Responsive image
博碩士論文 etd-1009115-115039 詳細資訊
Title page for etd-1009115-115039
論文名稱
Title
質子導體固態氧化物燃料電池之製備及其陰極氧還原機制研究
Preparation of proton-conducting solid oxide fuel cells and mechanism study of oxygen reduction reaction in associated cathodes
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
197
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-10-16
繳交日期
Date of Submission
2015-11-09
關鍵字
Keywords
披覆、界面阻抗、氧還原反應、速率決定步驟、PBC (Pr0.5Ba0.5CoO3-δ)、BZPY (BaZr0.5Pr0.3Y0.2O3-δ)
BZPY (BaZr0.5Pr0.3Y0.2O3-δ), PBC (Pr0.5Ba0.5CoO3-δ), Rate determining step, Oxygen reduction reaction, Interfacial resistance, Infiltration
統計
Statistics
本論文已被瀏覽 5715 次,被下載 433
The thesis/dissertation has been browsed 5715 times, has been downloaded 433 times.
中文摘要
BZCYYb (BaZr0.1Ce0.7Y0.1Yb0.1O3-δ) 為質子導體,PBC (Pr0.5Ba0.5CoO3-δ) 為具備高氧表面交換與擴散速率之氧離子、電子雙重導體材料。本研究中,以網印法製備PBC/BZCYYb/PBC對稱電池,藉由改變電極之煅燒溫度與厚度得知最佳之製備參數。複合相陰極部分,首先使用傳統粉末混合與網印法製備BZCYYb-PBC/BZCYYb/BZCYYb-PBC與BZPY (BaZr0.5Pr0.3Y0.2O3-δ)–PBC /BZCYYb/BZPY-PBC兩種對稱電池,其中BZPY為質子、電子雙重導體。由電化學阻抗分析得知BZPY搭配PBC有較低界面阻抗。另外再以新穎披覆法製備複合相陰極,BZPY作為電極骨架,披覆上PBC表層,量測不同披覆量的cathode/ BZCYYb/cathode對稱電池得知當披覆PBC為50 wt.%時有最低陰極界面阻抗。

在不同溫度及氧分壓 (0.2-10-4 atm) 與水分壓 (0.03-0.15 atm) 下量測對稱電池之交流阻抗,所得Nyquist plots以Auto Lab NOVA 1.09版本進行數據耦合,將單一之Nyquist plot分解成高、中、低頻部分。由各部分耦合獲得之參數,包括界面電阻R,氧分壓反應級數n (R-1 (pO2)n)、水分壓反應級數m (R-1 (pH2O)m)、電容值C (capacitance)與活化能Ea (activation energy)等,隨氧分壓、水分壓與溫度之變化來判斷單相PBC陰極與BZPY-PBC披覆式複合陰極之氧還原反應的速率決定步驟。

最後以刮刀成型法製備NiO-BZCYYb/BZCYYb平整半電池,再以最佳參數製備PBC單相與BZPY-PBC披覆式複合陰極,以獲得單電池,並量測單電池功率密度、開路電壓與開路電壓下之電極阻抗。

結果顯示,單相陰極在煅燒溫度1100oC厚度40 μm以下PBC/BZCYYb/PBC對稱電池有最低界面阻抗,其數值在650oC與400oC為0.085與9.2 Ω‧cm2。披覆式陰極部分,當BZPY骨架與PBC披覆層重量各為50 wt.% 時有最低界面阻抗,其數值在650、400oC時為0.075、3.7 Ω‧cm2。

根據不同量測溫度、氧分壓與水分壓阻抗圖譜分析之耦合結果指出,單相PBC陰極氧還原反應與速率決定步驟為: (1) 陰極表面反應,其中包含氧分子的吸附與氧原子接受電子進行還原成氧離子,並藉由氧空缺進入到陰極內部,(2) 操作時電解質與陰極之內部界面會產生水氣,但水氣排泄所造成的阻抗遠低於表面反應,(3) 當量測溫度高於550oC時且氧分壓小於0.001 atm,速率決定步驟將為氣體擴散所主導。新穎披覆式複合陰極根據耦合結果其氧還原速率決定步驟為: (1) 當溫度高於550oC時,主要阻抗來自披覆層表面反應中的氧的吸附,與表面氧原子的電荷轉移無關、(2) 高溫550oC以上,氧分壓小於10-4 atm時,速率決定步驟將為氣體擴散所主導、(3) 量測溫度500oC以下,由於整體披覆層與骨架之界面有大量水氣形成,溫度過低導致水氣排泄困難,此為主要阻抗來源,而非披覆層的表面反應、(4) 量測溫度400oC時,陰極界面阻抗將同時為水氣形成、表面氧分子吸附、氧原子電荷轉移所主導。

