Responsive image
博碩士論文 etd-1012109-150819 詳細資訊
Title page for etd-1012109-150819
論文名稱
Title
應用於生醫近身網路之個人閘道之設計與實作
Design and Implementation of A Personal Gateway for Body Area Networks
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
86
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-09-29
繳交日期
Date of Submission
2009-10-12
關鍵字
Keywords
個人閘道
personal gateway, body area networks, mixed-voltage, BPM, ZigBee, ADPLL
統計
Statistics
本論文已被瀏覽 5698 次,被下載 8
The thesis/dissertation has been browsed 5698 times, has been downloaded 8 times.
中文摘要
本論文提出一個適用於無線生醫近身網路之個人閘道,係藉由無線通訊技術與適當的近身網路拓墣,病人可以在自由行動的狀況下記錄自身的生理訊號。更理想的是,原本由個別生理訊號感測方式所構成的複雜網路,將因為個人閘道整合不同的訊號而簡化,節省多餘的硬體與麻煩的連線。
此外,我們也為此個人閘道設計一個能夠長時間量測膀胱壓力的裝置。其中的儀表放大器,由於能夠消除一大氣壓下的多餘讀數,不僅能夠節省設計成本,還能夠增加解析度。又因為膀胱中壓力的改變並不是非常劇烈,因此適當的切換此裝置的工作與休眠模式將能夠有效利用電池並延長量測時間。
我們也利用一個能溝通0.9/1.2/1.8/2.5/3.3/5.0 V的廣域輸出入緩衝器來整合個人閘道中不同供應電壓的電路。此設計中的輸入緩衝器因為有著邏輯校準電路而能夠接受特別低的輸入電壓。而新型的N型井電路則可以消除PMOS的基體效應。此外,動態驅動偵測電路則可用來平衡輸出級電晶體的開關電壓。
由於ZigBee的低電壓、低複雜度、中距離、中等資料量的傳輸特性,使其適合用來做為近身網路的通訊方式。而比起2.4 GHz模式,868/915 MHz模式的成本及功率更低,且其資料量對近身網路的應用來說十分足夠。況且越低的載波頻率對予人體組織的吸收功率就會越低,因此我們選用868/915 MHz模式來應用於近身網路。
個人閘道的時脈產生器則是以一個利用二元搜尋法的全數位鎖相迴路來設計。在此利用特殊的控制方式及特殊數位控制震盪器來解決以往在全數位鎖相迴路中常見的突波干擾及時序衝突。此外,我們每兩個週期將數位控制震盪器關閉半個週期,以節省25%的動態功率。
Abstract
In this thesis, we propose a personal gateway for wireless body area network(WBAN). By using wireless communication and a proper WBAN topology, patients’ physiological signal could be recorded without restricting their mobility. Moreover, integration of several kinds of signals from different sensor nodes in one data platform, personal gateway (PG), can reduce the redundant hardware of individual links as well as the complexity of WBAN.
A device for long-term bladder urine pressure measurement is designed as a sensor node of PG. Not only is the design cost reduced, but also the reliability is enhanced by using a 1-atm canceling sensing IA (instrumentation amplifier). Because the urine pressure inside the bladder does not vary drastically, both the sleeping and working modes are required to save the battery power for the long-term observation.
To integrate circuits with different supply voltages in PG, a 0.9/1.2/1.8/2.5/3.3/5.0 V wide-range I/O buffer carried out using a typical CMOS process is designed. An input buffer with a logic calibration circuit is used for receiving a low voltage signal. A novel floating N-well circuit is employed to remove the body effect at the output PMOS. Moreover, a dynamic driving detector is included to equalize the turn-on voltages for the output PMOS and NMOS transistors.
ZigBee is used as a communication channel in this thesis because of its features, including low power, low complexity, medium range, and medium data rate. The 868/915 MHz mode has lower cost and power consumption than those of 2.4 GHz mode, and the data rate is far enough for WBAN applications. Moreover, lower carrier frequency causes less unnecessary power absorbed by human tissue. Therefore, the ZigBee tranceiver with 868/915 MHz mode is explored.
