus, poly structure of TiO2 film has a higher leakage current. For the LPD growth method, the film tends to form the amorphous structure. Amorphous structure has lower leakage current but also has lower dielectric constant. The film that grown from the (NH)2TiF6 source is called LPD-TiO2 film. The film that grown from the (NH)2TiF6 source is called LPD-TixSi(1-x)Oy film. Both films are incorporated with OH and F ions during the growth, the OH and F ions can be outgassed during the low temperature annealing process. In addition, appropriate F ions in the film can passivate the traps and dangling bonds. The low temperature treatments in N2 or O2 ambient and post-metallization annealing (PMA) are adopted to improve the film characteristics. On the other hand, the substrate is not a prefect structure (not a single structure). Thus the film may be influenced by substrate during the annealing treatment.
In the second part, the electrical properties of TFT devices were discussed under the coplanar structure. There are several differences of the operation principle in TFT and MOSFET. A-Si and poly-Si are the un-doped substrates with many traps in the bulk. The channel should be occurred through the full depletion mode. The full depletion region is the substrate that under the gate electrode. Thus, the key point is kept the suitable thickness. Too thick, the channel can not appear. Too thin, the substrate may be over-etched. For ion implantation, due to the thinner active layer, the ion implantation energy should be lowed. In addition, the activation temperature and activation time should be adjusted suitable. We have fabricated the TFT devices with the MOCVD-TiO2 as gate oxide on poly-Si substrate. From the I-V characteristics, the Kink effect can be observed. However, the Ion/Ioff ratio is still low. We must further study how to increase the Ion/Ioff ratio.
目次 Table of Contents
CONTENTS

ACKNOWLEDGMENTS I
中文摘要 II
英文摘要 III
CONTENTS V
LIST OF FIGURES IX
LIST OF TABLES XIV

Chapter 1
1. Introduction 1
1.1 Introduction of Flat Panel Displays 1
1.1.1 Category of Flat Panel Displays 1
1.1.2 Structure of TFTLCD 1
1.1.3 Structure of TFT 3
1.1.4 Development of TFTLCD 4
1.2 Motivation of High k Material as Gate Oxide 5
1.2.1 Development of Large Size of Panel 5
1.2.2 Integration of Peripheral Circuits 6
1.2.3 Properties of High k Materials of TiO2 and TixSi(1-x)Oy 6
1.3 Growth Methods 7
1.3.1 Advantages of MOCVD 7
1.3.2 Advantages of LPD 8

Chapter 2
2. Experiments 15
2.1 Equipmental of Growth 15
2.1.1 MOCVD System 15
2.1.1.1 Characteristics of Ti Metalorganic Precursor 15
2.1.1.2 N2O Decomposition 16
2.1.2 LPD System 17
2.1.3 Other Instruments 17
2.2 Experiment Procedures 20
2.2.1 Preparation of Solutions 20
2.2.2 Flowchart of TiO2 21
2.2.3 Thermal Treatment of TiO2 22
2.2.4 Characterization and Analysis 22
2.3 TFT Fabrication 24
2.3.1 Mesa Structure 24
2.3.2 Gate Definition 24
2.3.3 Ion Implantation 25
2.3.4 Source-Drain Contact Fabrication 25

Chapter 3
3. Results and Discussion 37
