Responsive image
博碩士論文 etd-1013104-163813 詳細資訊
Title page for etd-1013104-163813
論文名稱
Title
以電漿輔助分子束磊晶於矽(111)基板形成氮化鎵奈米柱之成長與分析
Growth and Characterization of GaN Nanorods Grown on Si(111) Substrate by Plasma-assisted Molecular Beam Epitaxy
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
169
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-09-30
繳交日期
Date of Submission
2004-10-13
關鍵字
Keywords
氮化鎵、奈米柱、分子束磊晶、拉曼、電子顯微鏡、光致螢光、奈米結構
Raman, MBE, nanostructure, nanorod, EM, PL, GaN
統計
Statistics
本論文已被瀏覽 5709 次,被下載 0
The thesis/dissertation has been browsed 5709 times, has been downloaded 0 times.
中文摘要
幾近於無錯位的氮化鎵奈米柱利用自組式方式經由分子束磊晶法成長於矽(111)基板上,奈米柱的成長沒有使用任何的催化劑輔助,在不同的成長條件下,這些奈米柱的寬度維持在10 nm 至大約 800 nm,而在薄膜之上的高度則介於50 nm 至 3
Abstract
Nearly dislocation-free vertical GaN pillars in nanoscale were grown on Si (111) surface through self-assembly by molecular-beam epitaxy. No extra catalytic or nanostructural assistance has been employed. These nanorods have a lateral dimension from 10 nm to ~ 800 nm and a height of 50 nm to 3
目次 Table of Contents
中文提要………………………………………………………….I
中文摘要…………………………………………………………II

Abstract………………………………………………..…………IV

Contents…………………………………………………………VI

Figure list…………………………………………………VIII

Chapter 1 Introduction……………………………………………1
1.1 GaN base devices and semiconductor nanodevices…… 1
1.2 Fabrication of GaN nanomaterials…………………2
1.3 Research motivation…………………………………… 3
1.4 Organization of the thesis……………………………4
References…………………………………………………………6

Chapter 2 A brief review of growth and characterization techniques………...………………………………………….9
2.1 GaN nanorod growth………………………..…………………9
2.2 Reflection high-energy electron diffraction…………...11
2.3 Luminescence of semiconductor…………………………..13
2.4 Raman spectroscopy………………………………….………15
References………………………………………………………..19

Chapter 3 System setup and experimental procedures……30
3.1 System setup……………………………………………………30
3.1.1 Plasma-assisted molecular beam epitaxy system….30
3.1.2 Photoluminescence (PL) system……………………………31
3.1.3 Micro-Raman and micro-PL system…………………………31
3.2 Experimental procedures………………………………………32
3.2.1 Sample preparation…………………………………………32
3.2.2 GaN nanorod growth…………………………………………33
3.2.3 Analyses of GaN nanorods………………………………35
References………………………………………………………….36


Chapter 4 GaN nanorod growth……………………………………45
4.1 GaN nanorod grown without buffer layer…………………45
4.1.1 Different NBEP/GaBEP ratios………………………………45
4.1.2 Different substrate temperatures……………………51
4.1.3 Summary………………………………………………………53
4.2 GaN nanorod grown with GaN buffer layer…………………55
4.2.1 Different NBEP/GaBEP ratios………………………………55
4.2.2 Different GaN buffer layer temperatures………………57
4.2.3 Time evolution of GaN nanorods…………………………59
4.2.4 Summary…………………………………………………….64
References………………………………………………………..65

Chapter 5 Optical properties of GaN nanorod…………………94
5.1 Photoluminescence spectroscopy of GaN nanorod…………94
5.1.1 Temperature dependent PL spectroscopy…………………94
5.1.2 Physical property of luminescent emission at 3.425 eV……………….96
5.1.3 Summary……………………………………………………….97
5.2 Micro-Raman spectroscopy of a single free-standing GaN nanorod………98
5.2.1 First-order Raman modes of a single GaN nanorod……98
5.2.2 Laser-power-density dependent Raman spectroscopy…101
5.2.3 Physical property of nanorod related phonon mode102
5.2.4 Summary………………………………………………..103
References……………………………………………………..104

Chapter 6 Conclusions………………………………………124

Appendix A Cathodoluminescence spectroscopy of single freestanding GaN nanorod.…..………………………127

