Responsive image
博碩士論文 etd-1009107-153803 詳細資訊
Title page for etd-1009107-153803
論文名稱
Title
以摩擦旋轉攪拌製程製作奈米細晶鎂基合金與複材之研發
Achieving Ultrafine Nano Grains in AZ31 Mg Based Alloys and Composites by Friction Stir Processing
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
232
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-10-05
繳交日期
Date of Submission
2007-10-09
關鍵字
Keywords
摩擦攪拌製程、鎂合金、晶粒細化、奈米晶、超細晶、複合材料、介金屬化合物
intermetallic alloys, composite, friction stir processing, Mg alloy, nano grain, ultrafine grain, grain refinement
統計
Statistics
本論文已被瀏覽 5693 次,被下載 736
The thesis/dissertation has been browsed 5693 times, has been downloaded 736 times.
中文摘要
本研究之目標為致力於利用摩擦旋轉攪拌製程(FSP)對於固溶強化AZ31鎂合金進行改質以製備出奈米級細晶粒組織。在適當的製程參數下,利用本研究所設計出之新冷卻系統,可有效大幅度的將晶粒細化。而奈米細晶組織可在適當參數及有效新設計冷卻系統下,經二次道數後得到。此外,為了對鎂合金之微觀組織與機械性質進行改質,亦利用摩擦旋轉攪拌製程製備出添加奈米級ZrO2與SiO2顆粒之鎂基複合材料及鎂鋁鋅介金屬化合物合金以進行分析比較。
經由適當之製程參數與有效之液態氮冷卻系統,次微米級之極細晶粒可經一道摩擦旋轉攪拌製程得到。晶粒大小可從原始母材之75μm大小細化至100~300 nm,所得之再結晶粒具有明顯與清楚之晶界。其硬度值亦可提升至120 Hv,達到原本母材(~50 Hv)的2.4 倍。而本研究目標之奈米微細晶粒可在適當參數及有效冷卻系統下經二道次摩擦旋轉攪拌製程後得到。所得到之微細等軸再結晶粒大小分佈在20 nm 至200 nm 的範圍之間,其平均晶粒小於100 nm,約為80 nm。奈米晶粒可經由掃瞄式電子顯微鏡(SEM)與穿透式電子顯微鏡(TEM)的觀察下得到證明。於本實驗鎂基合金所得之極細晶粒組織最高硬度值硬度可達約150 Hv 為原本母材之三倍值,而其平均硬度值為可提升至134Hv。
藉由摩擦旋轉攪拌製程可以成功製作出塊狀鎂基複合材料,經四道次的製程後,奈米級ZrO2 與SiO2 顆粒可有效的分散入鎂基材中。所製備之鎂基複合材料晶粒可細化至2-4 μm,並可提升硬度值至兩倍以上。在更進一步利用已製備之Mg/ZrO2 複合材料,進行第二道次之FSP 冷卻製程後,其晶粒大小可進一步細化至0.4 μm 而其硬度值亦提升至135 Hv 接近原始母材之三倍值。經摩擦旋轉攪拌製程所製備之鎂鋁鋅介金屬化合物,xix具有明顯的晶粒細化效果,並有許多之介金屬化合物產生,可從其XRD 繞射圖中有許多的結晶峰產生與繞射峰的寬化得到映證,而其其硬度值更可大幅提升至350 Hv。
Abstract
In this study, firstly, in order to achieve fine grains in solid solution strengthened AZ31 magnesium alloy by friction stir processing (FSP), various efforts have been made. It has found that with a newly designed cooling system, the microstructure of commercial AZ31 alloy can be refined dramatically by carefully controlling the FSP parameters. It is of scientific interest that nanometer grains have been observed in the resultant microstructure for the AZ alloy experienced by two-pass FSP. Besides, in order to modify the microstructure and mechanical properties, FSP is also applied to incorporate AZ31 Mg alloy with nano-ZrO2 particles, nano-SiO2 particles and different fractions of Al and Zn elements. The microstructure and mechanical properties of the modified alloy and composite samples are investigated and compared.

By one-pass FSP coupled with rapid heat sink from liquid nitrogen cooling approach, the ultrafine grain size in AZ31 Mg alloy is successfully achieved. The grain boundaries are well defined and the mean grain size can be refined to 100~300 nm from the initial 75 μm of commercial AZ31 Mg alloys sheets. The ultrafine grained structure can drastically increases the microhardness from the initial 50 up to 120 Hv, or an increment factor of 2.4 times.
Furthermore, the nanometer grains can be even achieved by two passes FSP coupled with rapid heat sink. The resulting microstructure exhibits equiaxed grains ranging from 40 nm to 200 nm with an average grain size of less than 100 nm. The nanocrystalline grains can be characterized by the TEM observations and the diffraction rings in SAD patterns. The highest hardness point can reach ~150 Hv which is equal to triple of the AZ31 matrix, and the mean hardness also increases up to around 134 Hv.
Bulk Mg-AZ31 based composites with 10~20 vol% of nano-ZrO2 particles and 5~10 vol% of nano-SiO2 particles are also successfully fabricated by FSP. The average grain size of the resultant composites could be effectively refined to 2~4 μm, and it demonstrates much higher hardness values compared to commercial AZ31 billet. Moreover, for the Mg/ZrO2 composite fabricated by one pass and subsequent cooling pass FSP, the recrystallized grain size could be further refined to 0.4 μm with the hardness value of 135 Hv. As for multi-element Mg base alloys fabricated by FSP, high fractions of Al and Zn elements can result in apparent grain refinement, this can be proved by the broadening of diffraction peaks. Multi-passes FSP can induce the appearance of intermetallic compounds, however, some of them are quasi-crystals with icosahedral point group symmetry. The average hardness of the resultant alloys reachs nearly 350 in Hv scale due to the generation of intermetallic compounds and grain refinement.