3.1 Characteristics of MOCVD-TiO2 Films on a-Si and poly-Si Substrates 37
3.1.1 Source-Drain Contact Fabrication 37
3.1.2 AFM RMS (nm) of MOCVD-TiO2 Films 40
3.1.3 X-ray Diffraction Spectra of MOCVD-TiO2 Films 40
3.1.4 SIMS Depth Profiles of MOCVD-TiO2 Films 40
3.1.5 J-E Characteristics of MOCVD-TiO2 Films on a-Si 41
3.1.6 J-E Characteristics of MOCVD-TiO2 Films on poly-Si 42
3.1.6.1 The Improvement of J-E Characteristics of MOCVD-TiO2 Films on poly-Si by PMA 43
3.1.7 C-V Characteristics of MOCVD-TiO2 Films on a-Si 44
3.1.8 C-V Characteristics of MOCVD-TiO2 Films on poly-Si 45
3.1.9 Tentative Summary 46
3.2 Characteristics of LPD-TiO2 Films on a-Si and poly-Si Substrates ((NH4)2TiF6 as source) 69
3.2.1 Chemical Reaction of LPD-TiO2 Films 69
3.2.2 Growth Rate of LPD-TiO2 Films 69
3.2.3 SEM Cross-section and SIMS Depth Profile of LPD-TiO2 Films 70
3.2.4 ESCA Spectra of Ti 2p and O 1s Bonds 72
3.2.5 J-E Characteristics of LPD-TiO2 Films on a-Si 73
3.2.6 J-E Characteristics of LPD-TiO2 Films on poly-Si 74
3.2.7 C-V Characteristics of LPD-TiO2 Films on a-Si 76
3.2.8 C-V Characteristics of LPD-TiO2 Films on poly-Si 77
3.2.9 Tentative Summary 77
3.3 Characteristics of LPD-TixSi(1-x)Oy Films on a-Si and poly-Si Substrates (H2TiF6 as Source) 95
3.3.1 Chemical Reaction of LPD-TixSi(1-x)Oy Films 95
3.3.2 Growth Rate of LPD-TixSi(1-x)Oy Films 95
3.3.3 SEM Cross-section of LPD-TiO2 Films 96
3.3.4 J-E Characteristics of LPD-TixSi(1-x)Oy Films with and without NH4OH Incorporation 96
3.3.5 XPS Spectra of LPD-TixSi(1-x)Oy Films on a-Si and poly-Si as a function of Sputtering Time 96
3.3.6 FTIR Spectra of LPD-TixSi(1-x)Oy Films on a-Si and poly-Si as a function of Sputtering Time 98
3.3.7 J-E Characteristics of LPD-TixSi(1-x)Oy Films on a-Si 99
3.3.8 J-E Characteristics of LPD-TixSi(1-x)Oy Films on poly-Si 100
3.1.9 C-V Characteristics of LPD-TixSi(1-x)Oy Films on a-Si 101
3.1.10 C-V Characteristics of LPD-TixSi(1-x)Oy Films on poly-Si 101
3.2.11 Tentative Summary 101
3.4 Characteristics of TFT devices 120
3.4.1 Detail Discussion of Fabrication Processes of TFT 120
3.4.1.1 Full Depletion 121
3.4.1.2 Kickback Voltage 121
3.4.1.3 Low Ion Implantation Energy 122
3.4.2 Electrical Characteristics of TFT 123

Chapter 4
Conclusions 135
4.1 MOCVD-TiO2 on a-Si and poly-Si Substrates 135
4.2 LPD-TiO2 on a-Si and poly-Si Substrates 136
4.3 LPD-TixSi(1-x)Oy on a-Si and poly-Si Substrates 137
4.4 TFT Devices 138
4.5 Future Work 138

REFERENCES 140

Vita 148

Publication List 149
參考文獻 References
REFERENCES

[1] C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, T. N. Jackson, M. G. Kane, I. G. Hill, M. S. Hammond, J. Campi, B. K. Greening, J. Francl, and J. West, “Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates,” Appl. Phys. Lett., vol. 80, pp. 1088-1090, 2002.
[2] Noriyoshi Yamauchi, Jean-Jacques J. Hajjar, and Rafael Reif, “Polysilicon Thin-Film Transistors with Channel Length and Width Comparable to or Smaller than the Grain Size of the Thin Film,” IEEE Trans. Electron Devices, vol. 38, pp. 55-60, 1991.