單相PBC陰極單電池量測,量測溫度750oC時功率密度為1559 mW/cm2、界面阻抗為0.01 Ω‧cm2,400oC功率密度降低至191 mW/cm2,界面阻抗增加至0.73 Ω‧cm2。披覆式複合陰極單電池量測,在量測溫度750oC時功率密度可高達1601 mW/cm2、界面阻抗為9.8 x 10-3 Ω‧cm2,量測溫度400oC時功率仍然有387 mW/cm2其界面阻抗為0.2 Ω‧cm2,因此製備新穎披覆式陰極更有利於固態氧化物燃料電池在低溫下進行操作。
Abstract
BaZr0.1Ce0.7Y0.1Yb0.1O3-δ (BZCYYb) is a proton conductor while PBC (Pr0.5Ba0.5CoO3-δ) is a mixed oxygen ion and electronic conductor with high oxygen surface reaction rate and diffusivity. In this study, PBC/BZCYYB/PBC symmetrical cells are prepared by screen printing. By varying calcination temperature and thickness of PBC cathodes, optimum values for lowest cathode resistances are determined. Composite cathodes are first prepared by powder mixing and screen printing to obtain BZCYYb-PBC/BZCYYb/BZCYYb-PBC and BZPY (BaZr0.5Pr0.3Y0.2O3-δ)–PBC /BZCYYb/ BZPY–PBC symmetrical cells where BZCY is a mixed conductor of proton and electrons. Results of impedance measurement indicate that BZPY-PBC possesses lower cathode resistances. Moreover, new infiltration type composite cathodes are also prepared using BZPY as backbone and PBC as infiltrate coating. Impedance measurement of cathode/BZPYYb/cathode symmetrical cells indicates that lowest cathode resistances are reached when weight of PBC loading is equal to that of BZPY backbone.

AC impedance measurement of symmetrical cells are also carried out under different temperatures, oxygen pressures (pO2 = 0.2-10-4 atm) and vapor pressures (pH2O = 0.03-0.15 atm). Measured Nyquist plots are fitted using Auto Lab Nova 1.09. Each spectrum is de-convoluted to high, medium and low frequency arcs. Variation of fitted parameters for each arc including interfacial resistance R, reaction order of oxygen n (R-1 (pO2)n), reaction order of vapor m (R-1 (pH2O)m), capacitance C and activation energy Ea are examined to determine the rate determining steps of oxygen reduction reaction (ORR) for single phase PBC cathode and PBC infiltrated BZPY composite cathode.

Finally, single cells with PBC and PBC infiltrated BZPY cathodes are prepared. The NiO-BZCYYb/BZCYYb half cells are prepared by tape-casting method. Power densities, open circuit voltages (OCV) and electrode resistances under OCV are measured.

Results indicate that PBC/BZCYYb/PBC cell possesses lowest cathode resistances when PBC cathode is calcined at 1100°C and 40 m thick. Specifically, 0.085 and 9.2 Ω‧cm2 are obtained at 650oC and 400oC, respectively. For PBC infiltrated BZPY cathodes, lowest cathode resistances are reached when PBC and BZPY are equal in weight. Resistances of 0.075 and 3.7 Ω‧cm2 are obtained at 650oC and 400oC, respectively.

Results of fitting of impedance spectra obtained under various temperatures, oxygen pressures, and vapor pressures indicate the multiple rate determining steps of ORR in single phase PBC cathode are: (1) surface reaction including oxygen adsorption, subsequent reduction and incorporation of the oxygen ion into the cathode interior; (2) a much minor cathode polarization originates from the dissipation of water formed in the electrolyte-cathode interface; (3) oxygen gas diffusion is the dominate rate determining step under temperature≧550°C and oxygen pressure≦0.001 atm. For PBC infiltrated BZPY cathode, the rate determining steps are: (1) adsorption of oxygen when temperature≧550°C; (2) oxygen gas diffusion when temperature≧550°C and oxygen pressure≦0.0001 atm; (3) dissipation of water formed in the backbone-infiltrate interface when temperature≦500°C; (4) oxygen adsorption, subsequent reduction and water dissipation when temperature≦400°C.