目次 Table of Contents
Table of Content i
Lists of Tables vi
Lists of Figures viii
Abstract xvi
中文摘要 xviii
謝誌 xx
Chapter 1 Introduction 1
1.1 The developments and applications of magnesium alloys 3
1.2 Properties of magnesium alloys 4
1.2.1 The classification of magnesium alloys 4
1.2.2 The characteristics of magnesium alloys 5
1.3 Grain refinements 8
1.3.1 Grain size refinement techniques 10
1.4 Metal matrix composites 14
1.4.1 Processing of metal matrix composites and magnesium matrix composites 17
1.4.1.1 Liquid-state methods 17
1.4.1.2 Solid-state methods 18
1.5 Friction stir welding and friction stir processing 19
1.5.1 Introduction of friction stir welding (FSW) 19
1.5.2 Characteristics of friction stir welding 20
1.5.2.1 Microstructure of welding zone in friction stir welding 20
1.5.2.2 Recrystallization mechanisms 22
1.5.2.3 Onion rings in nugget zone 24
1.5.2.4 Materials flow behavior in nugget zone 25
1.5.2.5 Hardness variation in the weld zone 26
1.5.3 Influence of welding parameters 28
1.5.4 Advantages and disadvantages of friction stir welding 29
1.5.5 Friction stir processing (FSP) 30
1.5.6 Application of friction stir processing 31
1.5.6.1 Friction stir processing for grain refinement 32
1.5.6.2 Friction stir processing for superplasticity 33
1.5.6.3 Friction stir processing for fabrication of metal matrix composites 34
1.6 Motives of the research 35
Chapter 2 Experimental methods 38
2.1 Materials 38
2.1.1 The materials for intrinsic reinforced Mg-Al-Zn alloys 38
2.1.2 The extrinsic reinforcements for the Mg-AZ31 based composites 39
2.2 The set-up of friction stir processing 39
2.2.1 The design of tool and fixture 39
2.2.2 The special cooling condition during friction stir processing 40
2.2.2.1 Newly designed effective cooling system 40
2.2.3 The methods of adding nano-sized powders into AZ31 alloys 41
2.2.4 The parameters of friction stir processing 41
2.2.4.1 FSP parameters for modified AZ31 alloys 41
2.2.4.2 FSP parameters for fabricating intrinsic reinforced Mg-Al-Zn alloys 42
2.2.4.3 FSP parameters for fabricating extrinsic reinforced Mg-AZ31 based composites 42
2.2.4.4 FSP parameters for producing the ultrafine grained AZ31 alloys 43
2.3 Microhardness measurements 43
2.4 Mechanical tests 43
2.5 The analysis of X-ray diffration 44
2.6 Microstructure observations 44
2.6.1 Optical microscopy (OM) 44
2.6.2 Scanning electron microscopy (SEM) 45
2.6.3 Transmission electron microscopy (TEM) 45
Chapter 3 Experimental results 48
3.1 Basic AZ31 alloy FSP trials 48
3.1.1 The appearance of the FSPed pure AZ31 alloy specimens 48
3.1.2 The microstructure of the modified AZ31 alloy made by FSP 49
3.1.3 The temperature of the stirred zone of modified alloys 50
3.1.4 Hardness measurements 51
3.1.5 Grain orientations 52
3.1.6 Brief conclusion of basic AZ31 alloy FSP trials 53
3.2 With reinforcements to enhance higher hardness values and finer grains 54
3.2.1 Intrinsic reinforcements for obtaining finer grains or higher hardness 54
3.2.1.1 The appearance of the FSPed specimens 54
3.2.1.2 Microstructure 55
3.2.1.3 X-ray diffraction 56
3.2.1.4 Hardness measurement 56
3.2.1.5 TEM examination 57
3.2.1.6 Brief conclusions of in-situ formed intermetallic compounds reinforced Mg-Al-Zn alloys made by FSP 58
3.2.2 Extrinsic reinforcements for obtaining finer grains or higher hardness 59
3.2.2.1 The appearance of the FSPed composite specimens 59
3.2.1.2 Microstructure of Mg matric composites made by FSP 59
3.2.2.3 XRD results 62
3.2.2.4 Hardness measurements 63
3.2.2.5 Mechanical properties 63
3.2.2.6 Mg based composites with tetragonal phase nano-ZrO2 particles fabricated by FSP 64
3.2.2.7 The XRD and hardness analysis for the Mg/tetragonal phase ZrO2 composites after subsequent compression 65
3.2.2.8 Brief conclusion for Mg-AZ31 based composites with nano-ZrO2 and nano-SiO2 particles 66
3.3 Using lower heat generation for obtaining finer grain size and higher hardness 67
3.3.1 The effects of tool size, plate thickness, and cooling method 67
3.3.2 The combination of composite and liquid nitrogen cooling methods 69
3.3.3 Brief conclusions 70
3.4 Ultrafine grained AZ31 Mg alloy made by FSP with new designed cooling system 71
3.4.1 Microstructure of ultrafine grained AZ31 alloy made by FSP 71
3.4.2 Hardness measurement 72
3.4.3 Brief conclusions 72
3.5 Nanocrystalline AZ31 Mg alloy made by new designed cooling system and subsequent second pass with lower heat input 73
Chapter 4 Discussion 76
4.1 Strain rates and temperatures during FSP 76
4.2 Relationship between grain size and Zener-Holloman parameter of FSP Mg alloy 77
4.3 The hardening mechanism of Mg based nano-ZrO2 and nano-SiO2 particles composites fabricated by friction stir processing 78
4.4 Mechanisms for forming ultrafine grain in AZ31 Mg alloy made by FSP 82
4.5 Capability for further grain refining with subsequent second pass with lower heatinputs 84
4.6 The mechanism of the nanocrystalline structure evolution for AZ31 Mg base alloyduring two-pass FSP 86
Chapter 5 Conclusions 92
References 95