[3] Chester C. Li, Hiroyuki Ikeda, Takahide Inoue, and Ping K. Ko, “A Physical Poly-Silicon Thin Film Transistors Model for Circuit Simulations,” IEDM Technical Digest, pp. 497-500, 1993.
[4] 陳志強, “LTPS低溫複晶矽顯示器技術,” 全華科技圖書股份有限公司。
[5] Teruhiko Yamazaki, Hideaki Kawakami, and Hiroo Hori, “Color TFT liquid crystal displays,” Semiconductor Equipment and Materials International.
[6] M. J. Powell, “The physics of amorphous-silicon thin film transistors,” IEEE Trans. Electron Devices, vol. 36, pp. 2753-2763, 1989.
[7] Sang Wook Lee, Kyu Sik Cho, Byung Kwon Choo, and Jin Jang, “Copper gate hydrogenated amorphous silicon TFT with thin buffer layers,” IEEE Electron Device Lett. vol. 23, pp. 324-326, June 2002.
[8] W.H. Lee, B. S. Cho, B. J. Kang, H. J. Yang, J. G. Lee, G. S. Woo, S. W. Lee, J. Jang, G. S. Chae, and H. S. Soh, “A self-passivated Cu(Mg) gate electrode for an amorphous silicon thin-film transistor,” Appl. Phys. Lett., vol. 79, pp. 3962-3964, 10 December 2001.
[9] J. R. Lloyd, J. Clemens, and R. Snede, “Copper metallization reliability,” Microelectron. Reliab., vol. 39, pp. 1595-1602, 1999.
[10] M. Ikeda, M. Ogawa, and K. Suzuki, “Low resistance copper address line for TFT-LCD,” in Proc. Japan, Display ’89, pp. 498-501, 1989.
[11] J. H. Lan and J. Kanicki, “Planarized copper gate hydrogenated amorphous-silicon thin-film transistors for AM-LCDs,” IEEE electron Device Lett., vol. 20, pp. 129-131, Mar. 1999.
[12] S, Sivoththaman, R. Jeyakumar, L. Ren, and A. Nathan, “Characterization of low permittivity (low-k) polymeric dielectric films for low temperature device integration,” J. Vac. Sci. Technol.A, vol. 20, pp. 1149-1151, 2002.
[13] T. Inoue, T. Ohsuna, Y. Obara, Y. Yamamoto, M. Yamamoto, M. Satoh, and Y. Sakurai, “Intermediate Amorphous Layer Formation Mechanism at the Interface of Epitaxial CeO2 Layers and Si Substrates,” Jpn. J. Appl. Phys. Part 1, vol. 32, pp. 1765-1767, 1993.
[14] L. Manchanda and M. Gurvitch, “Yttrium oxide/silicon dioxide: a new dielectric structure for VLSI/ULSI circuits,” IEEE Electron Device Lett., vol. 9, pp. 180-182, 1988.
[15] K. P. Pande, V. K. R. Nair, and D. Gutierrez, “Plasma enhanced metal-organic chemical vapor deposition of aluminum oxide dielectric film for device applications,” J. Appl. Phys., vol. 54, pp. 5436-5440, 1983.
[16] P. K. Roy and I. C. Kizilyalli, “Stacked high-ε gate dielectric for gigascale integration of metal–oxide–semiconductor technologies,” Appl. Phys. Lett., vol. 72, pp. 2835-2837, 1998.
[17] C. S. Kang, R. Choi, H. J. Cho, Y. H. Kim, and J. C. Lee, “Scaling down of ultrathin HfO2 gate dielectrics by using a nitrided Si surface,” J. Vac. Sci. Technol. B, vol. 22, pp. 916-919, 2004.
[18] J. Koo, Y. Kim, and H. Jeon, “ZrO2 Gate Dielectric Deposited by Plasma-Enhanced Atomic Layer Deposition Method,” Jpn. J. Appl. Phys. Part 1, vol. 41, pp. 3043-3046, 2002.