Appendix B Raman spectroscopy of GaN…………………………136

Appendix C InN grown on Si(111) and sapphire substrates by PAMBE………………………………………………144
參考文獻 References
[1.1] H. Morkoc; and S. N. Mohammad, Science 267, 51 (1995).
[1.2] I. Akasaki and H. Amano, J. Cryst. Growth 175/176, 29 (1997).
[1.3] S. Nakamura, Science 281, 956 (1998).
[1.4] Gallium Nitride (GaN) II, edited by J. I. Pankove and T. D. Moustakas (Academic, New York, 1999).
[1.5] L. W. Tu, W. C. Kuo, K. H. Lee, P. H. Tsao, C. M. Lai, A. K. Chu, and J. K. Sheu, Appl. Phys. Lett. 77, 3788 (2000).
[1.6] L. W. Tu, P. H. Tsao, K. H. Lee, I. Lo, S. J. Bai, C. C. Wu, K. Y. Hsieh, and J. K. Sheu, Appl. Phys. Lett. 79, 4589 (2001).
[1.7] M. Yoshizawa, A. Kikuchi, N. Fujita, K. Kushi, H. Sasamoto, and K. Kishino, J. Cryst. Growth 189/190, 138 (1998).
[1.8] E. Calleja, M. A. Śanchez-Garćia, F. J. Śanchez, F. Calle, F. B. Naranjo, and Muňoz, Phys. Rev. B 62, 16826 (2000).
[1.9] T. Araki, Y. Chiba, M. Nobata, Y. Nishioka, and Y. Nanishi, J. Cryst. Growth 209, 368 (2000).
[1.10] L. T. Romano and T. H. Myers, Appl. Phys. Lett. 71, 3486 (1997).
[1.11] A. M. Morales and C. M. Lieber, Science 279, 208 (1998).
[1.12] C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, and Y. F. Chen, J. Am. Chem. Soc. 123, 2791 (2001).
[1.13] Y. Huang, X. Duan, Y. Cui, and C. M. Lieber, Nano Lett. 2, 101 (2002).
[1.14] W. Han, S. Fan, Q. Li, and Y. Hu, Science 277, 1287 (1997).
[1.15] J. Zhang, L. D. Zhang, X. F. Wang, C. H. Liang, X. S. Peng, and Y. W. Wang, J. Chem. Phys. 115, 5714 (2001).
[1.16] M. He, P. Zhou, S. N. Mohammad, G. L. Harris, J. B. Halpern, R. Jacobs, W. L. Sarney, and L. Salamanca-Riba, J. Cryst. Growth 231, 357 (2001).
[1.17] R. Birkhahn, R. Hudgins, D. Lee, A. J. Steckl, R. J. Molnar, A. Saleh, and J. M. Zavada, J. Vac. Sci. Technol. B 17, 1195 (1999).
[1.18] J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang and R. J. Saykally , Nature materials 1, 106 (2002).
[1.19] H. M. Kim, T. W. Kang, and K. S. Chung, Adv. Mater. 15, 567 (2003).
[1.20] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Scinece 292, 1879 (2001).
[1.21] X. Duan, Y. Huang, R. Agarwai, and C. M. Lieber, Nature 421, 241 (2003).
[1.22] Y. Cui, Q. Wei, H. Park, and C. M. Lieber, Science 293, 1289 (2001).
[1.23] Y. Huang, X. Duan, Y.Cui, Lincoln, J. Lauhon, K. H. Kim and C. M. Lieber, Science 294, 1313 (2001).
[1.24] J. Y. Li, X. L. Chen, Z. Y. Qiao, Y. G. Cao, and Y. C. Lan, J. Crystal Growth 213, 408 (2000).
[1.25] W. Han, P. Redlich, F. Ernst, and M. Rühle, Appl. Phys. Lett. 76, 652 (2000).
[1.26] X. Chen, J. Li, Y. Cao, Y. Lan, H. Li, M. He, C. Wang, Z. Zhang, and Z. Qiao, Adv. Mater. 12, 1432 (2000).
[1.27]J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H. J. Choi, and P. Yang, Nature 422, 599 (2003).
[1.28] H. M. Kim, D. S. Kim, D. Y. Kim, T. W. Kang, Y. H. Cho, and K. S. Chung, Appl. Phys. Lett. 81, 2193 (2002).
[1.29] L. W. Tu, C. L. Hsiao, T. W. Chi, I. Lo, and K. Y. Hsieh, Appl. Phys. Lett. 82, 1601 (2003).
[1.30] M. Yoshizawa, A. Kikychi, M. Mori, N. Fujita and K. Kishino, Jpn. J. Appl. Phys., Part 2 36 (1997) L459.