A low power all digital phase lock loop (ADPLL) using a controller which employs a binary frequency searching method is also proposed as a clock generator of PG. Glitch hazards and timing violations which occurred very often in prior ADPLLs are avoided by a novel control method and a new digital-controlled oscillator (DCO) with multiplexers. Besides, the feedback DCO is disabled half a cycle in every two cycles so as to reduce 25% of dynamic power theoretically.
目次 Table of Contents
Contents
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Body Area Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Personal Gateway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 Personal Gateway for Body Area Network . . . . . . . . . . . . . . . . 5
1.2.2 Bladder Pressure Measurement Device . . . . . . . . . . . . . . . . . . 6
1.2.3 I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.4 ZigBee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.5 Low power ADPLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2 A Mini-invasive Long-term Bladder Urine Pressure Measurement Device 13
2.1 Architecture of the Urine Pressure Measurement Device . . . . . . . . . . . . . 13
2.1.1 Control Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.2 Pressure Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.3 IA with 1-atm Canceling . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.4 6-bit ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 RF Module Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Data Recording and Analyzing System . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Implementation and Measurement . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3 1/3xVDD to 3/2xVDD Wide-Range I/O Buffer 24
3.1 Very Wide-Range I/O Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.1 Theory of the Proposed I/O Buffer . . . . . . . . . . . . . . . . . . . . 26
3.1.2 Schematic Design of the Proposed I/O Buffer . . . . . . . . . . . . . . 26
3.2 Implementation and Measurement . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4 The ZigBee 868/915 MHz Modulator/Demodulator for WBAN 37
4.1 The Speci‾cation of ZigBee Physical Layer . . . . . . . . . . . . . . . . . . . . 38
4.2 Architecture of ZigBee Transceiver for 868/915 MHz Band . . . . . . . . . . . 39
4.3 The ZigBee Modulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4 The ZigBee Demodulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4.1 Packet Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4.2 Energy Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4.3 Frequency Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4.4 Time Sync . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4.5 Con‾rm SFD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.5 Simulation and Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5 A Low-Power ADPLL Using Feedback DCO Quaterly Disabled in Time
Domain 49
5.1 ADPLL with Low-power Control . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.1.1 PFD and FDIV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.1.2 The DCOs with MUX-based Switching . . . . . . . . . . . . . . . . . . 51
5.1.3 CSP with Binary Frequency Searching . . . . . . . . . . . . . . . . . . 54
5.2 Implementation and Measurement . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6 Discussion, Conclusion and Future Works 61
6.1 discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.3 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Bibliography 64
參考文獻 References
[1] G. Ossberger, T. Buchegger, E. Schimback, A. Stelzer, and R. Weigel, Non-invasive
respiratory movement detection and monitoring of hidden humans using ultra wideband
pulse radar," 2004 International Workshop on Technologies. Joint UWBST & IWUWBS,
Joint with Conference on Ultrawideband Systems and Ultra Wideband Systems, pp.395-
399, May 2004.
[2] C.-C. Wang, C.-C. Huang, T.-J. Lee, C.-M. Wu, G.-N. Sung, K.-W. Fang, S.-L. Tseng,
and J.-J. Chen, An implantable SOC chip for micro-stimulating and neural signal record-
ing," in Proc. of the IEEE Asia Paci‾c Conference on Circuits and Systems, pp. 682 -
685, Dec. 2006.
[3] C.-C. Wang, C.-C. Huang, J.-S. Liou, Y.-J. Ciou, I.-Y. Huang, C.-P. Li, Y.-C. Lee, and
W.-J. Wu, An implantable long-term bladder urine pressure measurement system with
a 1-atm canceling instrumentation ampli‾er," in Proc. of IEEE Inter. Symp. on Circuits
and Systems, 2007, pp. 2383-2386, May 2007.
[4] R. S. H. Istepanian, E. Jovanov, and Y.-T. Chang, Guest editorial introduction to the
special section on M-health: beyond seamless mobility and global wireless health-care
connectivity," IEEE Trans. on Information Technology in Biomedicine, vol. 8, no. 4, pp.
405-414, Dec. 2004.