Tables......................................................................................................................................106
Figures 126
Table 1-1 Comparison among Mg alloy, Al alloy, Ti alloy, steel and plastics 106
Table 1-2 The standard four-part ASTM designation system of alloy and temper for the magnesium alloy. 107
Table 1-3 The effect of separate solute addition on the mechanical properties 108
Table 1-4 Mechanical properties of magnesium matrix composites by various processing means. 109
Table 1-5 Microstructure-mechanical property and fracture correlations for metal matrix composites. 111
Table 1-6 The key benefits of friction stir welding. 112
Table 1-7 A summary of grain size in nugget zone of FSP aluminum alloys. 113
Table 1-8 A summary of ultrafine grained microstructures produced via FSP m aluminum alloys. 115
Table 1-9 A summary of grain size in nugget zone of FSP magnesium alloys. 116
Table 2-1 Chemical composition of the AZ31 (in wt%) 117
Table 2-2 The dimensions of the tools. 117
Table 3-1 The recrystallized grain size of the modified AZ31 Mg alloy made by FSP 118
Table 3-2 Summary of the measured temperature during FSP 119
Table 3-3 Summary of the Hv hardness in the 1P FSP processed AZ31 alloys 119
Table 3-4 Summary of the Hv hardness in the FSP processed intermetallic alloys after multi-pass under different cooling methods. The melt spun alloy is also included for comparison 120
Table 3-5 Summary of the average cluster size of nano-particles and the average grain size of AZ31 matrix in the 4 passes FSP composites 121
Table 3-6 Comparison of the mechanical properties of AZ31 alloy and AZ31-based composites 121
Table 3-7 A summary of the recrystallized pure AZ31 grain size for the different FSP parameters 122
Table 3-8 Grain size and hardness at the FSP nugget bottom 123
Table 4-1 The experimental hardness and predicted hardness used by the iso-stress model in the present composites. The initial hardness for the AZ31 billet is~50 125
Figure 1-1 Schematic illustration of the ARB facility. 126
Figure 1-2 Schematic illustration of the ECA pressing facility. 127
Figure 1-3 Schematic illustration of the spray forming facility. 128
Figure 1-4 Schematic diagram of friction stir welding. 129
Figure 1-5 Schematic diagram of entire friction stir welding. 130
Figure 1-6 Schematic illustration of the welding zone in friction stir welding. 131
Figure 1-7 Microstructure of thermo-mechanically affected zone in FSP 7075Al. 132
Figure 1-8 Illustration of advancing side and retreating side. 133
Figure 1-9 Typical onion ring in the nugget zone. 134
Figure 1-10 Three-dimensional drawing of the onion rings in the nugget zone. 134
Figure 1-11 Schematic illustration of (a) trace surface of basal plane produced below the borderline with an onion shape and (b) its transverse cross section. 135
Figure 1-12 Micro hardness and strain field map in the banded microstructure. 136
Figure 1-13 (a) Metal flow patterns and (b) metallurgical processing zones developed during friction stir welding. 137
Figure 1-14 Schematic drawing of the FSW tool. 138
Figure 1-15 WorlTM and MX TrifluteTM tools developed by The Welding Institute (TWI), UK. 138
Figure 1-16 Illustration of the different probes, (a) smaller contact area of headpin and (b) flared-triflute type probes. 139
Figure 2-1 Theflow chart for progressive improvement of grain size and mechanical properties. 140
Figure 2-2 The microstructure of the as-received AZ31 billet. 142
Figure 2-3 Schematic illustration of (a)(b) the stacked AZ31 Mg alloy sheets with pure Al and pure Zn foils, and (c) the fixture used for liquid N2 cooling. 143
Figure 2-4 The XRD patterns and TEM micrographs of (a) the monoclinic ZrO2 particles and (b) the amorphous SiO2 particles, both with an average diameter ~20 nm. 144
Figure 2-5 The appearance of the horizontal-type miller. 145
Figure 2-6 Schematic illustration of the entire fixture design. 146
Figure 2-7 Schematic drawing of the newly designed cooling system. 146
Figure 2-8 Schematic drawings of the friction stir processing in fabricating the Mg-AZ31/nano-particles composites: (a) appearance of cut deep grooves and (b) cutting groove(s) and inserting nano particles and (c) conducting multiple FSP to fabricate composites. 147
Figure 2-9 Schematic illustration for the surface repair method for fabricating Mg base composites by FSP. 148
Figure 2-10 Schematic illustration of the position for the K-type thermocouple inserted in the sample. 149
Figure 2-11 (a) Schematic diagram of the chill block melt spinning. (b) Photography of the melt spinning device. 150
Figure 2-12 The experiment flowchart for this research 151
Figure 2-13 Schematic illustration for the sampling and dimension of the tensile sample perpendicular to the pin advancing direction. 152
Figure 2-14 Schematic illustrations of (a) Top-view and (b) Side-view of preparation of TEM-specimen by focus ion beam (FIB) 153
Figure 3-1 The appearances of the FSPed pure AZ31 alloys. 154
Figure 3-2 Schematic illustration for sampling positions. 155
