Responsive image
博碩士論文 etd-1013105-110012 詳細資訊
Title page for etd-1013105-110012
論文名稱
Title
環境雜訊的探討及高頻雜訊電流感測器的設計
Characterization of Ambient Noise and Design of Current Sensors for High-Frequency Noise
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
107
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-10-08
繳交日期
Date of Submission
2005-10-13
關鍵字
Keywords
電流感測器、晶片螺旋電感、環境雜訊
Ambient Noise, On-Chip Solenoid inductor, Current Sensor
統計
Statistics
本論文已被瀏覽 5661 次,被下載 0
The thesis/dissertation has been browsed 5661 times, has been downloaded 0 times.
中文摘要
在高人口密度且機車數目遠多於汽車數目的情形下,使得台灣地區的雜訊不同於其他國家。在這種雜訊環境下,電磁效應的影響也日益增加。目前,由於台灣的電磁環境非常特殊且有關無線電雜訊的訊息也是缺乏的,再者,雜訊環境也會對無線通訊系統造成干擾。因此,我們需要了解雜訊所造成的影響。隨著無線電雜訊在頻率範圍為354 MHz到426 MHz測量時,利用所得到的結果在這篇論文中將會提出市區環境的最低接收功率。這些雜訊環境利用累積分佈函數、振幅機率分佈、雜訊振幅分佈、脈波持續分佈、脈波間隔分佈及平均穿越比例等統計方法來分析。我們分別測量以下幾個市區地點的雜訊特性:市中心、港口附近、交流道及在臨近市中心的山丘上。我們選擇這幾個地點的原因主要有:(a)在市區的雜訊容忍度比郊區及鄉村低,(b)山上量測的涵蓋範圍較在市區裡面大,(c)可以獲得在市中心及山丘上所量測到雜訊的關係。這四個特殊雜訊環境的統計分佈將會被展示出並且針對廣播系統設計上的限制也將會被提出。
其次,在這篇論文中,為了得到具有較高操作頻率的電流感測器,我們也提供了一個把縮小型羅科斯基線圈設計在玻璃基板上的技術。這個線圈對於高頻微帶線上微小電流的量測是有用的。在我們的實驗中,我們在50歐姆的微帶線中輸入100 mV的電壓,而待測電流的頻率最高可大於6 GHz,這個最高的頻率主要是受限於我們的示波器。在高頻時,為了得到足夠大的輸出電壓,元件本身的幾何效應已經被研究。藉由羅科斯基線圈結構的調整,我們所得到最大的輸出電壓可達到將近7 mV.在此同時,高頻積體電路的晶片螺旋電感已經在這篇論文中被推薦。藉由把一個電感分為三個串聯的小電感可以減少渦流的損耗。這個電感其電感值為1.1 nH、最大品質因子為50.5、共振頻率則會大於17.5 GHz且操作頻率為16.7 GHz。
Abstract
High population density and the presence of many more motorcycles than cars make the noise environment in Taiwan different from that in other countries. There is growing concern about the electromagnetic effects within this environment. The electromagnetic environment is unique and the information about radio noise is not sufficient at this time. The interference of wireless communication system may be caused by the noise environment. Thus, we need to consider the influence that the noise causes. With the measured radio noise, the minimum suggested receive power in an urban environment ranges from 354 MHz to 426 MHz. It is analyzed by the means of Cumulative Distribution Function (CDF), Amplitude Probability Distribution (APD), Noise Amplitude Distribution (NAD), Pulse Duration Distribution (PDD), Pulse Spacing Distribution (PSD) and Average Crossing Rate (ACR). We measured the properties of noise at an urban center, a nearby port, and a freeway exit, which are located in the same city, and on a hill lying adjacent to the city. We chose an urban center and a nearby hill as the noise environment for the following reasons: (a) The noise margin at urban areas is smaller than that at suburban and rural areas. (b) The coverage of the measurement on a hill is larger than that in a city. (c) The relation of the noise environment between a hill and an urban center can be obtained. The statistical distributions of the four particular noise environments are shown and design constraints for a broadcasting system are revealed.
