Responsive image
博碩士論文 etd-1010116-105312 詳細資訊
Title page for etd-1010116-105312
論文名稱
Title
北南海沙丘區之內波環境噪音分析
Ambient Noise Analysis of Internal Wave of Sand Dune Region in North South China Sea
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
81
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-10-31
繳交日期
Date of Submission
2016-11-10
關鍵字
Keywords
沙丘地形、碎浪噪音、南海內波、多元迴歸、噪音缺口、垂直方向性
North South China Sea, Internal Wave, Sand Dune, Breaking Wave Noise, Multiple Correlation, Vertical Directionality, Noise Notch
統計
Statistics
本論文已被瀏覽 5667 次,被下載 619
The thesis/dissertation has been browsed 5667 times, has been downloaded 619 times.
中文摘要
近年來,南海內波成為海洋研究的熱門議題,來自呂宋海脊的潮汐能量,於深海形成大尺度的非線性內波,導致水層急遽地下沉,使本研究水深200公尺處的等溫線最大下降15.9公尺,其往下聚合的現象,在海表面產生碎浪條紋。本研究使用的資料來自2014年六月份的南海沙丘計畫,實驗位於北南海上陸坡的沙丘區,內波通過時,強勁的水流會產生紊流噪音,且使錨碇結構振動而導致錨繩噪音;而來自海面的碎浪噪音,隨著水層向下聚合的力道增強而增加,其噪音增量與內波振幅有相關性係數0.7的高相關,但量測地點越靠近底床或沙丘地形,皆會使相關性降低。從多元迴歸分析中,碎浪噪音增量不只和內波振幅有相關,當時的背景噪音亦會限制碎浪噪音的增加量,其多元迴歸的決定係數更達0.9。另一方面,過去的研究中推論噪音缺口的形成可能與內波有關,但內波的聲學模態耦合現象,也可能會使噪音缺口消失。從本研究的內波碎浪噪音之垂直方向性分析中,此噪音的能量並不足以形成噪音缺口,也可能因內波的聲學模態耦合抵消缺口的形成,此研究成果使過去的推論和模擬結果得以驗證。
Abstract
In recent years, internal wave of North South China Sea has become an important ocean research topic. The tidal energy from Luzon Ridge formed a huge nonlinear internal wave in deep ocean. This event dropped water column dramatically, the maximum isotherm downward shift can be 15.9 meters at 200 meter water depth in our observation. During the propagation of internal wave, the convergence of surface water can form a significant breaking wave strip with loud noise. Data used in this research came from Sand Dunes project of South China Sea of June 2014. Experimental site was located in sand dune region of upper continental slope of North South China Sea. When internal wave passed, strong current caused turbulence and strumming noises due to the existence of mooring structure. The correlation coefficient between breaking wave noise enhancement and amplitude of internal wave is 0.7. However, if measurement location was close to sea bed or sand dune region, the correlation would be declined. Multiple correlation shows that background noise would limit breaking wave noise contribution, and coefficient of determination among internal wave amplitude, noise enhancement and background noise level can be as high as 0.9. In the past, some researches suggested that noise notch might be related to internal wave, but acoustical mode coupling of internal wave might on the other hand diminish the notch. According to analysis of vertical directionality in this research, the energy of breaking wave noise of internal wave was not enough to form noise notch, and mode coupling may also prevent the formation of noise notch.
目次 Table of Contents
論文審定書 i
謝誌 iii
摘要 iv
Abstract v
目錄 vi
圖目錄 ix
表目錄 xii
第一章 緒論 1
1.1 研究背景 1
1.1.1 海洋環境噪音 2
1.2 內波現象 5
1.2.1 南海內波現象 6
1.3 內波之聲學研究 7
1.4 研究目的 9
1.5 本文架構 9
第二章 實驗架構 10
2.1 實驗簡介 10
2.2 聲學錨碇 12
2.2.1 多聲道水下麥克風紀錄器錨碇 12
2.2.2 垂直線陣列錨碇 16
2.2.3 聲源錨碇 18
2.3 海洋物理錨碇 19
第三章 相關理論 21
3.1 音訊頻譜分析 21
3.1.1 傅立葉轉換 21
3.1.2 快速傅立葉轉換 22
3.1.3 音訊頻譜 24
3.1.4 時頻譜分析 25
3.2 波束形成法 25
3.3 迴歸分析 28
3.3.1 線性迴歸 29
3.3.2 相關係數 29
3.3.3 多元迴歸 30
第四章 資料前處理 31
4.1 時頻譜之處理方式 31
4.2 實驗訊號刪除 32
4.3 方向性分析處理 33
4.3.1 波束圖形測試 34
4.3.2 方向性時序列 35
4.4 非分析對象之噪音 36
4.4.1 震測船噪音 37
4.4.2 颱風噪音 37
4.4.3 船舶噪音 39
第五章 分析結果 40
5.1 內波事件判定 40
5.1.1 內波事件之流速變化 43
5.1.2 內波振幅 48
5.1.3 SHRU錨碇之內波事件判定 49
5.2 內波事件之噪音特性 49
5.2.1 碎浪噪音與紊流噪音 51
5.2.2 碎浪噪音之線性迴歸 54
5.2.3 碎浪噪音之多元迴歸 56
5.3 碎浪噪音之方向性分析 60
第六章 結論與建議 63
6.1 結論 63
6.2 建議 64
參考文獻 66
參考文獻 References
[1] W. S. Burdic, Underwater Acoustic System Analysis, Prentice-Hall Inc., 1991.