Figure 3-3 The semicircular appearances of various FSPed specimens with different processing parameters. 156
Figure 3-4 The optical microscopy of the AZ31 alloy made by FSP: (a)-(b)cross-sectional view, (c)-(d) cross-sectional view at a higher magnification. 157
Figure 3-5 OM micrographs showing the variation of the recrystallized grain size in the nugget zone for the different rotational speeds under the same 90 mm/min advancing speed. 159
Figure 3-6 OM micrographs showing the variation of the recrystallized grain size in the nugget zone for the different advancing speeds under the same 800 rpm rotational speed. 160
Figure 3-7 Variation of the average grain size as a function of pin rotation rate for the FSP AZ31 alloys under the same 90 mm/min advancing speed. 161
Figure 3-8 Variation of the average grain size as a function of advancing speed for the FSP AZ31 alloys under the same 800 rpm rotation rate. 161
Figure 3-9 Typical temperature profiles measured by the inserted thermocouple into the pure AZ31 alloys under the same 90 mm/min advancing speed. 162
Figure 3-10 Typical temperature profiles measured by the inserted thermocouple into the pure AZ31 alloys under the same 800 rpm rotation speed. 162
Figure 3-11 Typical microhardness variations in the central cross-sectional zones of FSP AZ31 alloys at 90 mm/min advancing speed. 163
Figure 3-12 Plot for the Hall–Petch relationship for the grain size induced by FSP. 163
Figure 3-13 X-ray diffraction for (a) random Mg, (b) as-received AZ31 billet. 164
Figure 3-14 XRD patterns for modified AZ31 Mg alloys by FSP at 90 mm/min advancing speed. 165
Figure 3-15 The appearance of the FSPed specimens and nugget zone of intermetallic alloys. 166
Figure 3-16 SEM/BEI micrograph showing the phase dispersion in Mg70Al5Zn25 after three passes with air cooling. 167
Figure 3-17 SEM/BEI micrograph showing the phase dispersion in Mg50Al5Zn45 after three passes with air cooling. 167
Figure 3-18 SEM/BEI micrograph showing the phase dispersion in Mg37.5Al25Zn37.5 after three passes with air cooling. 167
Figure 3-19 SEM/BEI micrograph showing the phase dispersion in Mg37.5Al25Zn37.5 after three passes with water cooling. 167
Figure 3-20 SEM/BEI micrograph showing the phase dispersion in Mg37.5Al25Zn37.5 after ten passes with water cooling. 167
Figure 3-21 SEM/BEI micrograph showing complete amorphous phase in Mg70Al5Zn25 fabricated by melt spinning. 167
Figure 3-22 The XRD patterns for the Mg70Al5Zn25 system fabricated by FSP and melt spinning. 168
Figure 3-23 XRD patterns for Mg70Al5Zn25, Mg50Al5Zn45 and Mg37.5Al25Zn37.5 after 3 or 10 passes 168
Figure 3-24 The variation of Hv along the transverse cross-sectional plane of the Mg70Al5Zn25, Mg50Al5Zn45 and Mg37.5Al25Zn37.5 alloys after 3 or FSP 10 passes. 169
Figure 3-25 TEM micrographs showing (a) the nano-sized Mg3Al2Zn3
參考文獻 References
1. C.C Koch, D.G. Morris, K. Lu, A. Inoue, Mater. Res. Soc. Bull., 24 (1999), p. 54.
2. S.X. McFadden, R.S. Mishar, R.Z. Valiev, A.P. Zhilyaev, A.K. Mukherjee, Nature, 398 (1999), p. 684.
3. P.G. Patridge, Met. Rev., 118 (1967), p. 169.
4. W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Church, P. Templesmith and C.J. Dawes: The Welding Institute, TWI, International Patent Application No. PCT/GB92/02203 and GB Patent Application No. 9125978.8, 1991.
5. R.S. Mishra, M.W. Mahoney, S.X. McFadden, N.A. Mara, A.K. Mukherjee, Scripta Mater., 42 (2000), p. 163.
6. R.S. Mishra, Z.Y. Ma, I. Charit, Mater. Sci. Eng., A341 (2002), p. 307.
7. P.B. Berbon, W.H. Bingel, R.S. Mishra, C.C. Bampton, M.W. Mahoney, Scripta Mater., 44 (2001), p. 61.
8. J.E. Spowart, Z.Y. Ma, R.S. Mishra, in: K.V. Jata, M.W. Mahoney, R.S. Mishra, S.L. Semiatin, T. Lienert (Eds.), Friction Stir Welding and Processing II, TMS, 2003, pp. 243–252.
9. Z.Y. Ma, S.R. Sharma, R.S. Mishra, M.W. Manohey, Mater. Sci. Forum 426–432 (2003), p. 2891.
10. 葉峻轍,工業材料,186期 (2002),p. 82.
11. 范元昌、蘇健忠、翁震灼、陳俊沐,工業材料,186期 (2002),p. 131.
12. G..V. Raynor, in The Physical Metallurgy of Magnesium and Its Alloys (Pergamon Press, London, 1957).
13. T. Lyman, H.E. Boyer, P.M. Unterwesier, J.E. Foster, J.P. Hontans, H. Lawton, in Metals Handbook (ASM International, Metals Park, Ohio, 1975).
14. R.W. Cahn, P. Hassen, E.J. Kramer, in Materials Science and Technology Structure and Properties of Nonferrous Alloys, VCH, New York, 1996.
15. B.L. Mordike, Mater. Sci. Eng., A324 (2002), p. 103.
16. Q.D. Wang, W.D. Chen, X.Q. Zeng, Y.Z. Lu, W.J. Ding, Y.P. Zhu, X.P. Xu, M. Mabuchi, J. Mater. Sci., 36 (2001), p. 3055.
17. P. Li, B. Tang, E.G. Kandalova, Mater. Lett., 59(2005), p. 671.
18. F. Von Buch, J. Lietzau, B.L. Mordike, A. Pisch, R. Schmid-Fetzer, Mater. Sci. Eng., A263 (1999), p. 1.
19. J. Grobner, R. Schmid-Fetzer, J. Alloys and Compounds, 320 (2001), p. 296.
20. K.U. Kainer, von Buch F. In: Kainer KU, editor. Magnesium alloys and technologies. DGM. (2003) 1.
21. R.E. Reed-Hill, R. Abbaschian, in Physical Metallurgy Principles (PWS Publishing Company, 20 Park Plaza, Boston, 1994).
22. T. Narutani, J. Takamura, Acta Mater., 39 (1991), p. 2037.
23. 吳信輝,“電子束或電弧銲接鎂合金之微織構與機性分析”國立中山大學碩士論文 (2003).