Peak power density and electrode resistance are 1559 mW/cm2 and 0.01 Ω‧cm2 at 750oC for the single cell with PBC cathode, corresponding values are 191 mW/cm2 and 0.73 Ω‧cm2 at 400°C. For the single cell with PBC infiltrated BZPY cathode, these values are 1601 mW/cm2 and 9.8 x 10-3 Ω‧cm2 at 750°C and 387 mW/cm2 and 0.2 Ω‧cm2 at 400°C. Therefore, infiltration type cathode enhances cell performance significantly, especially in lower temperatures.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iii
Abstract v
目錄 viii
圖目錄 xii
表目錄 xxv
第一章 前言 1
1-1 研究背景 1
1-2 研究動機 5
第二章 理論基礎與文獻回顧 6
2-1 燃料電池的發展 6
2-2 固態氧化物燃料電池之結構 6
2-3 固態氧化物燃料電池工作原理 8
2-3-1 電解質工作原理 8
2-3-2 陰極工作原理 10
2-4 電解質材料BaZr0.1Ce0.7Y0.1Yb0.1O3-δ (BZCYYb) 12
2-5 陰極材料BaZr0.5Pr0.3Y0.2O3-δ (BZPY) 15
2.6 陰極材料PrBaCo2O5+δ (PBC) 19
2-6-1 PrBaCo2O5+δ晶體結構 19
2-6-2 陰極材料PrBaCo2O5+δ導電性 21
2-6-3 PrBaCo2O5+δ對氧的表面交換及氧的擴散特性 22
2-7披覆式陰極 23
2-8 電化學理論 26
2-8-1 燃料電池的極化現象 26
2-8-2 電解質內部損失 (internal loss) 26
2-8-3 歐姆極化 (ohmic polarization) 27
2-8-4 活性極化 (activation polarization) 27
2-8-5 濃度極化 (concentration polarization) 28
2-8-6 交流阻抗之頻譜分析 30
2-8-7 電化學動力學學說 33
2-9 陰極氧還原反應步驟 38
第三章 實驗步驟與規劃 45
3-1 實驗規劃 45
3-2粉末製備 46
3-3 對稱電池電解質製備 48
3-4 網印法製備陰極與電極骨架 49
3-5 單相陰極研究 50
3-6 複合相陰極研究 51
3-6-1 粉末混合法製備複合陰極 51
3-6-2 披覆法製備複合陰極 52
3-7 質子導體陰極氧還原反應機制研究 54
3-8 質子導體半電池製備 58
3-9 X光繞射分析 60
3-10 SEM微結構觀察 60
3-10-1 橫截面觀察 60
3-10-2 表面觀察 62
3-11 對稱電池電化學性能量測 62
3-12 單電池電化學性能量測 63
3-13 實驗藥品 64
第四章 實驗結果與討論 65
4-1 單相陰極研究 65
4-1-1 製備不同煅燒溫度PBC陰極 65
X光繞射分析 67
SEM微結構觀察 70
電化學交流阻抗量測 72
4-1-2製備不同厚度PBC陰極 75
SEM微結構觀察 76
電化學交流阻抗量測 77
4-2 複合相陰極研究 80
4-2-1 傳統粉末混合法 (BZCYYb-PBC, BZPY-PBC) 80
X光繞射分析 (BZCYYb, BZPY, PBC) 81
SEM微結構觀察 (BZCYYb-PBC) 85
電化學交流阻抗量測 (BZCYYb-PBC) 86
SEM微結構觀察 (BZPY-PBC) 89
電化學交流阻抗量測 (BZPY-PBC) 91
4-2-2 披覆式複合相陰極 (BZPY-PBC) 96
X光繞射分析 98
SEM微結構觀察 99
電化學交流阻抗量測 102
4-3 陰極氧還原反應機制研究 106
4-3-1 單相陰極 (PBC) 106
電化學交流阻抗量測 108
4-3-2複合相披覆式陰極 (BZPY-PBC) 128
電化學交流阻抗量測 130
4-4 質子導體單電池量測與分析 148
4-4-1 單相 (PBC) 陰極之單電池性能量測 148
4-4-2複合相披覆式陰極 (BZPY-PBC) 之單電池性能量測 152
第五章 結論 157
參考文獻 160
參考文獻 References
[1] O. Yamamoto, "Solid oxide fuel cells: fundamental aspects and prospects," Electrochimica Acta, vol. 45, p. 2423-2435, 2000.

