Responsive image
博碩士論文 etd-1013111-165151 詳細資訊
Title page for etd-1013111-165151
論文名稱
Title
鍍鋅液鋁活性之電化學量測
The EMF Measurement Of Aluminum Activity In Galvanizing
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
67
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-08-18
繳交日期
Date of Submission
2011-10-13
關鍵字
Keywords
熱浸鍍鋅、有效鋁、活性係數、EMF 量測法、鍍鋅池
EMF method, effective aluminum, zinc bath, hot-dip galvanizing process, activity coefficient
統計
Statistics
本論文已被瀏覽 5688 次,被下載 0
The thesis/dissertation has been browsed 5688 times, has been downloaded 0 times.
中文摘要
本次實驗藉由EMF量測法觀察液態Zn-Al合金在XAl ≤ 0.2084濃度範圍且於430 oC至600 oC之溫度區間之熱力學性質,而實驗所使用之系統為:
Mo, Al(s)/ LiCl-KCl-AlCl3/ Zn-Al(l), Mo
實驗結果歸納其活性係數依含鋁濃度範圍與溫度關係可分別適用之關係式為:
lnγAl=(2159.171/T -1.351)+(1316.614/T -3.052)⋅XAl
上式適用於XAl ≤ 0.1099,703K ≤ T ≤ 858K。
lnγAl=(2103.964/T -1.293)+(3488.03/T -4.952)⋅XAl+(9.419-13263.146/T)⋅XAl^2
此式適用範圍XAl ≤ 0.2084,703K ≤ T ≤ 858K。
經由熱力學計算,EMF量測值在稀薄區中( < 1 wt % Al )可表示為溫度與成分間關係函數EMF = f ( wt % Al, T ),透過此式由量測之電動勢值可預測Zn-Al合金中實際參與反應之有效鋁含量。
希望透過本次研究增加熱浸鍍鋅鍍池的熱力學性質資料庫,以便日後成為熱浸鍍鋅製程的成分控制的學理依據。
Abstract
none
目次 Table of Contents
壹、 前言.....................................................................................................1
1-1 研究背景......................................................................................1
1-2 研究動機......................................................................................2
1-2-1 製程面臨的問題................................................................2
1-2-2 實驗目的............................................................................3
貳、 文獻回顧.............................................................................................4
2-1 元素參雜的影響...........................................................................4
2-1-1 鍍層的成長過程................................................................5
2-1-2 Si對鍍層結構的影響:Sandelin效應...............................6
2-1-3 Al對鍍層結構的影響.......................................................8
2-2 熱力學性質.................................................................................10
2-2-1 電化學與熱力學的關係..................................................10
2-2-2 Electromotive Force Method ( EMF量測法)..................12
2-2-3 低Al含量下鍍鋅溶液熱力學行為描述.........................15
參、 實驗方法...........................................................................................17
3-1 實驗目的....................................................................................17
3-2 實驗裝置....................................................................................17
3-3 電極與合金的製備....................................................................18
3-4 EMF之量測................................................................................18
3-5 合金成份定量檢測....................................................................21
肆、 實驗結果與討論...............................................................................22
4-1 富鋅液態合金熱電動勢與溫度關係........................................22
4-1-1 合金XAl = 0.2084.............................................................22
4-1-2 合金XAl = 0.1099.............................................................24
4-1-3 合金XAl = 0.0731.............................................................26
4-1-4 合金XAl = 0.0234.............................................................28
4-1-5 合金XAl = 0.0158.............................................................30
4-1-6 合金XAl = 0.0046.............................................................32
4-1-7 合金XAl = 0.0024.............................................................33
4-1-8 合金XAl = 0.0012.............................................................35
4-1-9 合金XAl = 0.00022...........................................................36
4-1-10 合金XAl = 0.00017...........................................................38
4-1-11 合金XAl = 0.00007...........................................................39
4-2 討論............................................................................................40
4-2-1 濃度XAl &#8804; 0.1099區........................................................45
4-2-2 濃度XAl &#8804; 0.2084區........................................................47
4-2-3 EMF值與濃度和成分關係.............................................49
伍、 結論...................................................................................................51
陸、 參考文獻...........................................................................................53
參考文獻 References
1. 謝典祐,連續式熱浸鍍鋅鋼帶表面鋅渣缺陷成因與改善,熱浸鍍鋅,NO.32,February 2011。
2. A. R. Marder, The metallurgy of zinc-coated steel, Progress in Materials Science, Volume 45, Issue 3, June 2000, Pages 191-271.
3. C. E. Jordan, A. R. Marder, Fe-Zn phase formation in interstitial-free steels hot-dip galvanized at 450°C, Part I 0.00 wt% Al-Zn baths, Journal of Materials Science, Volume 32, Issue 21, 1997, Pages 5593-5602.
4. C. Che, J. Lu, G. Kong, Q. Xu, Role of silicon in steels on galvanized coatings, Acta Metallurgica Sinica (English Letters), Volume 22, Issue 2, April 2009, Pages 138-145.
5. J. D. Culcasi, P. R. Sere, C. I. Elsner, A. R. Di Sarli, Control of the growth of zinc-iron phases in the hot-dip galvanizing process, Surface and Coatings Technology, Volume 122, Issue 1, 1 December 1999, Pages 21-23.