Secondly, we also provide a technology for designing miniature Rogowski coils on glass substrates to obtain current sensors for high operating frequencies in this thesis. The coils are useful for measurement of a small current on a microstrip line at high frequencies. In our experiments, a 50 Ohm microstrip line is driven by an input voltage of 100 mV. A frequency as high as 6 GHz has been used. The highest frequency is limited by the oscilloscope available to us. Geometric effects of the device were investigated to obtain the sufficient output voltage at high frequencies. The induced output voltage can approach approximately 7 mV by modifying the structure of Rogowski coils. At the same time, On-chip solenoid inductors for high frequency magnetic integrated circuits are proposed. The eddy current loss was reduced by dividing the inductor into three consecutive inductors connected in series. The inductor has an inductance of 1.1 nH and the maximum quality factor (Qmax) of 50.5. The self-resonant frequency and the operating frequency at Qmax are greater than 17.5 GHz and 16.7 GHz, respectively.
目次 Table of Contents
Contents
Acknowledgement I
摘 要 V
Abstract VI
Contents VIII
Figure Captions X
Table Captions XIII
Chapter 1 Introduction 1
1.1 Background 1
1.1.1 Ambient noise 1
1.1.2 On-chip solenoid inductors 2
1.1.3 Miniature Rogowski coils 3
1.2 Statement of purpose 4
1.2.1 Ambient noise 4
1.2.2 On-chip solenoid inductors 5
1.2.3 Miniature Rogowski coils 6
1.3 Outline of the thesis 7
Chapter 2 Noise Figure and Statistical Theory 9
2.1 Noise Figure 9
2.2 Statistical Theory 11
2.3 Discussion 13
Chapter 3 Measurement of Urban Radio Noise 15
3.1 Measurement Equipment 15
3.2 Measurement Environment 16
Chapter 4 Analysis of Measured Data for Urban Radio Noise 18
4.1 Cumulative Distribution Function 18
4.2 Amplitude Probability Distribution 21
4.3 Average Crossing Rate 23
4.4 Pulse Duration and Pulse Spacing Distributions 26
4.5 Noise Amplitude Distribution 30
4.6 Comparison 33
Chapter 5 Geometry Effects and Principles of Solenoid Inductors and Miniature Rogowski Coils 44
5.1 Geometry effects of the devices 44
5.2 Principles of the devices 47
Chapter 6 Fabrications of Solenoid Inductors and Miniature Rogowski Coils 50
6.1 Geometry effects of the devices 52
6.2 A study of side etching 68
Chapter 7 The Performances of On-Chip Solenoid Inductors and Miniature Rogowski Coils 79
7.1 The performance of the on-chip solenoid inductors 74
7.2 The properties and applications of the miniature Rogowski coils 78
Chapter 8 Conclusions 83
參考文獻 References
[1] W. C. Y. Lee, Mobile Communications Design Fundamentals, 2nd ed. New York: John Wiley & Sons, 1993.
[2] R. C. French, “Mobile radio data transmission in the urban environment,” in IEEE Int. Conf. Communicat., Vol. 1, Philadelphia, June 1976, pp. 27.15–27.20.
[3] Ministry of Transportation and Communication, “A questionnaire about the condition of motorcycles in use,” Taiwan, Dec. 1999 (in Chinese).
[4] Ministry of Transportation and Communication, “A questionnaire about the condition of cars in use,” Taiwan, Dec. 2000 (in Chinese).
[5] B. Keiser, Principles of electromagnetic compatibility, 3rd ed. Norwood, MA: Artech House, 1987.
[6] J. Zou, C. Liu, D. R. Trainor, J. Chen, J. E. Schutt-Aine, and P. L. Chapman, “Development of three-dimensional inductors using plastic deformation magnetic assembly (PDMA),” IEEE Transactions on Microwave Theory and Techniques, vol. 51, no. 4, pp. 1067–1075, April 2003.