24. H.K. Lin, J.C. Huang, Mater. Trans. JIM, 43 (2002), p. 2424.
25. G. Nussbaum, P. Sainfort, G. Regazzoni, Scripta Mater., 29 (1989), p. 1079.
26. A. Bussiba, A. Ben Artzy, A Shtechman, S. Ifergan, M. Kupiec, Mater. Sci. Eng., A 302 (2001), p. 56.
27. Y.T. Zhu, T.C. Lowe, T.G. Langdon, Scripta Mater., 51 (2004), p. 825.
28. R.Z. Valiev, N.A. Krasilnikov, N.K. Tsenev, Mater. Sci. Eng., A 137 (1991), p. 35.
29. V.M. Segal, V.I. Reznikov, A.E. Drobyshevskiy, V.I. Kopylov, Russian Metall., 1 (1981), p. 99.
30. V.M. Segal, Mater. Sci. Eng., A197 (1995), p. 157.
31. A.P. Zhilyaev, G.V. Nurislamova, B.K. Kim, M.D. Baro, J.A. Szpunar, T.G. Langdon, Acta Mater., 51 (2003), p. 753.
32. G.A. Salishchev, O.R. Valiahmetov, R.M. Galeev, J. Mater. Sci., 28 (1993), p. 2898.
33. O. Sitdikov, T. Sakai, A. Goloborodko, H. Miura, R. Kaibyshev, Mater. Trans. 45 (2004), p. 2232.
34. V.N. Varyutkhin, Y.Y. Beygelzimer, S. Synkov, D. Orlov, Mater. Sci. Forum, 503-504 (2006), p. 335.
35. J. Richert, M. Richert, Aluminum 62 (1986), p. 604.
36. M. Richert, Q. Liu, N. Hansen, Mater. Sci. Eng., A 260 (1999), p. 275.
37. H.S. Chu, K.S. Liu, J.W. Yeh, Metall. Mater. Trans., A 31 (2000), p. 2587.
38. H.S. Chu, K.S. Liu, J.W. Yeh, Scripta Mater., 45 (2001), p. 541.
39. D.H. Shin, J.J. Park, Y.S. Kim, K.T. Park, Mater. Sci. Eng., A 328 (2002), p. 98.
40. X. Zhao, T.F. Jing, Y.W. Gao, J.F. Zhou, W. Wang, Mater. Lett., 58 (2004), p. 2335.
41. Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, R.G. Hong, Scripta Mater., 39 (1998), p. 1221.
42. Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Acta Mater., 47 (1999), p. 579.
43. G.E. Dieter, in Mechanical Metallurgy (McGraw-Hill Book Company, Singapore, 1988)
44. 林鉉凱,“析出型AZ91鎂合金低溫超塑性之研究”,國立中山大學碩士論文(2001).
45. T.C. Chang, J.Y. Wang, C.M. O, S. Lee, J. Mater. Prod. Technol., 140 (2003), p. 588.
46. W.J. Kim, S.W. Chung, C.S. Chung, D. Kum, Acta Mater., 49 (2001), p. 3337.
47. M.T. Perez-Prado, J. A. del Valle and O. A. Ruano, Scripta Materialia, 51 (2004), p. 1093.
48. Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon, Acta Mater., 45 (1997), p. 4733.
49. 瘐忠義,“超細晶鋁之機械性質”,國立中山大學博士論文 (2003).