6. J. Ben nasr, A. Snoussi, C. Bradai, F. Halouani, Optimization of hot-dip galvanizing process of reactive steels: Minimizing zinc consumption without alloy additions, Materials Letters, Volume 62, Issue 19, 15 July 2008, Pages 3328-3330.
7. 彭梅香,連續鍍鋅鋅池中有效鋁計算和在線測量方法研究,《湘潭大學》碩士論文,2004。
8. Z. Li, X. Su, Y. He, 450 °C isothermal section of the Zn–Fe–Bi ternary phase diagram, Journal of Alloys and Compounds, Volume 462, Issues 1-2, 25 August 2008, Pages 320-327.
9. R. Fratesi, N. Ruffini, M. Malavolta, T. Bellezze, Contemporary use of Ni and Bi in hot-dip galvanizing, Surface and Coatings Technology, Volume 157, Issue 1, 1 August 2002, Pages 34-39.
10. M. A. Bright, N. J. Deem, J. Fryatt, The advantages of recycling metallic zinc from the processing wastes of industrial molten zinc applications, Light Metals , Edited by TMS (The Minerals, Metals & Materials Society), 2007.
11. S. J. Zhu, L. H. Zhu, Q. Liu, Q. F. Liu, L. Wang, The Development of Hot-dip Technology for Zinc Alloy Coatings, Heat Treament, Volume 23, Issue 3,2008, Pages 20-23.
12. J. L. Murray, Alloy Phase Diagrams, ASM Metals Handbook, Volume 3, 1992, Pages 335 and 874.
13. B. C. Peng, J. H. Wang, X. P. Su, Z. Li, F. C. Yin, Effects of zinc bath temperature on the coatings of hot-dip galvanizing, Surface and Coatings Technology, Volume 202, Issue 9, 1 February 2008, Pages 1785-1788.
14. R. Fourmentin, M. Avettand-Fenoel, G. Reumont, P. Perrot, The Fe–Zn–Al–Cr system and its impact on the galvanizing process in chromium-added zinc baths, Journal of Materials Science, Volume 43, Number 21, 2008, Pages 6872-6880.
15. L. Chen, R. Fourmentin, J.R. Mc Dermid, Morphology and Kinetics of Interfacial Layer Formation during Continuous Hot-Dip Galvanizing and Galvannealing, Metallurgical and Materials Transactions A, Volume 39, Number 9, September 2008, Pages 2128-2142.
16. T. Kato, K. Nunome, K. Kaneko, H. Saka, Formation of the ζ phase at an interface between an Fe substrate and a molten 0.2 mass% Al–Zn during galvannealing, Acta Materialia, Volume 48, Issue 9, 29 May 2000, Pages 2257-2262.
17. E. Baril, Gilles LEsperance, Studies of the morphology of the Al-Rich interfacial layer formed during the hot dip galvanizing of steel sheet, Metallurgical and Materials Transactions A, Volume 30, Number 3, March 1999, Pages 681-695.
18. P. H. Rieger, Electrochemistry, Prentice-Hall, 1987, Pages 6-10.
19. A. Mikula, S. Knott, Thermodynamic investigations of ternary liquid alloys, Journal of Physics: Condensed Matter, Volume 20, Issue 11, 19 March 2008, Pages 1-7.
20. H. Ipser, A. Mikula, I. Katayama, Overview: The emf method as a source of experimental thermodynamic data, Calphad, Volume 34, Issue 3, September 2010, Pages 271-278.
21. A. Mikula, Thermodynamics of Alloy Formation, Edited by Y.A. Chang, The Minerals, Metals & Materials Society, 28 February 1997, Pages 77-98.
22. I. Katayama, K. Shimazawa, D. Zivkovic, D. Manasijevic, Z. Zivkovic, H. Yamashita, Experimental study on gallium activity in the liquid Ga–In–Tl alloys by EMF method with zirconia solid electrolyte, Thermochimica Acta, Volume 431, Issues 1-2, 15 June 2005, Pages 138-143.
23. Y. Chung, J.M. Toguri, R. Sridhar, Thermodynamic Properties of Dilute Aluminum in Liquid Zinc, The Canadian Metallurgical Quarterly, Volume 40, Number 2, April 2001, Pages 185-192.
24. X. Y. Yan, D. E. Langberg, W. J. Rankin, Thermodynamic properties of zinc-rich zinc-aluminum melts, Metallurgical and Materials Transactions B, Volume 24, Number 6, December 1993, Pages 1037-1044.
25. S. Matsuba, K. Nakamoto, Y. Hirose, I. Katayama, T. Iida, Determination of Aluminum Concentration in Molten Zinc by the E.M.F. Method Using Zirconia Solid Electrolyte, ISIJ International, Volume 35, Number 5, 27 January 1995, Pages 512-518.
26. D. C Parris, R. B McLellan, A consideration of the utility of first-order Wagner interaction coefficients, Materials Science and Engineering, Volume 9, 1972, Pages 181-182.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.191.169
論文開放下載的時間是 校外不公開

Your IP address is 3.145.191.169
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code