[19] H. Kim, D. C. Gilmer, S. A. Campbell, and D. L. Polla, “Leakage current and electrical breakdown in metal-organic chemical vapor deposited TiO2 dielectrics on silicon substrates,” Appl. Phys. Lett., vol. 69, pp. 3860-3862, 1996.
[20] Y. Jeon, B. H. Lee, K. Zawadzki, W. Qi, and J. C. Lee, “Effect of Barrier Layer on the Electrical and Reliability Characteristics of High-k Gate Dielectric Films,” Tech. Dig. Int. Electron Devices Meet., pp. 797-800, 1998.
[21] R. M. Wallace, University of North Texas.
[22] Jack C. Lee, “Ultra-thin gate dielectrics and High-k dielectrics,” IEEE EDS vanguard series of independent short courses.
[23] T. Kamada, M. Kitagawa, M. Shibuya, and T. Hirao, “Structure and Properties of Silicon Titanium Oxide Films Prepared by Plasma-Enhanced Chemical Vapor Deposition Method,” Jpn. J. Appl. Phys. vol. 30, pp. 3594-3596, 1991.
[24] H. Shin, M. R. D. Guire, and A. H. Heuer, “Electrical properties of TiO2 thin films formed on self-assembled organic monolayers on silicon,” J. Appl. Phys., vol. 83, pp. 3311-3317, 1998.
[25] H. Yamashita, S. Kawasaki, Y. Ichihashi, M. Harada, M. Takeuchi, M. Anpo, G. Stewart, M. A. Fox, C. Louis, and M. Che, “Characterization of Titanium-Silicon Binary Oxide Catalysts Prepared by the Sol-Gel Method and Their Photocatalytic Reactivity for the Liquid-Phase Oxidation of 1-Octanol,” J. Phys. Chem. B, vol. 102, pp. 5870-5875, 1998.
[26] R. S. Sonawane, S. G. Hegde, and M. K. Dongare, “Preparation of titanium(iv) oxide thin-film photocatalyst by sol-gel dip coating,” Mater. Chem. Phys., vol. 77, pp. 744-750, 2003.
[27] O. Harizanov, and A. Harizanova, “Development and investigation of sol–gel solutions for the formation of TiO2 coatings,” Sol. Energy Mater. Sol. Cells, vol. 63, pp. 185-195, 2000.
[28] R. A. Zoppi, B. C. Trasferetti, and C. U. Davanzo, “Sol–gel titanium dioxide thin films on platinum substrates: preparation and characterization,” J. Electroanalytical Chem., vol. 544, pp. 47-57, 2003.
[29] G. Sanvicente, A. Morales, and M. T. Gutierrez, “Preparation and characterization of sol-gel TiO2 antireflective coatings for silicon,” Thin Solid Films, vol. 391, pp. 133-137, 2001.
[30] C. Garzella, E. Comini, E. Tempesti, C. Frigeri, and G. Sberveglieri, “TiO2 thin films by a novel sol–gel processing for gas sensor applications,” Sens. Actuators B, vol. 68, pp. 189-196, 2000.
[31] S. C. Chiao, B. G. Bovard, and H. A. Macleod, “Repeatability of the composition of titanium oxide films produced by evaporation of Ti2O3,” Appl. Opt., vol. 37, pp. 5284-5290, 1998.
[32] D. Mergela, D. Buschendorfa, S. Eggerta, R. Grammesb, and B. Samsetc, “Density and refractive index of TiO2 films prepared by reactive evaporation,” Thin Solid Films, vol. 371, pp. 218-224, 2000.
[33] S. G. Springer, P. E. Schmid, R. Sanjines, and F. Levy, “Morphology and electrical properties of titanium oxide nanometric multilayers deposited by DC reactive sputtering,” Surf. Coat. Technol., vol. 151, pp. 51-54, 2002.