50. M. Mabuchi, H. Iwasaki, K. Yanase, K. Higashi, Scripta Mater., 36 (1999), p. 681.
51. K. Matsubara, Y. Miyahara, Z. Horita, T.G. Langdon, Acta Mater., 51 (2003), p. 3073.
52. H.K. Lin, J.C. Huang, T.G. Langdon, Mater. Sci. Eng., A 402 (2005), p. 250.
53. H. Gleiter, Prog. Mater. Sci., 33 (1989), p. 223.
54. U. Erb, A.M. El-Sherik, G. Palumbo, K.T. Aust, Nanostruct. Mater., 2 (1993)
55. S. Spangel, E.M. Schulz, A. Schulz, H. Vetters, P. Mayr, Mater. Sci. Eng., A 326 (2002), p. 26.
56. C.Y. Chen, C.Y.A. Tsao, Mater. Sci. Eng., A 383 (2004), p.21.
57. C.C. Koch, Y.S. Cho, Nanostruct. Mater., 1 (1992), p. 207.
58. D.B. Witkin, E.J. Lavernia, Prog. Mater. Sci., 51 (2006), p. 1.
59. U. Andrade, M.A. Meyers, K.S. Vecchio, A.H. Chokshi, Acta Mater., 42 (1994), p. 3183.
60. G. Garces, P. Perez, P. Adeva, J. Alloys Compounds, 333 (2002), p.219.
61. K.K. Chawla, in Composite Materials (Springer-Verlag, New York, 1987).
62. M. Taya, R.J. Arsenault, in Metal Matrix Composites (Pergamon Press, First edition, 1989).
63. D. Hull, T.W. Clyne, in An Introduction to Composite Materials ( Cambridge University Press, Second edition, 1996).
64. A.J. Ardell, Metall. Mater. Trans., 16 A (1985), p. 2131.
65. T.D. Wang, J.C. Huang, Mater. Trans. JIM, 42 (2001), p. 1781.
66. R.A. Saravanan, M.K. Surappa, Mater. Sci. Eng., A 276 (2000), p. 108.
67. A. Bochenek, K.N. Braszczynska, Mater. Sci. Eng., A 290 (2000), p. 122.
68. M. Manoharan, S.C.V. Lim, M. Gupta, Mater. Sci. Eng., A 333 (2002), p. 243.
69. L. Hu, E. Wang, Mater. Sci. Eng., A 278 (2000), p. 267.
70. M.Y. Zheng, K. Wu, M. Liang, S. Kamado, Y. Kojima, Mater. Sci. Eng., A 372 (2004), p. 66.
71. M. Zheng, K. Wu, C. Yao, Mater. Sci. Eng., A 318 (2001), p. 50.
72. B.Q. Han, D.C. Dunand, Mater. Sci. Eng., A 277 (2000), p. 297.
73. Q.C. Jiang, X L. Li, H.Y. Wang, Scripta Mater., 48 (2003), p. 713.
74. H.K. Kang, Scripta Mater., 51 (2004), p. 1051.
75. J. Lan, Y. Yang, X. Li, Mater. Sci. Eng., A 386 (2004), p. 284.
76. D.M. Lee, B.K. Suh, B.G. Kim, J.S. Lee, C.H. Lee, Mater. Sci. Technol., 13 (1997), p. 590.
77. H.Y. Wang, Q.C. Jiang, Y. Wang, B.X. Ma, F. Zhao, Mater. Lett., 58 (2004), p. 3509.
78. Q.C. Jiang, H.Y. Wang, B.X. Ma, Y. Wang, F. Zhao, J. Alloys and Compounds, 386 (2005), p. 177.
79. S.F. Sassan, M. Gupta, Mater. Sci. Eng., A 392 (2005), p. 163.
80. P.L. Ratnaparkhi, J.M. Howe, Scripta Metall., 27 (1992), p. 133.
81. S.M. Lee editor, in Handbook of Composite Reinforcements (VSH publisher, 1993).
82. P.M. Ajayan, O. Stephan, C. Colliex, D. Tranth, Science, 265 (1994), p. 1212.
83. M. Narkis, A. Ram, F. Flashner, J. Appl. Polymer Sci., 22 (1978), p. 1163.
84. B. Poulaert, J. Jossi, Polymer, 24 (1983), p. 841.
85. S. Balabanov, Krezhov, J. Physics. D: Appl. Physics, 32 (1999), p. 2573.
86. M.T. Connor, S. Roy, T.A. Ezquerra, Phys. Rev. B, 57 (1998), p. 2286.
87. 王振欽,“銲接學”,登文書局,1985。
88. R.S. Mishra, Z.Y. Ma, Mater. Sci. Eng. R, 50 (2005), p. 1.
89. Z.Y. Ma, R.S. Mishra, M.W. Mahoney, Acta Mater., 50 (2002), p. 4419.
90. S.E. Ion, F.J. Humphreys, S.H. White, Acta Metall., 30 (1982), p. 1909.
91. S.H.C. Park, Y.S. Sato, H. Kokawa, Scripta Mater., 49 (2003), p. 161.
92. C.G. Rhodes, M.W. Mahoney, W.H. Bingel, M. Calabrese, Scripta Mater., 48 (2003), p. 1451.
93. Y.S. Sato, M. Urata, H. Kokawa, Metall. Mater. Trans., A 33 (2002), p. 625.
94. J.Q. Su, T.W. Nelson, C.J. Sterling, J. Mater. Res., 18 (2003), p. 1757.
95. K.V. Jata, S.L. Semiatin, Scripta Mater., 43 (2000), p. 743.
96. J.Q. Su, T.W. Nelson, R. Mishra, M. Mahoney, Acta Mater., 51 (2003), p. 713.
97. F.J. Humphreys, M. Hotherly, the Recrystallization and Related Annealing Phenomena, Pergamon Press, New York, 1995
98. R.H. Bricknell, J.W. Edington, Acta Metall., A 22 (1991), p. 2809.
99. S.J. Hales, T.R. McNelley, Acta Metall., 36 (1988), p. 1229.
100. H. Gudmundsson, D. Brooks, J.A. Wert, Acta Metall. Mater., 39 (1991), p. 19.
101. K. Tsuzaki, X. Huang, T. Maki, Acta Mater., 44 (1996), p. 4491.
102. D.P. Field, T.W. Nelson, Y. Hovanski, K.V. Jata, Metall. Mater. Trans., 32 A (2001), p. 2869.
103. H.G. Salem, Scripta Mater., 49 (2003), p. 1103.
104. K. N. Krishnan, Mater. Sci. Eng., A 327 (2002), p. 246.
105. M.W. Mahoney, C.G. Rhodes, J.C. Flintoff, R.A. Spurling, W.H. Bingel, Matall. Mater. Trans., 29 A (1998), p. 1955.
106. S.H.C. Park, Y.S. Sato, H. Kokawa, Metall. Mater. Trans., 34 A (2003), p. 987.
107. B.C. Yang, J.H. Yan, M.A. Sutton, A.P. Reynolds, Mater. Sci. Eng., A 364 (2004), p. 55.
108. M.A. Sutton, B.C. Yang, A.P. Reynolds, J.H. Yan, Mater. Sci. Eng., A 364 (2004), p. 66.
109. M.A. Sutton, A.P. Reynolds, B.C. Yang, R. Taylor, Mater. Sci. Eng., A 354 (2003), p. 6.
110. M.A. Sutton, A.P. Reynolds, B.C. Yang, R. Taylor, Eng. Fract. Mechanics, 70 (2003), p. 2215.
111. 張志溢,“摩擦旋轉攪拌製程對AZ31鎂合金晶粒細化之研究”,國立中山大學碩士論文 (2004)。
112. A.P. Reynolds, Sci. Technol. Weld. Joining, 5 (2000), p. 120.
113. T.U. Seidel, A.P. Reynolds, Metall. Mater. Trans., 32 A (2001), p. 2879.
114. M. Guerra, C. Schmidt, J.C. McClure, L.E. Murr, A.C. Nunes, Mater. Charact., 49 (2003), p. 95.
115. K. Colligan, Weld. J., 78 (1999), p. 229.
116. Y. Li, L.E. Murr, J.C. McClure, Mater. Sci. Eng., A 271 (1999), p. 213.
117. Y. Li, L.E. Murr, J.C. McClure, Scripta Mater., 40 (1999), p. 1041.
118. W.J. Arbegast, in: Z. Jin, A. Beaudoin, T.A. Bieler, B. Radhakrishnan (Eds.), Hot Deformation of Aluminum Alloys III, TMS, Warrendale, PA, USA, 2003, p. 313.