[5] E. Jovanov, A. Milenkovic, C. Otto, P. De Groen, B. Johnson, S. Warren, and G. Taibi,
A WBAN system for ambulatory monitoring of physical activity and health status:
applications and challenges," in Proc. of the 2005 IEEE Engineering in Medicine and
Biology 27th Annual Conference, pp. 3810-3813, Sep. 2005.
[6] M. A. Rahman, A. El Saddik, and W. Gueaieb, SenseFace: A sensor network overlay for
social networks,"in Proc. of the IEEE Inter. Conf. on Intrumentation and Measurement
Technology, pp. 1031-1036, May 2009.
[7] K.-S. Shin, H.-T. Hwang, Y.-H. Kim, J.-P. Kim, H.-S. Yeo, W.-T. Han, J.-S. Hwang,
J.-W. Lee, and J.-C. Park, WHAM: A novel, wearable heart activity monitor based
on Laplacian potential mapping," in Proc. of the IEEE Inter. Conf. on Engineering in
Medicine and Biology Society, pp. 7361-7364 Sep. 2005.
[8] N. de Vicq, F. Robert, J. Penders, B. Gyselinckx, and T. Torfs, Wireless body area
network for sleep staging," in Proc. of the IEEE Inter. Conf. on Biomedical Circuits and
Systems, pp. 163-166, Nov. 2007.
[9] E. Monton, J. F. Hernandez, J. M. Blasco, T. Herve, J. Micallef, I. Grech, A. Brincat,
and V. Traver, Body area network for wireless patient monitoring," IEEE Trans. on
Communications, vol. 2, no. 2, Feb. 2008.
[10] IEEE Std 802.15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY)
speci‾cations for Low Rate Wireless Personal Area Networks (LR-WPANs), 2003.
[11] Web site : http://www.ZigBee.org.
[12] M. A. M. Vieira, C. N. Coelho, D. C. Silva, and J. M. Mata, Survey on wireless sensor
network devices," in Proc. of Inter. Conf. Emerging Technologies and Factory Automa-
tion, pp. 537-544, Sep. 2003.
[13] A. Alheraish, Design and implementation of home automation system" IEEE Trans. on
Consumer Electronics, vol. 50, no. 4, pp. 1087-1092, Nov. 2004.
[14] M. Steyaert, S. Gogaert, T. Van Nuland, and W. Sansen, A low-power portable teleme-
try system for eight channel EMG measurements," in Proc. of the 1991 IEEE Annual
International Conference of the Engineering in Medicine and Biology Society, pp. 1711-
1712, Oct. 1991.
[15] B. Ziaie, K. Naja‾, and D. J. Anderson, A low-power miniature transmitter using a low-
loss silicon platform for biotelemetry," in Proc. IEEE Annual International Conference
of Engineering in Medicine and Biology society, vol. 5, pp. 2221-2224, Nov. 1997.
[16] K. Shimizu, S. Matsuda, T. Miyanaga, and K. Yamamoto,Optical biotelemetry in mov-
ing vehicles," in Proc. of 1994 IEEE Instrumentation and Measurement Technology Con-
ference (IMTC94), vol. 2, pp. 982-985, May 1994.
[17] P. A. Roche, S. Mingui, and R. J. Sclabassi,Using a cell phone for biotelemetry," in Proc.
of the IEEE 31st Annual Northeast Bioengineering Conference, pp. 65-66, Apr. 2005.
[18] L. A. Geddes, and L. E. Backer, Principles of applied biomedical instrumentation, 2nd
ed., New York: Wiley, pp. 251-257, 1967.
[19] J. G. Proakis, Digital Communications, 4th Ed., New York: McGraw-Hill, pp. 565-567,
2000.
[20] C.-C. Wang, J.-M. Huang, C.-Y. Chang, K.-T. Cheng, and C.-P. Li, A 6.57 mW ZigBee
transceiver for 868/915 MHz band," in Proc. of the 2006 IEEE International Symposium
on Circuits and Systems (ISCAS 2006), pp. 5195-5198, May 2006.
[21] E. J. McGuire, J. R. Woodside, and T. A. Borden, Upper urinary tract deterioration
in patients with myelodysplasia and detrusor hypertonia: a followup study," J. of Urol.,
vol. 129, pp. 823-826, 1983.