[34] P. Zeman and S. Takabayashi, “Effect of total and oxygen partial pressures on structure of photocatalytic TiO2 films sputtered on unheated substrate,” Surf. Coat. Technol., vol. 153, pp. 93-99, 2002.
[35] T. M. Wang, S. K. Zheng, W. Hao, and C. Wang, “Studies on photocatalytic activity and transmittance spectra of TiO2 thin-films prepared by R.F. magnetron sputtering method,” Surf. Coat. Technol., vol. 155, pp. 141-145, 2002.
[36] C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, “Deposition of SiO2 and TiO2 thin films by plasma enhanced chemical vapor deposition for antireflection coating,” J. Non-Cryst. Solids, vol. 216, pp. 77-82, 1997.
[37] G. A. Battiston, R. Gerbasi, A. Gregori, M. Porchia, S. Cattarin, and G. A. Rizzi-GA, “PECVD of amorphous TiO2 thin films: effect of growth temperature and plasma gas composition,” Thin Solid Films, vol. 371, pp. 126-131, 2000.
[38] N. C. Dacruz, E. C. Rangel, J. J. Wang, B. C. Trasferetti, C. U. Davanzo, Castro-SGC, and Demoraes-MAB, “Properties of titanium-oxide films obtained by PECVD,” Surf. Coat. Technol., vol. 126, pp. 123-130, 2000.
[39] S. S. Huang, and J. S. Chen, “Comparison of the characteristics of TiO2 films prepared by low-pressure and plasma enhanced chemical vapor-deposition,” J. Mater. Sci., vol. 13, pp. 77-81, 2002.
[40] S. Yamamoto, T. Sumita, Sugiharuto, A. Miyashita, and H. Naramoto, “Characterization of epitaxial TiO2 films prepared by pulsed laser deposition,” Thin Solid Films, vol. 401, pp. 88-93, 2001.
[41] D. G. Syarif, A. Miyashita, T. Yamaki, T. Sumita, Y. Choi, and H. Itoh, “Preparation of anatase and rutile thin-films by controlling oxygen partial-pressure,” Appl. Surf. Sci., vol. 193, pp. 287-292, 2002.
[42] R. Paily, A. Dasgupta, N. Dasgupta, P. Bhattacharya, P. Misra, T. Ganguli, L. M. Kukreja, A. K. Balamurugan, S. Rajagopalan, and A. K. Tyagi, “Pulsed-laser deposition of TiO2 for MOS gate dielectric,” Appl. Surf. Sci., vol. 187, pp. 297-304, 2002.
[43] C. K. Ong, and S. J. Wang, “In-situ RHEED monitor of the growth of epitaxial anatase TiO2 thin-films,” Appl. Surf. Sci., vol. 185, pp. 47-51, 2001.
[44] W. Sugimura, T. Yamazaki, H. Shigetani, J. Tanaka and T. Mitsuhashi, “Anatase-type TiO2 thin-films produced by lattice deformation,” Jpn. J. Appl. Phys., vol. 36, pp. 7358-7359, 1997.
[45] M. K. Lee, J. J. Huang, C. M. Shih, and C. C. Cheng, “Properties of TiO2 thin-films on InP substrate prepared by liquid-phase deposition,” Jpn. J. Appl. Phys., vol. 41, pp. 4689-4690, 2002.
[46] M. K. Lee, and B. H. Lei, “Characterization of titanium-oxide films prepared by liquid-phase deposition using hexafluorotitanic acid,” Jpn. J. Appl. Phys., vol. 39, pp. L101-L103, 2000.
[47] X. P. Wang, Y. Yu, X. F. Hu, and L. Gao, “Hydrophilicity of TiO2 films prepared by liquid-phase deposition,” Thin Solid Films, vol. 371, pp. 148-152, 2000.