[2] L. Rayleigh, The Theory of Sound, Macmillan, 1877.
[3] K. D. Rolt, “The Fessenden Oscillater: History, Electroacoustic Model and performance Estimate,” J. Acoust. Soc. Am., vol. 95, no. 5, 1994.
[4] V. O. Knudsen, R. S. Alford and J. W. Emling, “Underwater Ambient Noise,” J. Mar. Res., vol. 7, pp. 410-429, 1948.
[5] R. J. Urick, Ambient Noise in the Sea, Peninsula Publishing, 1984.
[6] G. M. Wenz, “Acoustic Ambient Noise in the Ocean: Spectra and Sources,” J. Acoust. Soc. Am., vol. 34, pp. 1936-1956, 1962.
[7] M. Strasberg, “Gas Bubbles as Sources of Sound in Liquids,” J. Acoust. Soc. Am., vol. 28, no. 1, pp. 20-26, 1956.
[8] D. Ross and R. D. Collier, Mechanics of Underwater Noise, Applied Technology Institute, Columbia, MD, 1985.
[9] 蔡孟汎,高雄港船舶噪音之聲學模擬與分析,國立中山大學海下科技研究所碩士論文,民103。
[10] P. Scrimger and R. M. Heitmeyer, “Acoustic Source-level Measurement for a Variety of Merchant Ships,” J. Acoust. Soc. Am., vol. 89, no. 2, pp. 691-699, 1991.
[11] D. Ross, “Ship Sources of Ambient Noise,” IEEE J. Oceanic Eng., vol. 30, no. 2, pp. 257-261, 2005.
[12] R. K. Andrew, B. M. Howe and J. A. Mercer, “Long-time Trends in Ship Traffic Noise for Four Sites Off the North American West Coast,” J. Acoust. Soc. Am., vol. 129, no. 2, pp. 642-651, 2011.
[13] J. L. Miksis-Olds, D. L. Bredley and X. M. Niu, “Decadal Trends in Indian Ocean Ambient Sound,” J. Acoust. Soc. Am., vol. 134, no. 5, pp. 3464-3475, 2013.
[14] R. B. Perry and G. R. Schimke, “Large-Amplitude Internal Waves Observed off the Northwest Coast of Sumatra,” J. Geophys. Res., vol. 70, no. 10, pp. 2319-2324, 1965.
[15] A. R. Osborne and T. L. Burch, “Internal Solitons in the Andaman Sea,” Science, vol. 208, no. 4443, pp. 451-460, 1980.
[16] 許明光,劉安國,「神秘的巨浪—南海內波」,科學發展,446期,52-61頁,2010。
[17] K. R. Helfrich and W. K. Melville, “Long Nonlinear Internal Waves,” Ann. Rev. Fluid Mech., vol. 38, no. 3, pp. 395-425, 2006.
[18] A. K. Liu, Y. S. Chang, M. K. Hsu and N. K. Liang, “Evolution of Nonlinear Internal Waves in the East and South China Seas,” J. Geophys. Res., vol. 103, no. C4, pp. 7995-8008, 1988.
[19] W. Alpers, “Theory of Radar Imaging of Internal Waves,” Nature, vol. 314, no. 3, pp. 245-247, 2006.
[20] M. H. Chang, R. C. Lien, Y. J. Yang, T. Y. Tang and J. Wang, “A Composite View of Surface Signatures and Interior Properties on Nonlinear Internal Waves: Observations and Applications,” J. Atmos. Oceanic. Technol., vol. 25, no. 7, pp. 1218-1227, 2008.