[2] S. C. Singhal, "Advances in solid oxide fuel cell technology," Solid State Ionics, vol. 135, p. 305-313, 2000.

[3] J. W. Fergus, "Electrolytes for solid oxide fuel cells," Journal of Power Sources, vol. 162, p. 30-40, 2006.

[4] C. L. Chang, "Preparation and characterization of Sm0.5Sr0.5CoO3 cathodes for interediate temperature solid oxide fuel cells," p. 4, 2009.

[5] M. G. Bellino, D. G. Lamas, and N. E. W. de Reca, "Enhanced ionic conductivity in nanostructured, heavily doped ceria ceramics," Advanced Functional Materials, vol. 16, p. 107-113, 2006.

[6] F. Lefebvre-Joud, G. Gauthier, and J. Mougin, "Current status of proton-conducting solid oxide fuel cells development," Journal of Applied Electrochemistry, vol. 39, p. 535-543, 2009.

[7] K. D. Kreuer, "Proton-conducting oxides," Annual Review of Materials Research, vol. 33, p. 333-359, 2003.

[8] K. H. Ryu and S. M. Haile, "Chemical stability and proton conductivity of doped BaCeO3-BaZrO3 solid solutions," Solid State Ionics, vol. 125, p. 355-367, 1999.

[9] C. D. Zuo, S. W. Zha, M. L. Liu, M. Hatano, and M. Uchiyama, "Ba(Zr0.1Ce0.7Y0.2)O3-δ as an electrolyte for low-temperature solid-oxide fuel cells," Advanced Materials, vol. 18, p. 3318, 2006.

[10] L. Yang, S. Z. Wang, K. Blinn, M. F. Liu, Z. Liu, Z. Cheng, et al., "Enhanced Sulfur and Coking Tolerance of a Mixed Ion Conductor for SOFCs: BaZr0.1Ce0.7Y0.2-xYbxO3-δ," Science, vol. 326, p. 126-129, 2009.

[11] E. Fabbri, L. Bi, D. Pergolesi, and E. Traversa, "High-performance composite cathodes with tailored mixed conductivity for intermediate temperature solid oxide fuel cells using proton conducting electrolytes," Energy & Environmental Science, vol. 4, p. 4984-4993, 2011.

[12] E. Fabbri, S. Licoccia, E. Traversa, and E. D. Wachsman, "Composite Cathodes for Proton Conducting Electrolytes," Fuel Cells, vol. 9, p. 128-138, 2009.

[13] Y. H. Lin, Y. Wang, A. Loua, G. J. Day, Y. Qiu, E. C. B. Nadala, et al., "Evaluation of a new hepatitis B virus surface antigen rapid test with improved sensitivity," Journal of Clinical Microbiology, vol. 46, p. 3319-3324, 2008.

[14] B. Lin, H. P. Ding, Y. C. Dong, S. L. Wang, X. Z. Zhang, D. Fang, et al., "Intermediate-to-low temperature protonic ceramic membrane fuel cells with Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3-δ)-BaZr(0.1)Ce(0.7)Y(0.2)O(3-δ) composite cathode," Journal of Power Sources, vol. 186, p. 58-61, 2009.

[15] F. He, T. Z. Wu, R. R. Peng, and C. R. Xia, "Cathode reaction models and performance analysis of Sm0.5Sr0.5CoO3-δ-BaCe0.8Sm0.2O3-δ composite cathode for solid oxide fuel cells with proton conducting electrolyte," Journal of Power Sources, vol. 194, p. 263-268, 2009.

[16] L. Yang, C. D. Zuo, S. Z. Wang, Z. Cheng, and M. L. Liu, "A novel composite cathode for low-temperature SOFCs based on oxide proton conductors," Advanced Materials, vol. 20, p. 3280, 2008.

[17] T. Z. Wu, Y. Q. Zhao, R. R. Peng, and C. R. Xia, "Nano-sized Sm0.5Sr0.5CoO3-δ as the cathode for solid oxide fuel cells with proton-conducting electrolytes of BaCe0.8Sm0.2O2.9," Electrochimica Acta, vol. 54, p. 4888-4892, 2009.