[1.31] V. V. Mamutin, N. A. Cherkashin, V. A. Vekshin, V. N. Zhmerik and S. V. Ivanov, Phys. Solid State, 43 (2001) 151.
[1.32] S. Fischer et al., J. Cryst. Growth. 189/190, 556 (1998).
[2.1] R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4 , 89 (1964).
[2.2] Y. Wu and P. Yang, J. Am. Chem. Soc. 123, 3165 (2001).
[2.3] E. A. Stach, P. J. Pauzauskie, T. Kuykendall, J. Goldberger, R. He and P. Yang, Nano Lett. 3 (2003) 867.
[2.4] D. D. Koleske, A. E. Wickenden, R. L. Henry, J. C. Culbertson, and M. E. Twigg, J. Cryst. Growth 223, 446 (2001).
[2.5] Z. A. Munir and A. W. Searcy, J. Chem. Phys. 42, 4223 (1965).
[2.6] H. Z. Zhang, Y. C. Wang, X. Du, Z. G. Bai, J. J. Wang, D. P. Yu, Y. Ding, Q. L. Hang, and S. Q. Feng, Solid State Commun. 109, 677 (1999).
[2.7] Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of semiconducting oxides”, Science 291, 1947 (2001)
[2.8] S. M. Zhou, Y. S. Feng, and L. D. Zhang, Chem. Phys. Lett. 369, 610 (2003).
[2.9] E. Calleja, M. A. Śanchez-Garćia, F. J. Śanchez, F. Calle, F. B. Naranjo, and Muňoz, Phys. Rev. B 62, 16826 (2000).
[2.10] M. Yoshizawa, A. Kikychi, M. Mori, N. Fujita and K. Kishino, Jpn. J. Appl. Phys. part 2 36, L459 (1997).
[2.11] L. W. Tu, C. L. Hsiao, T. W. Chi, I. Lo, and K. Y. Hsieh, Appl. Phys. Lett. 82, 1601 (2003).
[2.12] W. Braum, Applied RHEED, Springer, Berlin, (1999).
[2.13] I. Hernández-Cadlderón and H. Höchst, Phys. Rev. B 27, 4961 (1983).
[2.14] M. B. Panish and H. Temkin, Gas source molecular beam epitaxy, Springer-Verlag, Berlin, (1993).
[2.15] B. G. Yacobi and D. B. Holt, Cathodoluminescence microscopy of inorganic solids, (Plenum press, New York and London, 1990).
[3.1] M. B. Panish and H. Temkin, Gas source molecular beam epitaxy, Springer-Verlag, Berlin (1993).
[3.2] P. L. A. Chr, M. V. D. Meer, L. J. Gilling, and S. G. Kroon, J. Appl. Phys. 46, 652 (1976).
[3.3] S. M. Gates, P. R. Kunz, and C. M. Greenlief, Surf. Sci. 207, 364 (1989).
[3.4] D. C. Streit and F. G. Allen, J. Appl. Phys. 61, 2894 (1987).
[4.1] P. K. Larsen and P. J. Dobson, Reflection High-Energy Electron Diffraction and Reflection Electron Image of Surfaces, Plenum Press, New York, pp.475-499 (1988).
[4.2] I. Hernández-Calderón and H. Höchst, Phys. Rev. B, 27 4961 (1983).
[4.3] C. A. Arguello, D. L. Rousseau, and S. P. S. Porto, Phys. Rev. 181, 1351 (1969).
[4.4] H. Siegle, L. Eckey, A. Hoffman, C. Thomsen, B. K. Meyer, D. Schikora, M. Hankelin, and K. Lischka, Solid State Comm 96, 943 (1995).
[4.5] J. M. Wanger and F. Bechstedt, Appl. Phys. Lett.77, 346 (2000).
[4.6] V. Y. Davydov, N. S. Averkiev, I. N. Goncharuk, D. K. Nelson, A. S. Polkovnikov, A. N. Smironv, M. A. Jacobson, and O. K. Semchinova, J. Appl. Phys. 82, 5097 (1997).
[4.7] S. Tripathy, S. J. Chua, P. Chen, and Z. L. Miao, J. Appl. Phys. 92, 3503 (2002).
[4.8] K. Kawasaki, D. Yamazaki, A. Kinoshita, K. Tsutsui, and Y. Aoyagi, Appl. Phys. Lett. 79, 2243 (2001).
[4.9] C. W. Hu, B.Bell, F. A. Ponce, D. J. Smith, and I. S. T. Tsong, Appl. Phys. Lett. 81, 3236 (2002).
[4.10] T. Zywietz, J. Neugebauer, and M. Scheffler, Appl. Phys. Lett. 73, 488 (1998).
[4.11] F. Widmann, B. Daudin, G. Feuillet, Y. Samson, J. L. Rouviere, and N. Pelekanos , J. Appl. Phys. 83, 7618 (1998).