[48] P. Babelon, A. S. Dequiedt, H. Mostefasba, S. Bourgeois, P. Sibillot, and M. Sacilotti, “SEM and XPS studies of titanium-dioxide thin-films grown by MOCVD,” Thin Solid Films, vol. 322, pp. 63-67, 1998.
[49] S. C. Sun, and T. F. Chen, “Effects of electrode materials and annealing ambient on the electrical-properties of TiO2 thin-films by metalorganic chemical-vapor-deposition,” Jpn. J. Appl. Phys., vol. 36, pp. 1346-1350, 1997.
[50] C. K. Jung, B. C. Kang, H. Y. Chae, Y. S. Kim, M. K. Seo, S. K. Kim, S. B. Lee, J. H. Boo, Y. J. Moon, and J. Y. Lee, “Growth of TiO2 thin-films on Si(100) and Si(111) substrates using single molecular precursor by high-vacuum MOCVD and comparison of growth-behavior and structural-properties,” J. Cryst. Growth, vol. 235, pp. 450-456, 2002.
[51] E. P. Gusev, H.-C. Lu, E. L. Garfunkel, T. Gustafsson, M. L. Green, “Growth and charachterization of ultrathin nitrided silicon oxide films,” IBM J. Res. Develop., vol. 43, pp. 265-286, 1999.
[52] K. A. Ellis, and R. A. Buhrman, “Furnace gas-phase chemistry of silicon oxyniridation in N2O,” Appl. Phys. Lett., vol. 68. pp. 1696-1698, 1996.
[53] T. Y. Chu, W. T. Ting, J. Ahn, and D. L. Kwong, “Thickness and compositional non-uniformities of ultrathin oxides grown by thermal oxidation of silicon in N2O,” J. Electrochem. Soc., vol. 138, p. L13, 1991.
[54] M. J. Hartig, and P. J. Tobin, “A model for the gas-phase chemistry occurring in a furmace N2O oxynitride process,” J. Electrochem. Soc., vol. 143, pp. 1753-1762, 1996.
[55] M. I. B. Bernardi, E. J. H. Lee, P. N. Lisboa-Filho, E. R. Leite, E. Longo, and J. A ,Varela, “TiO2 Thin Film Growth Using by the MOCVD Method,” Mat. Res., vol. 4, pp. 223-226, 2001.
[56] S. M. Sze, “Physics of Semiconductor Devices Physics and Technology,” (Wiley, New York,) 1986, Chap. 8.
[57] E. S. Fishburne, and R. Edse, “Shock-tube of nitrous oxide decomposition,” J. Chem. Phys., vol. 41, pp. 1297-1304, 1964.
[58] L. I. Maissel and R. Glang 1970 Handbook of Thin Film Technology (New York: McGrew-Hill)
[59] M. Hiratani, M. Kadoshima, T. Hirano, Y. Shimamoto, Y. Matsui, T. Nabatame, K. Torii, and S. Kimura, “Ultrathin titanium oxide film with a rutile-type structure,” Appl. Surf. Sci., vol. 207, pp. 13-19, 2003.
[60] S. D. Mo, and W. Y. Ching, “Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite,” Phys. Rev. B, vol. 51, pp.13023-13032, 1995.
[61] S. A. Campbell, D. C. Gilmer, X. C. Wang, M. T. Hsieh, H. S. kim, W. L. Glasfelter, and J. Yan, “MOSFET transistors fabricated with high permittivity TiO2 dielectrics,” IEEE Trans. Electron Devices, vol. 44, pp. 104-109, 1997.
[62] G. Liu, M. Li, Y. Zhang, and Y. Zhou, “Cracking behavior of oxide scale formed on Ti3SiC2-based ceramic,” Mater. Sci. Eng. A, vol. 360, pp. 408-414, 2003
[63] J. H. Chae, J. Y. Lee, and S. W. Kang, “Measurement of thermal expansion coefficient of poly-Si using microgauge sensors,” Sensors and Actuators A: Physical, vol. 75, pp. 222-229, 1999.