[7] Nhat M. Nguyen and Robert G. Meyer, “Si IC–compatible inductors and LC passive filters,” IEEE Journal of Solid–State Circuits, vol. 25, no. 4, pp. 1028–1031, August 1990.
[8] Chen-Yu Chi and Gabriel M. Rebeiz, “Planar microwave and millimeter-wave lumped elements and coupled-line filters using micro-machining techniques,” IEEE Transactions on Microwave Theory and Techniques, vol. 43, no. 4, pp. 730–738, April 1995.
[9] M. Soyuer, J. N. Burghartz, K. A. Jenkins, and S. Ponnapalli, “Multilevel monolithic inductors in silicon technology,” Electron. Lett., vol. 31, no. 5, pp. 359–360, March 1995.
[10] R. B. Merrill, T. W. Lee, H. You, R. Rasmussen, and L. A. Moberly, “Optimization of high Q integrated inductors for multi-level metal CMOS,” International Electron Devices Meeting 1995, pp. 983–986.
[11] Joachim N. Burghartz, Mehmet Soyuer, Keith A. Jenkins, and Michael D. Hulvey, “High–Q inductors in standard silicon interconnect technology and its application to an integrated RF power amplifier,” International Electron Devices Meeting 1995, pp. 1015–1018.
[12] Robert Rodriguez, John M. Dishman, Fred T. Dickens, and Edward W. Whelan, “Modeling of two-dimensional spiral inductors,” IEEE Transactions on Components, Hybrids, Manufacturing Technology, vol. 3, no. 4, pp. 535–541, 1980
[13] Alfredo Olivei, “Optimized miniature thin-film planar inductors, compatible with integrated circuits,” IEEE Transactions on Parts, Materials and Packaging, vol. 5, no. 2, pp. 71–88, 1969.
[14] Waseem A. Roshen and David E. Turcotte, “Planar inductors on magnetic substrate,” IEEE Transactions on Magnetics, vol. 24, no. 6, pp. 3213–3216, November 1988.
[15] J. Gil, S. S. Song, H. Lee, and H. Shin, “A -119.2 dBc/Hz at 1 MHz, 1.5 mW, fully integrated, 2.5-GHz, CMOS VCO using helical inductors,” IEEE Microw. Guided Wave Lett., vol. 13, no. 11, pp. 457–459, 2003.
[16] K. Nishikawa, S. Sugitani, K. Inoue, T. Ishii, K. Kamogawa, B. Piernas, and K. Araki, “Low-loss passive components on BCB-Based 3-D MMIC technology,” IEEE MTT-S Dig., 2001, pp. 1881–1884.
[17] J. B. Yoon, B. K. Kim, C. H. Han, E. Yoon, and C. K. Kim, “Surface micromachined solenoid on-Si and on-glass inductors for RF application,” IEEE Electron Device Lett., vol. 20, no. 9, pp. 487–489, 1999.
[18] W. Rogowski and W. Steinhaus, “Die messung der magnetische spannung,” Arch. Electrotech., pp. 141–150, 1912.
[19] J. D. Ramboz, D. E. Destefan, and R. S. Stant, “The verification of Rogowski coil linearity from 200 A to greater than 100 kA using ratio methods,” IEEE Instrum. Meas. Technol. Conf., May 2002, pp. 687–692.
[20] L. Kojovic, “Rogowski coils suit relay protection and measurement,” IEEE Comput. Appl. Power, vol. 10, no. 3, pp. 47–52, 1997.
[21] A. Rautiainen, P. Helisto, T. Mansten, and H. Seppa, “50 Hz current measurements with Rogowski coils,” 2002 Conf. on Precision Electromagn. Meas., Jun. 2002, pp. 230–231.
[22] C. D. M. Oates, A. J. Burnett, and C. James, “The design of high performance Rogowski coils,” 2002 IEE 1st International Conf. on Power Electron., Machines and Devices, Apr. 2002, pp. 568–573.