[18] S. H. Nien, C. S. Hsu, C. L. Chang, and B. H. Hwang, "Preparation of BaZr0.1Ce0.7Y0.2O3-δ Based Solid Oxide Fuel Cells with Anode Functional Layers by Tape Casting," Fuel Cells, vol. 11, p. 178-183, 2011.

[19] Y. Lin, R. Ran, Y. Zheng, Z. P. Shao, W. Q. Jin, N. P. Xu, et al., "Evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3-δ as a potential cathode for an anode-supported proton-conducting solid-oxide fuel cell," Journal of Power Sources, vol. 180, p. 15-22, 2008.

[20] E. Fabbri, D. Pergolesi, and E. Traversa, "Electrode materials: a challenge for the exploitation of protonic solid oxide fuel cells," Science and Technology of Advanced Materials, vol. 11, 2010.

[21] Y. Lin, R. Ran, C. M. Zhang, R. Cai, and Z. P. Shao, "Performance of PrBaCo2O5+δ as a Proton-Conducting Solid-Oxide Fuel Cell Cathode," Journal of Physical Chemistry A, vol. 114, p. 3764-3772, 2010.

[22] D. Ding, X. X. Li, S. Y. Lai, K. Gerdes, and M. L. Liu, "Enhancing SOFC
cathode performance by surface modification through infiltration," Energy & Environmental Science, vol. 7, p. 552-575, 2014.

[23] S. P. Jiang and W. Wang, "Sintering and grain growth of (La,Sr)MnO3 electrodes of solid oxide fuel cells under polarization," Solid State Ionics, vol. 176, p. 1185-1191, 2005.

[24] F. Zhao, Z. Y. Wang, M. F. Liu, L. Zhang, C. R. Xia, and F. L. Chen, "Novel nano-network cathodes for solid oxide fuel cells," Journal of Power Sources, vol. 185, p. 13-18, 2008.

[25] Y. Wang, H. Zhang, F. L. Chen, and C. R. Xia, "Electrochemical characteristics of nano-structured PrBaCo2O5+x cathodes fabricated with ion impregnation process," Journal of Power Sources, vol. 203, p. 34-41, 2012.

[26] J. D. Nicholas, L. Wang, A. V. Call, and S. A. Barnett, "Use of the Simple Infiltrated Microstructure Polarization Loss Estimation (SIMPLE) model to describe the performance of nano-composite solid oxide fuel cell cathodes," Physical Chemistry Chemical Physics, vol. 14, p. 15379-15392, 2012.

[27] H. Zhang, F. Zhao, F. L. Chen, and C. R. Xia, "Nano-structured Sm0.5Sr0.5CoO3-δ electrodes for intermediate-temperature SOFCs with zirconia electrolytes," Solid State Ionics, vol. 192, p. 591-594, 2011.

[28] D. J. Chen, G. M. Yang, F. Ciucci, M. O. Tade, and Z. P. Shao, "3D core-shell architecture from infiltration and beneficial reactive sintering as highly efficient and thermally stable oxygen reduction electrode," Journal of Materials Chemistry A, vol. 2, p. 1284-1293, 2014.

[29] N. Bonanos, "Transport-Properties and Conduction Mechanism in High-Temperature Protonic Conductors," Solid State Ionics, vol. 53, p. 967-974, 1992.

[30] S. Shin, H. H. Huang, M. Ishigame, and H. Iwahara, "Protonic Conduction in the Single-Crystals of SrZrO3 and SrCeO3 Doped with Y2O3," Solid State Ionics, vol. 40-1, p. 910-913, 1990.

[31] R. C. T. Slade and N. Singh, "Systematic Examination of Hydrogen-Ion Conduction in Rare-Earth Doped Barium Cerate Ceramics," Solid State Ionics, vol. 46, p. 111-115, 1991.

[32] R. L. Cook and A. F. Sammells, "On the Systematic Selection of Perovskite Solid Electrolytes for Intermediate Temperature Fuel-Cells," Solid State Ionics, vol. 45, p. 311-321, 1991.

[33] H. Iwahara, T. Yajima, T. Hibino, K. Ozaki, and H. Suzuki, "Protonic Conduction in Calcium, Strontium and Barium Zirconates," Solid State Ionics, vol. 61, p. 65-69, 1993.

[34] S. B. Adler, "Factors governing oxygen reduction in solid oxide fuel cell cathodes," Chemical Reviews, vol. 104, p. 4791-4843, 2004.