[64] M. I. Vexler, S. E. Tyaginov, and A. F. Shulekun, “Determination of the hole effective mass in thin silicon dioxide film by means of an analysis of characteristics of a MOS tunnel emitter transistor,” J. Phys.: Condens. Matter, vol. 17, pp. 8057-8068, 2005.
[65] M. L. Reed and J. D. Plummer, “Chemistry of Si-SiO2 interface trap annealing”, J. Appl. Phys., vol. 63, pp. 5776-5793, 1988.
[66] M. K. Lee, J. J. Huang, and Y. H. Hung, “Variation of Electrical Characteristics of Metallorganic Chenical Vapor Depositied TiO2 Films by Postmetallization,” J. Electrochem. Soc., vol. 11, pp. F190-F193, 2005.
[67] I. Codreanu, and G. D. Boreman, “Integration of microbolometers with infrared microstrip antennas,” Infrared Physics & Technology, vol. 43, pp. 335-344, 2002.
[68] R. H. Schmitt, E. L. Glove, and R. D. Brown, “The equivalent conductance of the hexafluorocomplexes of group IV (Si, Ge, Sn, Ti, Zr, Hf), ” J. Am. Chem. Soc., vol. 82, pp. 5292-5295, 1960.
[69] H. Kishimoto, K. Takahama, N. Hashimoto, Y. Aoi, and S. Deki, “Photocatalytic activity of titanium oxide prepared by liquid phase deposition (LPD),” J. Mater. Chem., vol.8, pp. 2019-2024, 1998.
[70] M. K. Lee, W. H. Shieh, C. M. Shih and K. W. Tung, “High-Quality Nitrogen-Doped Fluorinated Silicon Oxide Films Prepared by Temperature-Difference-Based Liquid-Phase Deposition,” J. Phys. Chem. B, vol. 107, pp. 12700-12704, 2003.
[71] Y. Gao, Y. Masuda, T. Yonezawa, and K. Koumoto, “Site-Selective Deposition and Micropatterning of SrTiO3 Thin Film on Self-Assembled Monolayers by the Liquid Phase Deposition Method,” Chem. Mater., vol. 14, pp. 5006-5014, 2002.
[72] D. J. Won, C. H. Wang, H. K. Jang, and D. J. Choi, “Effects of thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2 films on structural an optical properties,” Appl. Phys. A, vol. 73, pp. 595-600, 2001.
[73] K. Matsumura, S. H. Hyon, N. Nakajima, C. Peng, H. Iwata, and Sadami Tsutsumi, “Adhesion between poly(ethylene-co-vinyl alcohol) (EVA) and titanium,” J. Biomed. Mater. Res. Part A, vol 60, pp. 309 - 315, 2002.
[74] F. L. Toma, G. Bertrand, S. Begin, C. Meunier, O. Barres, D. Klein, and C. Coddet, “Microstructure and environmental functionalities of TiO2-supported photocatalysts obtained by suspension plasma spraying,” Appl. Catal. B: Environ., vol. 68, pp. 74-84, 2006.
[75] T. P. Ma, “Metal-oxide-semiconductor gate oxide reliability and the role of fluorine,” J. Vac. Sci. Technol. A, vol. 10, pp. 705-712, 1992.
[76] M. K. Lee, J. J. Huang, and T. S. Wu, “Low Leakage Current Fluorinated LPD-SiO2/MOCVD-TiO2 film,” Electrochem. solid-State Lett., vol. 8,.pp. F8-F11, 2005.
[77] C. J. Huang, “Proper Annealing for Enhanced Quality of Silicon Dioxide Thin Film on Gallium Arsenide,” Electrochem. and solid-State Lett., vol. 4, pp. F21-F23, 2001.