119. H. Liu, H. Fujii, M. Maeda, K. Nogi, J. Mater. Sci. Lett., 22 (2003), p. 1061.
120. G. Liu, L.E. Murr, C.S. Niou, J.C. McClure, F.R. Vega, Scripta Mater., 37 (1997), p. 355.
121. S. Benavides, Y. Li, L.E. Murr, D. Brown, J.C. McClure, Scripta Mater., 41 (1999), p. 809.
122. Y.S. Sato, H. Kokawa, M. Enmoto, S. Jogan, Metall. Mater. Trans., 30 A (1999), p. 2429.
123. Y.S. Sato, H. Kokawa, M. Enmoto, S. Jogan, T. Hashimoto, Metall. Mater. Trans., 30 A (1999), p. 3125.
124. Y.S. Sato, H. Kokawa, M. Enmoto, S. Jogan, T. Hashimoto, Metall. Mater. Trans., 32 A (2001), p. 941.
125. Y. Li, E.A. Trillo, L.E. Murr, J. Mater. Sci. Lett., 19 (2000), p. 1047.
126. Y.S. Sato, S.H.C. Park, H. Kokawa, Metall. Mater. Trans., 32 A (2001), p. 3023.
127. A.A. Hassan, P.B. Prangnell, A.F. Norman, D.A. Price, S.W. Willams, Sci. Technol. Weld. Joining, 8 (2003), p. 257.
128. W.M. Thomas, E.D. Nicholas, S.D. Smith, in S.K. Das, J.G. Kaufman, T.J. Lienert (Eds.), Aluminum 2001-Proceedings of the TMS 2001 Aluminum Automotive and Joining Sessions, TMS, 2001, p. 213.
129. Y.J. Kwon, I. Shigematsu, N. Saito, Scripta Mater., 49 (2003), p. 785.
130. R.S. Mishra, Adv. Mater. Process, 161 (2003), p. 43.
131. C.G. Rhodes, M.W. Mahoney, W.H. Bingel, R.A. Spurling, C.C. Bampton, Scripta Mater., 36 (1997), p. 69.
132. B. Heinz, B. Skrotzki, Metall. Mater. Trans., 33 B (6) (2002), p. 489.
133. L.E. Murr, G. Liu, J.C. McClure, J. Mater. Mater. Lett., 16 (1997), p. 1081.
134. G.S. Frankel, Z. Xia, Corrosion, 55 (1999), p. 139.
135. S.H. Kazi, L.E. Murr, in: K.V. Jata, M.W. Mahoney, R.S. Mishra, S.L. Semiatin, D.P. Field (Eds.), Friction Stir Welding and Processing, TMS, Warrendale, PA, USA, 2001, p. 139.
136. H.G. Salem, A.P. Reynolds, J.S. Lyons, Scripta Mater., 46 (2002), p. 337.
137. R. Braun, Litynska-Dobrzynska, Mater. Sci. Forum, 396-402 (2002), p. 1531.
138. A. F. Norman, I. Brough, P.B. Prangnell, Mater. Sci. Forum, 331-337 (2000), p. 1713.
139. K.A.A. Hassan, A.F. Norman, P.B. Prangnell, Mater. Sci. Forum, 396-402 (2002), p. 1549.
140. Z.Y. Ma, R.S. Mishra, M.W. Mahoney, R. Grimes, Mater. Sci. Eng., A351 (2003), p. 148.
141. I. Charit, R.S. Mishra, Mater. Sci. Eng., A 359 (2003), p. 290.
142. I. Charit, R.S. Mishra, M.W. Mahoney, Scripta Mater., 47 (2002), p. 631.
143. I. Charit, Z.Y. Ma, R.S. Mishra, in: Z. Lin, A. Beaudoin, T.A. Bieler, B. Radhakrishnan (Eds.), Hot Deformation of Aluminum Alloys III, TMS, 2003, pp. 331-342.
144. P.S. Pao, E. Lee, C.R. Feng, H.N. Jones, D.W. Moon, in: K.V. Jata, M.W. Mahoney, R.S. Mishra, S.L. Semiatin, T. Lienert (Eds.), Friction Stir Welding and Processing II, TMS, Warrendale, PA, USA, 2003, p. 113.
145. I. Charit, R.S. Mishra, in: Y.T. Zhu, T.G. Langdon, R.Z. Valiev, S.L. Semiatin, D.H. Shih, T.C. Lowe (Eds.), Ultrafine Grained Materials III, TMS, 2004.