[35] Y. R. Wang, T. Mori, J. G. Li, and J. Drennan, "Synthesis, characterization, and electrical conduction of 10 mol% Dy2O3 doped CeO2 ceramics," Journal of the European Ceramic Society, vol. 25, p. 949-956, 2005.

[36] J. Guan, S. E. Dorris, U. Balachandran, and M. Liu, "The effects of dopants and A : B site nonstoichiometry on properties of perovskite-type proton conductors," Journal of the Electrochemical Society, vol. 145, p. 1780-1786, 1998.

[37] E. Fabbri, L. Bi, H. Tanaka, D. Pergolesi, and E. Traversa, "Chemically Stable Pr and Y Co-Doped Barium Zirconate Electrolytes with High Proton Conductivity for Intermediate-Temperature Solid Oxide Fuel Cells," Advanced Functional Materials, vol. 21, p. 158-166, 2011.

[38] E. Fabbri, I. Markus, L. Bi, D. Pergolesi, and E. Traversa, "Tailoring mixed proton-electronic conductivity of BaZrO3 by Y and Pr co-doping for cathode application in protonic SOFCs," Solid State Ionics, vol. 202, p. 30-35, 2011.

[39] S. Mimuro, S. Shibako, Y. Oyama, K. Kobayashi, T. Higuchi, S. Shin, et al., "Proton incorporation and defect chemistry of Yb-doped BaPrO3," Solid State Ionics, vol. 178, p. 641-647, 2007.

[40] A. Magraso, R. Haugsrud, M. Segarra, and T. Norby, "Defects and transport in Gd-doped BaPrO3," Journal of Electroceramics, vol. 23, p. 80-88, 2009.

[41] K. Zhang, L. Ge, R. Ran, Z. Shao, and S. Liu, "Synthesis, characterization and evaluation of cation-ordered LnBaCo2O5+δ as materials of oxygen permeation membranes and cathodes of SOFCs," Acta Materialia, vol. 56, p. 4876-4889, 2008.

[42] A. A. Taskin, A. N. Lavrov, and Y. Ando, "Achieving fast oxygen diffusion in perovskites by cation ordering," Applied Physics Letters, vol. 86, p. 091910-091913, 2005.

[43] G. Kim, S. Wang, A. J. Jacobson, L. Reimus, P. Brodersen, and C. A. Mims, "Rapid oxygen ion diffusion and surface exchange kinetics in PrBaCo2O5+x with a perovskite related structure and ordered A cations," Journal of Materials Chemistry, vol. 17, p. 2500-2505, 2007.

[44] S. Ricote, N. Bonanos, P. M. Rorvik, and C. Haavik, "Microstructure and performance of La0.58Sr0.4Co0.2Fe0.8O3-δ cathodes deposited on BaCe0.2Zr0.7Y0.1O3-δ by infiltration and spray pyrolysis," Journal of Power Sources, vol. 209, p. 172-179, 2012.

[45] W. Zhu, D. Ding, and C. Xia, "Enhancement in Three-Phase Boundary of SOFC Electrodes by an Ion Impregnation Method: A Modeling Comparison," Electrochemical and Solid-State Letters, vol. 11, p. B83-B86, 2008.

[46] F. B. Sun, Y. Yu, Z. H. Jiang, H. Q. Ren, G. Wang, and X. E. Liu, "Nano TiO2 Modification of Bamboo and Its Antibacterial and Mildew Resistance Performance," Spectroscopy and Spectral Analysis, vol. 30, p. 1056-1060, 2010.

[47] A. J. Bard and L. R. Faulkener, Electrochemical Methods- Fundamental and Applications, 2 ed.: Wiley, p. 92-94, 2001.

[48] D. Y. Wang and A. S. Nowick, "Cathodic and Anodic Polarization Phenomena at Platinum-Electrodes with Doped Ceo2 as Electrolyte .1. Steady-State Overpotential," Journal of the Electrochemical Society, vol. 126, pp. 1155-1165, 1979.

[49] H. Uchida, S. Tanaka, and H. Iwahara, "Polarization at Pt Electrodes of a Fuel-Cell with a High Temperature Type Proton Conductive Solid Electrolyte," Journal of Applied Electrochemistry, vol. 15, p. 93-97, 1985.