[22] M. l. Kothari, S. B. Bauer, E. L. Logigian, and J. M. Shefner, Electrophysiological and
urodynamic studies to monitor surgical outcome in children with tethered spinal cords,"
J. of Muscle and Nerve, vol. 18, pp. 1373-1377, 1995.
[23] B. J. Wenzel, J. W. Boggs, K. J. Gustafson, and W. M. Grill, Detecting the onset of
hyper-re°exive bladder contractions from the electrical activity of the pudendal nerve,"
IEEE Trans. on Neural Systems and Rehabilitation Engineering, vol. 13, no. 3, pp. 428-
435, Sep. 2005.
[24] J. M. H. Teichman, H. C. Scherz, K. D. Kim, D. H. Cho, M. G. Packer, G. W. Kaplan,
An alternative approach to myelodysplasia management: aggressive observation and
prompt intervention," J. of Urol., vol. 152, pp. 807-811, 1994.
[25] M. S. Damaser, M. Parikh, and T. W. Cannon, A new method of noninvasively measur-
ing bladder leak point pressure in female rats," J. of 22th IEEE Engineering in Medicine
and Biology Society, vol. 1, pp. 575-577, Jul. 2000.
[26] T. Watanabe, D. A. Rivas, and M. B. Chancellor, Urodynamics of spinal cord injury,"
J. of Urologic Clinics North Amer., vol. 23, pp. 459-473, 1996.
[27] W. B. Shingleton, and D. R. Bodner, The development of urologic complications in
relationship to bladder pressure in spinal cord injured patients," J. of Amer. Paraplegia
Soc., vol. 16, pp. 14-17, 1993.
[28] J. S. Walter, J. S. Wheeler, W. Cai, W. W. King, and R. D. Wurster, Evaluation of a
suture electrode for direct bladder stimulation in a lower motor neuron lesioned animal
mode, " IEEE Trans. on Rehabilation Engineering, vol. 7, no. 2, pp. 159-166, June 1999.
[29] G. Drzewiecki, V. Bansal, E. Karam, R. Hood, and H. Apple, The development of
urologic complications in relationship to bladder pressure in spinal cord injured patients,"
IEEE Trans. on Biomedical Engineering, vol. 40, no. 7, pp. 704-708, Jul. 1993.
[30] B. J. Wenzel, W. M. Grill, J. W. Boggs, and K. J. Gustafson, Using external anal
sphincter activity to detect the onset of hyper-re°exive bladder contractions ," in Proc of
IEEE Int. Conf. on Engineering in Medicine and Biology Society, vol. 2, pp. 1579-1582,
Sep. 2003.
[31] M. S. Damaser, G. J. Andros, J. S.Walter, L. Schlehahn, K. Brzezinski, and J. S. Wheeler,
Home monitoring of bladder pressure in pediatric patients with spina bi‾da," J. of 19th
IEEE Engineering in Medicine and Biology Society, vol. 5, pp. 1915-1918, Nov. 1997.
[32] E. J. McGuire, F. Noll, and F. Maynard, A pressure management system for the neuro-
genic bladder after spinal cord injury," J of Neurourol. Urodynam., vol. 10, pp. 223-230,
1991.
[33] T. Furukawa, D. Turner, S. Mittl, M. Maloney, R. Sera‾n, W. Clark, L. Longenbach, and
J. Howard, Accelerated gate-oxide breakdown in mixed-voltage I/O bu®ers, " in Proc.
IEEE Inter. Reliability Physics Symp. pp. 169-173, Apr. 1997.
[34] C.-H. Chuang, and M.-D. Ker, Design on mixed-voltage-tolerant I/O interface with
novel tracking circuits in a 0.13-um CMOS technology," in Proc. of IEEE Inter. Symp.
on Circuits and Systems, 2004, vol. 2, pp. 577-580, May 2004.
[35] M. J. M. Pelgrom and E. C. Dijkmans, A 3/5 V compatible I/O bu®er," IEEE J.