146. Y.S. Sato, Y. Kurihara, S.H.C. Park, H. Kokawa, N. Tsuji, Scripta Mater., 50 (2004), p. 57.
147. D.C. Hofmann, K.S. Vecchio, Mater. Sci. Eng., A 402 (2005), p. 234.
148. J.Q. Su, T.W. Nelson, C.J. Sterling, Scripta Mater., 52 (2005), p. 135.
149. F.Y. Hung, C.C. Shih, L.H. Chen, T.S. Lui, J. Alloys Compd., 428 (2007) 106.
150. N. Afrin, D.L. Chen, X. Cao, M. Jahazi, Mater. Sci. Eng., A (2007), doi:10.1016/j.msea.2007.03.018.
151. J.A. Esparza, W.C. Davis, E.A. Trillo, L.E. Murr, J. Mater. Sci. Lett., 21 (2002), p. 917.
152. D. Z hang, M. Suzuki, K. Maruyama, Scripta Mater., 52 (2005), p. 899.
153. P. Cavaliere, P.P. De Marco, Mater. Sci. Eng., A 462 (2007), p. 393.
154. S.G. Lim, S.S. Kim, C.G. Lee, C.D. Yim, S.J. Kim, Metall. Mater. Trans., 36 A (2005), p. 1609.
155. Y.S. Sato, A. Sasaki, A. Sugimoto, A. Honda, H. Kokawa, Mater. Sci. Forum, 539-543 (2007), p. 3775.
156. Z.Y. Ma, R.S. Mishra, Acta Mater., 51 (2003), p. 3551.
157. J. Xianggang, C. Jiangzhong, M. Longxiang, Acta Matell. Mater., 41 (1993), p. 2721.
158. M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon, Mater. Sci. Eng., A 257 (1998), P. 328.
159. P. Heurtier, C. Desrayaud, F. Montheillet, Mater. Sci. Forum 396–402 (2002), P. 1537.
160. C.J. Lee, J.C. Huang, P.J. Hsieh, Scripta Mater., 54 (2006), p. 1415.
161. A. Dutta, I. Charit, L.B. Johannes, R.S. Mishra, Mater. Sci. Eng., A 395 (2005), p. 173.
162. 胡哲明,“摩擦攪拌製程之應變率對奈米氧化鋁粉均勻分佈與機械性質的影響”,國立中山大學碩士論文 (2004).
163. P. Cavaliere, Composite Part A: applied sci. manufact., 36 (2005), p. 1657.
164. Y. Morisada, H. Fujii, T. Nagaoka, M. Fukusumi, Mater. Sci. Eng., A 419 (2006), p. 334.
165. Y. Morisada, H. Fujii, T. Nagaoka, M. Fukusumi, Mater. Sci. Eng., A 433 (2006), p. 50.
166. Y. Morisada, H. Fujii, T. Nagaoka, M. Fukusumi, Scripta Mater., 55 (2006), p. 1067.
167. C.J. Lee, J.C. Huang, P.J. Hsieh, Scripta Mater., 54 (2006), p. 1415.
168. S.M. Howard, B.K. Jasthi, W.J. Arbegast, G.J. Grant and D.R. Herling, in: K.V. Jata, M.W. Mahoney, R.S. Mishra and T. Lienert (Eds.), Friction Stir Welding and Processing III, TMS, 2005, pp. 139-146.
169. C.J. Hsu, P.W. Kao, N.J. Ho, Scripta Mater., 53 (2005), p. 341.
170. Y.N. Wang, C.J. Lee, H.K. Lin, C.C. Huang, J.C. Huang, Mater. Sci. Forum, 426-432 (2003), p. 2655.
171. C.C. Huang, J.C. Huang, I.K. Lin, Y.M. Hwang, Key Eng. Mater., 271-274 (2004), p. 289.
172. C.I. Chang, C.J. Lee, C.H. Chuang, H.R. Pei, J.C. Huang, Adv. Mater. Res., 15-17 (2007), p. 387.
173. L. Plazanet, D. Tetard, F. Nardou, Comp. Sci. Techn., 59 (1999), p. 537.
174. C.J. Lee, J.C. Huang, X.H. Du, Scripta Mater., 56 (2007), p. 875.
175. H.J. Forst, M.F. Ashby, in: Deformation-Mechanism Maps. Oxford: Pergamon Press; 1982. p. 21 and p. 44.
176. P. Leble, M. Dong, E. Soppa, S. Schmauder, Scripta Mater., 38 (1998), p. 1327.
177. O.B. Pederson, Acta Metall., 31 (1983), p. 1795.
178. V.C. Nardone, K.M. Prewo, Scripta Metall., 20 (1986), p. 43.
179. M. Dong, S. Schmauder, Acta Mater., 44 (1996), p. 2465.
180. R. Hill, Phys. Soc. Lond., A 65 (1952), p. 349.
181. H.S. Kim, Mater. Sci. Eng., A 289 (2000), p. 30.
182. Z.C. Zhong, X.Y. Jiang, A.L. Greer, Philos. Mag., 76 (1997), p. 505.
183. N. Hansen, D.J. Jensen, in: T. Chandra (Eds.), Recrystallization’90, TMS, Australia, 1990, pp. 79-88.
184. H. Watanabe, H. Tsutsui, T. Mukai, H. Ishikawa, Y. Okanda, M. Kohzu, K. Higashi, Mater. Trans., 42 (2001), p. 1200.
185. T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprzak (Eds.), Binary alloy phase diagrams, ASM International, Materials Park, OH, 1990, p. 2444.
186. A. Takara, Y. Nishikawa, H. Watanabe, H. Somekawa, T. Mukai, K. Higashi, Mater. Trans., 45 (2004), p. 2377.
187. C.M. Sellars, Phil. Trans. R. Soc. Lond., A 288 (1978), p. 147.
188. H.J. McQueen, J.J. Jonas, Appl. Met., 3 (1984), p. 233.
189. R. Kaibyshev, O. Sitdikov, Z. Metallkd., 85 (1994), p. 738.
190. R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Prog. Mater. Sci., 45 (2000), p. 103.
191. M. Furukawa, Z. Horita, M. Nemoto, T.G. Langdon, in: R.S. Mishra, S.L. Semiatin, C. Suryanarayana, N.N. Thadhani, T.C. Lowe (Eds.), Ultrafine Grained Materials, TMS, Warrendale, PA, 2000, p. 125.
192. S.D. Terhune, Z. Horita, M. Nemoto, Y. Li, T.G. Langdon, T.R. McNelley, in: T. Sakai, H.G. Suzuki (Eds.), Proceeding of the Fourth International Conference on Recrystallization and Related Phenomena, JIM, Sendai, Japan, 1999, p. 515.
193. K. Wang, N.R. Tao, G. Liu, J. Lu, K. Lu, Acta Mater., 54 (2006), p. 5281.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code