[23] K. Benaissa, J. Y. Yang, D. Crenshaw, B. Williams, S. Sridhar, J. Ai, G. Boselli, S. Zhao, S. Tang, S. Ashburn, P. Madhani, T. Blythe, N. Mahalingam, and H. Shichijo, “RF CMOS on high-resistivity substrates for system-on-chip applications,” IEEE Trans. on Electron Device, vol. 50, no. 3. pp.567–576, Mar. 2003.
[24] J. B. Yoon, B. K. Kim, C. H. Han, E. Yoon, and C. K. Kim, “Surface micromachined solenoid on-Si and on-glass inductors for RF application,” IEEE Electron Device Lett., vol. 20, no. 9, pp. 487–489, Sept. 1999.
[25] D. C. Edelstein, and J. N. Burghartz, “Spiral and solenoid inductor structure on silicon using Cu-damascene interconnects,” IEEE International Interconnect Technology Conference 1998, pp. 18–20.
[26] D. Hisamoto, S. Tanaka, T. Tanimoto, and S. I. Kimura, “Suspended SOI structure for advanced 0.1- CMOS RF devices,” IEEE Trans. on Electron Device, vol. 45, no. 5. pp. 1039–1046, Mar. 1998.
[27] K. W. Lee, J. N. Park, S. H. Kang, Y. S. Lee, G. H. Ham, Y. M. Jang, and K. J. Lim,”Geometrical effects in the current measurement by Rogowski sensor,” International Symposium Electrical Insulating Materials 2001, pp. 419–422.
[28] A. H. Mills, “A survey of radio-frequency noise in urban, suburban, and rural areas,” in Proc. IEEE Int. Symp. Electromagn. Compat., 1968, pp. 108–112.
[29] G. Anzic, “Measurement and analysis of radiofrequency indigenous noise,” in Proc. IEEE Int. Symp. Electromagn. Compat., 1970, pp. 183–195.
[30] W. R. Lauber and J. M. Bertrand, “Man-made noise level measurements of the UHF radio environment,” in Proc. IEEE Int. Symp. Electromagn. Compat., 1984, pp. 185–192.
[31] L. D. Dornetto, J. R. Reaves, L. M. Valoppi, “An automated HF noise measurement system,” in Proc. IEEE Int. Symp. Electromagn. Compat., 1986, pp. 90–96.
[32] T. Hachiya, T. Suzuki, H. Echigo and R. Sato, “Radio noise measurement near the vehicle traffics,” in Proc. IEEE Int. Symp. Electromagn. Compat., May 1999, pp. 774–777.
[33] E. N. Skomal, A. A. Smith Jr, Measuring the radio frequency environment. New York: Nostrand Reinhold, 1985.
[34] W. Rotkiewicz, Electromagnetic Compatibility in Radio Engineering. New York: Elsevier Scientific, 1982.
[35] E. N. Skomal, Man-Made Radio Noise. New York: Nostrand Reinhold, 1978.
[36] J. G. Rhee, “Statistical analysis of radio frequency noise spectrum in Korea,” in Proc. IEEE Int. Symp. Electromagn. Compat., May 1999, pp. 193–196.
[37] ATSC, ATSC Digital Television Standard. Sept. 1995.
[38] N. G. Riley and K. Docherty, “Modelling and measurement of man-made radio noise in the VHF-UHF bands,” in Proc. 9th Int. Conf. Antennas Propagat., Vol. 2, Apr. 1995, pp. 313–316.
[39] Advistory Committee for Land Mobile Radio Service, Working Group 3, Man Made Noise. FCC, 1996.
[40] ANSI C63.2, “American National Standard for Electromagnetic noise and Field Strength Instrumentation, 10 Hz to 40 GHz – Specifications,” 1996.
[41] CCIR Study Question and Study Programme (46A/1) on Man-made radio noise, XI Vth Plenary Assembly KYOTO, 1978.