[4.12] E. A. Stach, P. J. Pauzauskie, T. Kuykendall, J. Goldberger, and R. He, P. Yang, Nano Lett. 3, 867 (2003).
[4.13] Z. Zhong, F. Qian, D. Wang, and M. Liber, Nano Lett. 3, 343 (2003).
[4.14] S. Guha, N. A. Bojarczuk, and D. W. Kisker, Appl. Phys. Lett. 69, 2879 (1996).
[4.15] B. Heying, I. Smorchkova, C. Poblenz, C. Elsass, P. Fini, S. D. Baars, U. Mishra and J. S. Speck, Appl. Phys. Lett. 77, 2885 (2000).
[4.16] J. K. Tsai, I. Lo, K. L. Chuang, L. W. Tu, J. H. Huang, C. H. Hsieh and K. Y. Hsieh, J. Appl. Phys. 95, 460 (2004).
[4.17] L. W. Tu, C. L. Hsiao, T. W. Chi, I. Lo and K. Y. Hsieh, Appl. Phys. Lett. 82, 1601 (2003).
[4.18] H. Morko and S. N. Mohammad, Science 267, 51 (1995).
[4.19] J. I. Pankove and T. D. Moustakas, Gallium Nitride (GaN) II, Academic Press, New York, 1999.
[4.20] M. S. Gudiksen and C. M. Lieber, J. Am. Chem. Soc. 122, 8801(2000).
[4.21] R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4 , 89 (1964).
[5.1] L. W. Tu, Y. C. Lee, D. Stocker, and E. F. Schubert, Phys. Rev. B 58, 10696 (1998).
[5.2] L. W. Tu, Y. C. Lee, S. J. Chen, I. Lo, D. Stocker, and E. F. Schubert, Appl. Phys. Lett. 73, 2802 (1998).
[5.3]Jacques I. Pankove, Optical processes in semiconductors, Dover publication, Inc. New York, (1975).
[5.4]A. J. Fischer, W. Shan, and J. J. Song, Appl. Phys. Lett. 71, 1981 (1997).
[5.5]G. D. Chen, M. Smith, J. Y. Lin, and H. X. Jiang, J. Appl. Phys. 79, 2675 (1996).
[5.6]Y. Li and Y. Lu, Appl. Phys. Lett. 70, 2458 (1997).
[5.7]S. Strite and H. Morkoc, J. Vac. Sci. Technol. B 10, 1237 (1992).
[5.8] C. A. Arguello, D. L. Rousseau, and S. P. S. Porto, Phys, Rev. 181, 1351 (1969).
[5.9] T. C. Damen, S. P. S. Porto, and B. Tell, Phys. Rev. 142, 570 (1966).
[5.10] H. Harima, J. Phys.: Condens. Matter 14, R867 (2002).
[5.11] H. Siegle, L. Eckey, A. Hoffmann, C. Thomsen, B. K. Meyer, D.Schikora, M. Hankeln, and K. Lischka, Solid State Comm. 96, 943 (1995).
[5.12] T. Azuhata, T. Sota, K. Suzuki, and S. Nakarmura, J. Phys: Condens. Matter 7, L129 (1995).
[5.13] M. Cardona, Light Scattering in Solids II , Springer, Berlin, Heidelberg, (1982).
[5.14] M. S. Liu, L. A. Bursill, S. Prawer, K. W. Nugent, Y. Z. Tong, and G. Y. Zhang, Appl. Phys. Lett. 74, 3125 (1999).
[5.15] M. Giehier, M. Ramsteiner, P. Waltereit, O. Brandt, K. H. Ploog, and H. Obloh, J. Appl. Phys. 89, 3634 (2001).
[5.16] N. B. Colthup, L. H. Daly, and S. E. Wiberley, Introduction to Infrared and Raman Spectroscopy , Academic Press, New York, (1990).
[5.17] H. D. Li, S. L. Zhang, H. B. Yang, G. T. Zou, Y. Y. Yang, K. T. Yue, X. H. Wu, and Y. Yan, J. Appl. Phys. 91, 4562 (2002).
[5.18] W. Limmer, W. Ritter, R. Sauer, B. Mensching, C. Liu, and Rauschenbach, Appl. Phys. Lett. 72, 2589 (1998).
[5.19] A. Bittar, H. J. Trodahl, N. T. Kemp, and A. Markwitz, Appl. Phys. Lett. 78, 619 (2001).
[5.20] H. C. Van de Hulst, Light Scattering by Small Particles, Wiley, New York, (1957).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.222.115.166
論文開放下載的時間是 校外不公開

Your IP address is 18.222.115.166
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code