Solid-State Circuits, vol. 30, no. 7, pp. 823-825, July 1995.
[36] M.-D. Ker, S.-L. Chen, and C.-S. Tsai, Overview and design of mixed-voltage I/O bu®ers
with low-voltage thin-oxide CMOS transistors," IEEE Trans. On Circuits and Systems
I: Regular Papers, vol. 53, no. 9, pp. 1934-1945, Sept. 2006.
[37] M.-D. Ker, and S.-L. Chen, Design of mixed-voltage I/O bu®er by using NMOS-blocking
technique," IEEE J. Solid-State Circuits, vol. 41, no. 10, pp. 2324-2333, Oct. 2006.
[38] H.-W. Tsai, and M.-D. Ker, Design of 2VDD-Tolerant I/O Bu®er with Considerations
of Gate-Oxide Reliability and Hot-Carrier Degradation," in Proc. of IEEE Inter. Conf.
on Electronics, Circuits and Systems, 2007, pp. 1240-1243, Dec. 2007.
[39] G. P. Singh, and R. B. Salem, High-voltage-tolerant I/O bu®ers with low-voltage CMOS
process," IEEE J. Solid-State Circuits, vol. 34, no. 11, pp. 1512-1525, Nov. 1999.
[40] S.-L. Chen, and M.-D. Ker, An output bu®er for 3.3-V applications in a 0.13-¹m 1/2.5-V
CMOS process," IEEE Trans. Circuits and Systems-II:Express Brief, vol. 54, no. 1, pp.
14-18, Jan. 2007.
[41] A.-J. Annema, G. J. G. M. Geelen, and P. C. de Jong, 5.5-V I/O in a 2.5-V 0.25-¹m
CMOS technology,"IEEE J. Solid-state Circuits, vol. 36, no. 3, pp. 528-538, Mar. 2001.
[42] B. Serneels, T. Piessens, M. Steyaert, and W. Dehaene, A high-voltage output driver
in a 2.5-V 0.25-¹m CMOS technology," IEEE J. Solid-state Circuits, vol. 40, no. 3, pp.
576-583, Mar. 2005.
[43] T.-J. Lee, T.-Y. Chang, and C.-C. Wang, Wide-range 5.0/3.3/1.8 V I/O bu®er using
0.35-um 3.3-V CMOS technology," IEEE Trans. on Circuits and Systems-I: Regular Pa-
pers, vol. 56, no. 4, pp. 763-772, Apr. 2009.
[44] T.-J. Lee, W.-C. Chang, and C.-C. Wang, Mixed-voltage-tolerant I/O bu®er using a
clamping dynamic gate bias generator," in Proc. of the IEEE Inter. Conf. of Region 10
Conference - TENCON 2007, pp. 1-4, Nov. 2007.
[45] T.-J. Lee, Y.-C. Liu, and C.-C. Wang, 1.8 V to 5.0 V mixed-voltage-tolerant I/O bu®er
with 54.59% output duty cycle," in Proc. of the IEEE Inter. Symp. on VLSI Design,
Automation and Test, 2008, pp. 93-96, Apr. 2008.
[46] T.-D. Chiueh, J.-B. Yang, and J.-S. Wu, Design and implementation of a low-voltage
fast-switching mixed-signal-controlled frequency synthesizer," IEEE Trans. of Circuits
Systems-II, vol. 48, no. 10, pp. 961-971, Oct. 2001.
[47] R. Nonis, N.D. Dalt, P. Palestri, and L. Selmi, Modeling, design and characterization of
a new low jitter analog dual tuning lc-vco pll architecture," in Proc. of the IEEE Inter.
Symp. on Circuits and Systems, vol. 4, pp. 23-26, May 2005.
[48] R. Nonis, N. D. Dalt, P. Palestri, and L. Selmi, Modeling, design and characterization
of a new low jitter analog dual tuning lc-vco pll architecture," IEEE J. of Solid-State
Circuits, vol. 40, no. 6, pp. 1303-1309, Jun. 2005.
[49] A. M. Fahim M. I. Elmasry, A fast lock digital phase-locked-loop architecture for wireless
applications," IEEE Trans. Circuits Systems-II, vol. 50, no. 2, pp. 63-72, Feb. 2003.