[21] Y. J. Yang, H. C. Chan, C. H. Wu, W. D. Liang, C. F. Chen and R. C. Wei, “Ocean Ambient Noise Modulated by Internal Solitary Waves,” OCEANS – Bergen, 2013 MTS/IEEE, pp. 1-4, 2013.
[22] S. R. Ramp, T. Y. Tang, T. F. Duda, J. F. Lynch, A. K. Liu, C. S. Chiu, F. L. Bahr, H. R. Kim and Y. J. Yang, “Internal Solitons in the Northeastern South China Sea Part I: Sources and Deep Water Propagation,” IEEE J. Oceanic Eng., vol. 29, no. 4, pp. 1157-1180, 2004.
[23] C. Guo and X. Chen, “A Review of Internal Solitary Wave Dynamics in the Northern South China Sea,” Prog. Ocean., vol. 121, pp. 7-23, 2014.
[24] S. R. Ramp, Y. J. Yang and F. L. Bahr, “Charaterizing the Nonlinear Internal Wave Climate in the Northern South China Sea,” Nonlin. Processes Geophys., vol. 17, pp.481-498, 2010.
[25] Y. J. Yang, H. C. Chan, C. H. Wu, W. D. Liang, C. F. Chen and R. C. Wei, “Ocean Ambient Noise Modulated by Internal Solitary Waves,” OCEANS – Bergan, 2013 MTS/IEEE, pp. 1-4, 2013.
[26] Y. J. Yang, C. S. Chiu, C. H. Wu, W. D. Liang, S. R. Ramp, D. B. Reeder and C. F. Chen, “Observations of Ambient Noise Induced by the Internal Solitary Waves on the Continental Slope of the Northern South China Sea,” OCEANS 2015 – Genova, pp. 1-4, 2015.
[27] R. C. Wei, J. F. Lynch, A. E. Newhall, H. C, Chan, C. S. Liu and P. C. Lin, “The Ambient Noise Fluctuation and Directionality Study in South China Sea,” Underwater Technology, pp. 255-260, 2004.
[28] T. F. Duda and J. C. Preisig, “Acoustic Mode Coupling Within Internal Solitary Waves and Wave Groups”, Woods Hole Oceanographic Institution(WHOI), Woods Hole, 1998.
[29] T. C. Yang and A. K. Azmi, “The Internal Waves Effect on the Noise Vertical Directionality in Shallow Water,” OCEAN ’96. MTS/IEEE, pp. 9-16, 1996.
[30] C. W. Miller, C. S. Chiu, D. B. Reeder, Y. J. Yang, L. Chiu and C. F. Chen, Preliminary Observations from the 2014 Sand Dunes Experiment, Naval Post-graduate School, Monterey, California, 2014.
[31] A. V. Oppenheim, A. S. Willsky and S. H. Nawab, Signal & Systems 2nd Edition, Prentice-Hall International, Inc., 1997.
[32] J. W. Cooley and J. W. Tukey, “An Algorithm for the Machine Calculation of Complex Fourier Series,” Math. Comput., vol. 19, pp. 297-301, 1965.
[33] 湛翔智,活塞式造波機模擬近岸碎波氣泡之聲學分析,國立中山大學海下技術研究所碩士論文,民91。
[34] R. J. Urick, Principles of Underwater Sound, McGraw-Hill, 1993.
[35] 邱皓政,量化研究與統計分析,五南圖書出版公司,2010。
[36] 中央氣象局全球資訊網,http://www.cwb.gov.tw/V7/index.htm.
[37] S. R. Ramp, “Soliton Arrival Patterns Over the Upper Continental Slope During June 2014: Reaffirmations and Exploded Myths,” South China Sea Upper-Slope Sand Dunes Experiment Analysis Workshop (NTU), March 25-26, 2015.
[38] T. F. Duda, J. F. Lynch, J. D. Irish, R. C. Beardsley, S. R. Ramp, C. S. Chiu, T. Y. Tang and Y. J. Yang, “Internal Tide and Nonlinear Internal Wave Behavior at the Continantal Slope in the Northern South China Sea,” IEEE J. Ocean. Eng., vol. 29, pp. 1105-1130, 2004.
[39] H. Sandstrom and J. A. Elliott, “Internal Tide and Solitons on the Scotian Shelf: A Nutrient Pump at Work,” J. Geophys. Res., vol. 89, no. 4, pp. 6415-6426, 1984.
[40] M. H. Chang, R. C. Lien, Y. J. Yang and T. Y. Tang, “Nonlinear Internal Wave Properties Estimated with Moored ADCP Measurement,” J. Atmos. Oceanic Technol., vol. 28, pp. 802-815, 2010.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code