[50] S. B. Adler, J. A. Lane, and B. C. H. Steele, "Electrode kinetics of porous mixed-conducting oxygen electrodes," Journal of the Electrochemical Society, vol. 143, p. 3554-3564, 1996.

[51] J. VanHerle, A. J. McEvoy, and K. R. Thampi, "A study on the La1-xSrxMnO3 oxygen cathode," Electrochimica Acta, vol. 41, p. 1447-1454, 1996.

[52] M. Koyama, C. J. Wen, T. Masuyama, J. Otomo, H. Fukunaga, K. Yamada, et al., "The mechanism of porous Sm0.5Sr0.5CoO3 cathodes used in solid oxide fuel cells," Journal of the Electrochemical Society, vol. 148, p. A795-A801, 2001.

[53] Y. Takeda, R. Kanno, M. Noda, Y. Tomida, and O. Yamamoto, "Cathodic Polarization Phenomena of Perovskite Oxide Electrodes with Stabilized Zirconia," Journal of the Electrochemical Society, vol. 134, p. 2656-2661, 1987.

[54] H. Fukunaga, M. Koyama, N. Takahashi, C. Wen, and K. Yamada, "Reaction model of dense Sm0.5Sr0.5CoO3 as SOFC cathode," Solid State Ionics, vol. 132, p. 279-285, 2000.

[55] M. J. Escudero, A. Aguadero, J. A. Alonso, and L. Daza, "A kinetic study of oxygen reduction reaction on La2NiO4 cathodes by means of impedance spectroscopy," Journal of Electroanalytical Chemistry, vol. 611, p. 107-116, 2007.

[56] G. N. Mazo, N. V. Lyskov, and L. S. Leonova, "Morphology and electrochemical characterization of LaSrCuO4-δ vertical bar Ce0.9Gd0.1O2-δ interface," Solid State Ionics, vol. 182, p. 64-70, 2011.

[57] D. J. Chen, R. Ran, and Z. P. Shao, "Effect of firing temperature on the microstructure and performance of PrBaCo2O5+δ cathodes on Sm0.2Ce0.8O1.9 electrolytes fabricated by spray deposition-firing processes," Journal of Power Sources, vol. 195, p. 4667-4675, 2010.

[58] A. Ringuede and J. Fouletier, "Oxygen reaction on strontium-doped lanthanum cobaltite dense electrodes at intermediate temperatures," Solid State Ionics, vol. 139, p. 167-177, 2001.

[59] D. J. Chen, R. Ran, K. Zhang, J. Wang, and Z. P. Shao, "Intermediate-temperature electrochemical performance of a polycrystalline PrBaCo(2)O(5+δ) cathode on samarium-doped ceria electrolyte," Journal of Power Sources, vol. 188, p. 96-105, 2009.

[60] A. Grimaud, J. M. Bassat, F. Mauvy, M. Pollet, A. Wattiaux, M. Marrony, et al., "Oxygen reduction reaction of PrBaCo2-xFexO5+δ compounds as H+-SOFC cathodes: correlation with physical properties," Journal of Materials Chemistry A, vol. 2, p. 3594-3604, 2014.

[61] C. J. Zhang and H. L. Zhao, "A novel cobalt-free cathode material for proton-conducting solid oxide fuel cells," Journal of Materials Chemistry, vol. 22, p. 18387-18394, 2012.

[62] C. Y. Yang, X. X. Zhang, H. L. Zhao, Y. N. Shen, Z. H. Du, and C. J. Zhang, "Electrochemical properties of BaZr0.1Ce0.7Y0.1Yb0.1O3-(δ)-Nd1.95NiO4+δ composite cathode for protonic ceramic fuel cells," International Journal of Hydrogen Energy, vol. 40, p. 2800-2807, 2015.

[63] H. P. Ding, Y. Y. Xie, and X. J. Xue, "Electrochemical performance of BaZr0.1Ce0.7Y0.1Yb0.1O3-δ electrolyte based proton-conducting SOFC solid oxide fuel cell with layered perovskite PrBaCo2O5+δ cathode," Journal of Power Sources, vol. 196, p. 2602-2607, 2011.

[64] L. Zhao, B. B. He, B. Lin, H. P. Ding, S. L. Wang, Y. H. Ling, et al., "High performance of proton-conducting solid oxide fuel cell with a layered PrBaCo2O5+δ cathode," Journal of Power Sources, vol. 194, p. 835-837, 2009.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code