[50] T. Olsson and P. Nilsson, A digitally controlled PLL for SoC applications," IEEE Jour-
nal Solid-State Circuits, vol. 39, no. 5, pp. 751-760, May 2004.
[51] J.-S. Chiang and K.-Y Chen, The design of an all-digital phase-locked loop with small
DCO hardware and fast phase lock," IEEE Trans. Circuits and Systems-II, vol. 46, no.
7, pp. 945-950, Jul. 1999.
[52] T.-Y. Hsu, C.-C. Wang, and C.-Y. Lee, Design and analysis of a portable high-speed
clock generator," IEEE Trans. Circuits and Systems-II, vol. 48, no. 4, pp. 367-375, Apr.
2001.
[53] C.-C. Wang, C.-C. Huang, J.-S. Liou, Y.-J. Ciou, I-Y. Huang, C.-P. Li, Y.-C. Lee, and
W.-J.Wu An Implantable Long-term Bladder Urine Pressure Measurement System with
a 1-atm Canceling Instrumentation Ampli‾er, "in Proc. of IEEE Int. Symp. on Circuits
and Systems, pp. 2383 - 2386 , May 2007.
[54] M.-D. Ker and C.-H. Chung, Electrostatic discharge protection for design for mixed-
voltage CMOS I/O bu®ers," IEEE J. Solid-State Circuits, vol. 37, no. 8, pp. 1046-1055,
Aug. 2002.
[55] M.-D Ker and C.-S Tsai, Design of 2.5V/5V mixed-voltage CMOS I/O bu®er with only
thin oxide device and dynamic n-well bias circuit," in Proc. IEEE Int. Symp. Circuits
and Systems, vol. 5, pp. V-97-V-100, May. 2003.
[56] M.-D. Ker, T.-M. Wang, and F.-L. Hu, Design on mixed-voltage I/O bu®ers with slew-
rate control in low-voltage CMOS process," in Proc. of 15th Int. Conf. on Electronics,
Circuits and Systems, pp. 1047-1050, Aug. 2008.
[57] T.-J. Lee, W.-C. Chang, and C.-C. Wang, Mixed-voltage I/O bu®er using 0.35 gm
CMOS technology," IEEE Int. Conf. on Electronics, Circuits and Systems, pp. 850-853,
Aug. 2008.
[58] E. Callaway, P.Gorday, L. Hrster, J. A. Guierrez, M. Naeve, B. Heile, and V. Bahl, Home
networking with IEEE 802.15.4: a developing standard for low-rate wireless personal area
networks," IEEE J. Conmmunications, vol. 40, no. 8, pp.70-77, Aug. 2002.
[59] C.-C. Wang, J.-M. Huang, C.-Y. Chang, and C.-P. Li, 868/915 MHz ZigBee receiver
for personal medical assistance," in Proc. of IEEE Inter. Conf. on Consumer Electronics
2006, pp.461-462, Jan. 2006.
[60] G. J. R. Povey and P. M. Grant, Simpli‾ed matched ‾lter receiver designs for spread
spectrum communication applications," Electronics and Communication Engineering
Journal, vol. 5, no. 2, pp. 59-64, Apr. 1993.
[61] C.-C. Chung and C.-Y. Lee, An all-digital phase-locked loop for high-speed clock gen-
eration," IEEE J. Solid-State Circuits, vol. 38, no. 2, pp. 347-351, Feb. 2003.
[62] J. Dunning, G. Garcia, J. Lundberg, and E. Nuckolls, An all-digital phase-locked loop
with 50-cycle lock time suitable for high-performance microprocessors," IEEE J. Solid-
State Circuits, vol. 30, no. 4, pp. 412-422, Apr. 2004.
[63] T.-Y. Hsu, C.-C. Wang, and C.-Y. Lee, Design and analysis of a portable high-speed
clock generator," IEEE Trans. Circuits Systems II, vol. 48, no. 4, pp. 367-375, Apr. 2001.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.212.87.137
論文開放下載的時間是 校外不公開

Your IP address is 18.212.87.137
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code