[78] D. F. Cox, T. B. Fryberger, and S. Semancik, “Oxygen vacancies and defect electronic states on the SnO2 (100)-1x1 surface,” Phys. Rev. B, vol. 38, pp.2072-2085 1988.
[79] M. K. Kee, K. W. Tung, and C. M. Yu, “Deposition of High Dielectric Barium-Doped Titanium Silicon Oxide Films on Silicon Using Hexafluorotitanic Acid and Barium Nitrate,” Electrochem. Solid-State Lett., vol. 7, pp. B42-B44, 2004.
[80] D. Brassard, and M. A. E. Khakani, “Plused-laser deposition of high-k titanium silicate thin films,” J. Appl. Phys., vol. 98, p. 054912, 2005.
[81] D. Y. Cho, K. S. Park, B. H. Choi, S. J. Oh, Y. J. Chang, D. H. Kim, T. W. Noh, R. Jung, and J. C. Lee, “Control of silicidation in HfO2/Si(100) interface,” Appl. Phys. Lett., vol. 86, p 041913, 2005.
[82] J. Muto, H. Nagahama, and T. Hashimoto, “Microinfrared reflection spectroscopic mapping: application to the detection of hydrogen-related species in natural quartz,” Journal of Microscopy, vol. 216, pp. 222-228, 2004.
[83] P. M. Kumar, S. Badrinarayanan, and M. Sastry, “Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states,” Thin Solid Films, vol. 358, pp. 122-130, 2000.
[84] J. Wang, B. Zou, and M. A. El-Sayed, “Comparison between the polarized Fourier-transform infrared specta of aged porous silicon and amorphous silicon dioxide films on Si (100) surface,” J. Molecular Struct., vol. 508, pp. 87-96, 1999.
[85] R. Outemzabet, M. Cherkaoui, N. Gabouze, F. Ozanam, N. Kesri, and J. N. Chazalviel, “Origin of the anisotropy in the anodic dissolution of silicon,” J. Electrochem. Soc., vol. 153, pp. C108-C116, 2006.
[86] J. Wang, L. Song, B. Zou, and M. A. El-Sayed, “Time-resolved Fourier-transform infrared and visible luminescence spectroscopy of photoexcited porous silicon,” Pyhs. Rev. B, vol. 59, pp. 5026-5031, 1999.
[87] C. K. Jung, D. C. Lim, H. G. Jee, M. G. Park, S. J. Ku, K. S. Yu, B. Hong, S. B. Leea, and J. H. Booa, “Hydrogenated amorphous and crystalline SiC thin films grown by RF-PECVD and thermal MOCVD; comparative study of structural and optical properties,” Surf. Coat. Technol., vol. 171, pp. 46-50, 2003.
[88] M. K. Lee, H. C. Lee, and C. M. Hsu, “Characteristics of liquid-phase-deposited TiO2 film on hydrogenated amorphous silicon,” Jpn. J. Appl. Phys., vol. 45, pp. 7617-7620, 2006.
[89] Y. He, R. Hattori, and J. Kanicki, “Current-source a-Si:H thin-film transistor circuit for active-matrix organic light-emitting displays,” IEEE electron Device Lett., vol. 21, pp. 590-592, 2000.
[90] Y. D. Son, K. D. Yong, D. S. Bae, J. Jang, M. Hong, and S. J. Kim, “Depletion-mode TFT made of low-temperature poly-Si,” IEEE Trans. Electron Devices, vol. 53, pp. 1260-1262, 2006.
[91] K. M. Lim, H. C. Kang, and M. Y. Sung, “A study on the poly-Si TFT and novel pixel structure for low flicker,” Microelectronics, vol. 30, pp. 905-910, 1999.
[92] J. P. Colinge, “Reduction of kink effect in thin-film SOI MOSFET’s,” IEEE electron Device Lett., vol. 9, pp. 97-99, 1988.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.23.123
論文開放下載的時間是 校外不公開

Your IP address is 3.145.23.123
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code