[42] CISPR publication 2, IEC Geneva, 1961.
[43] CISPR publication 4, IEC Geneva, 1967.
[44] CISPR publication 12, IEC Geneva, 1975.
[45] SAE J551 Recommended Practice – Society of Automotive Engineers, “Performance Levels and Methods of Measurement of EMC for Vehicles and Devices,” Mar. 1994.
[46] European Commission Directive 95/54/EC, “Requirements to be met by vehicles and electrical/electronic sub-assemblies fitted to a vehicle,” Nov. 1995.
[47] Second draft CISPR report on roadside testing of radio frequency interference from vehicles CISPR/D(Secretariat) 47, IEC, Geneva, Nov. 1985.
[48] T. N. Roy, “Airborne man-made radio noise assessment,” in Proc. IEEE Int. Symp. Electromagn. Compat., 1982, pp. 288–295.
[49] G. H. Hagn and R. A. Shepherd, “Man-made electromagnetic noise from incidental radiators: A summary,” in Proc. Conf. No. 159, NATO/AGARD Meeting on Electromagn. Noise, Interfere. Compat., Oct. 1974, pp. 21–25.
[50] R. A. Shepherd, J. C. Gaddie, A. Shohara, “Measurement parameters for automobile ignition noise,” Final Report, SRI Project 3930, for Motor Vehicle Manufacturers Association, Detroit, Michigan, MVMA Agreement No. SRI 7502–C2.10, Stanford Research Institute, June 1975.
[51] R. A. Shepherd, J. C. Gaddie, V. E. Hatfield, and G. H. Hagn, “Measurements of automobile ignition noise at HF,” Final Report, SRI Project 2051, Contract N00039–71–A–0223, Delivery Order 0003, Stanford Research Institute, Feb. 1973.
[52] Y. S. Choi and J. B. Yoon, “Exprimental analysis of the effect of metal thickness on the quality factor in integrated spiral inductors for RF ICs,” IEEE Electron Device Lett., vol.25, no. 2, pp. 76–79, Feb. 2004.
[53] R. F. Dana and Y. L. Chow, “The current distribution and AC resistance of a microstrip structure,” IEEE Trans. Microwave Theory Tech., vol. 38, pp. 1268–1277, Sept. 1990.
[54] V. G. Welsby, The theory and design inductance coils. Macdonald & Co. Ltd., 1960.
[55] L. Kojovic, “Rogowski coils suit relay protection and measurement,” IEEE Comput. Appl. Power, vol. 10, no. 3, pp. 47–52, 1997.
[56] N. Iwasaki and S. Yamaguchi, “A pillar shaped via structure in a Cu-polyimide multilayer substrate,” IEEE Trans. Comp., Hybrids, Manufact. Technol., vol. 13, no. 2, pp. 440–443, June 1990.
[57] K. L. Scott, T. Hirano, H. Yang, H. Singh, R. T. Howe, and A. M. Niknejad, “High-performance inductors using capillary based fluidic self-assembly,” IEEE J. Microelectromech Syst., vol. 13, no. 2, pp. 300–309, Apr. 2004.
[58] W. Y. Liu, J. Suryanarayanan, J. Nath, S. Mohammadi, L. P. B. Katehi, and M. B. Steer, “Toroidal inductors for radio-frequency integrated circuit,” IEEE Trans Microwave Theory Tech., vol. 52, no. 2, pp. 646–654, 2004.
[59] K. S. Yeo, H. P. Tan, J. G. Ma, and M. A. Do, “Three-dimensional integrated coil inductor on silicon for high-frequency applications,” Microwave Opt. Technol. Lett., vol. 31, pp. 23–24, 2001.
[60] J. Craninckx and M. S. J. Steyaert, “A 1.8-GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 736–744, 1997.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.209.209.246
論文開放下載的時間是 校外不公開

Your IP address is 18.209.209.246
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code