Responsive image
博碩士論文 etd-1015108-105522 詳細資訊
Title page for etd-1015108-105522
論文名稱
Title
適用於DVB-T之正交分頻多工解調器與亂數訊號產生器之設計與實現
Design and Implementation of the OFDM Demodulator for DVB-T and the Random Number Generator
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
72
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-10-09
繳交日期
Date of Submission
2008-10-15
關鍵字
Keywords
直接數位頻率合成器、正交分頻多工、數位電視、亂數訊號產生器
DDFS, Random number generator, OFDM, DVB-T
統計
Statistics
本論文已被瀏覽 5698 次,被下載 25
The thesis/dissertation has been browsed 5698 times, has been downloaded 25 times.
中文摘要
適用於地面傳播之數位影像廣播(Digital Video Broadcasting - Terrestrial, DVB-T)是目前作為定點接收之數位電視的主要標準。而正交分頻多工(Orthogonal Frequency Division Multiplexing, OFDM)解調器則是DVB-T接收機內的關鍵模組。隨著超大型積體電路(Very Large Scale Integrated-circuit, VLSI)技術的快速發展,將整個DVB-T接收機整合在一個系統單晶片(System-on-a-Chip, SOC)是必然的趨勢,然而在混合訊號電路的整合中,頻率合成以及類比對數位轉換器的校正是必須仔細考慮的部分。本論文提出了一個適用於DVB-T接收機的OFDM解調器,並針對這些在整合時會面臨的重要議題進行探討。
本論文所提出的OFDM解調器包括四個部分:時間同步、頻率同步、2K/8K快速傅立葉轉換器、通道估測。此解調器利用OFDM符元內嵌的嚮導訊號來進行頻率飄移以及通道響應的估測與補償。此外,我們利用接收到的訊號的循環字首來找出正確的OFDM符元起點,使2K/8K快速傅立葉轉換器可以正確地進行解調的動作。
因應DVB-T接收器對低相位雜訊的頻率訊號的需求,我們提出了一個使用四倍角公式來合成弦波的直接數位頻率合成器。根據我們所提出的二階四倍角逼近法,此頻率合成器能避免唯讀記憶體的使用,並且能產生具有高解析度與高頻譜純度的數位弦波。
數位校正技術是一個能有效降類比對數位轉換器受雜訊影響的技術,一般的校正電路都需要一個亂數訊號源來進行調變。亂數的品質會直接影響校正的效能,因此亂數訊號產生器的設計是一個重要但卻常被忽略的議題。本論文提出一個根據渾沌系統所設計的亂數產生器,並且能動態調整系統的參數使輸出的亂數能有平坦的功率頻譜密度。
Abstract
Digital video broadcasting for Terrestrial (DVB-T) is one of the major standards for the fixed reception of digital television services, and the orthogonal frequency division multiplexing (OFDM) demodulator is a critical module of DVB-T receivers. As the remarkable advace of the VLSI (very large scale integration) circuits, the SOC (system-on-a-chip) of the DVB-T receiver is an inevitabel evolution. Considering the integration of the mixed-signal circuits, the issues ot beat could be the frequency synthesis and the calibration of the mixed-signal circuits. Hence, this thesis proposes an OFDM demodulator and discusses the design issues emerged from the SOC integration.

The proposed OFDM demodulator is composed of four blocks: time synchronization, frequency synchronization, 2K/8K mode FFT (fast Fourier transform), and channel estimation. The demodulator utilizes the pilot signals embeded in OFDM symbols to estimate the frequency offset and the channel response. Besides, the demodulator use the cyclic prefix of an OFDM symbol to find the correct starting position of an OFDM symbol, and consequently the payload data of an OFDM symbol can be transmitted to the 2K/8K FFT for further processing.

As the demand for a low noise frequency signal, we propose a direct digital frequency synthesizer (DDFS) based on the quadruple angle approximation. According to the proposed trigonometric 2nd-order quadruple angle approximation, the DDFS can produce a high-resolution and low-phase noise digital sinusoid without any ROM (read only memory).

The digital calibration is an effective scheme to prevent ADCs (analog-to-digital converter) from the interference of noise. A random number generator (RNG) is an essential component for the calibration circuitry. However, the realization of the RNG is an important but long ignored issue. This thesis proposes a RNG based on a chaotic system wherein the coefficients of the system is dynamically changed to attain an ideal random bit stream with flat power spectrum density.
目次 Table of Contents
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.1 DVB-T demodulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Direct digital frequency synthesizer . . . . . . . . . . . . . . . . . . . . 3
1.2.3 Random number generator . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 The OFDM Demodulator for DVB-T 7
2.1 Format of a OFDM symbol in DVB-T . . . . . . . . . . . . . . . . . . . . . . 7
2.2 The architecture of the proposed OFDM demodulator . . . . . . . . . . . . . . 9
2.3 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 Time synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 Frequency synchronization . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 2K/8K mode FFT processor for DVB-T . . . . . . . . . . . . . . . . . . . . . 13
2.4.1 FFT theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.2 Low Power FFT architecture . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.3 Low-power butterfly unit . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.4 Memory considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Channel estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6 Implementation and simulation results . . . . . . . . . . . . . . . . . . . . . . 18
2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3 A Pipelined ROM-less Direct Digital Frequency Synthesizer Based on the
2nd-order Quadruple Angle Approximation 22
3.1 Trigonometric quadruple angle approximation . . . . . . . . . . . . . . . . . . 22
3.1.1 Trigonometric 1st-order quadruple angle approximation . . . . . . . . . 23
3.1.2 Trigonometric 2nd-order quadruple angle approximation . . . . . . . . 24
3.2 System implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Simulation and Physical Measurements . . . . . . . . . . . . . . . . . . . . . . 31
3.3.1 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
i
4 Switched-current 3-Bit CMOS 4.0 MHz wideband random signal generator 36
4.1 The discrete-time chaos algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Design of the 3-bit random number generator . . . . . . . . . . . . . . . . . . 37
4.2.1 1-bit RNG schematic design . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.2 Digital normalizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 Measurement and testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.1 Implementation and measurement . . . . . . . . . . . . . . . . . . . . . 42
4.3.2 Testing - long run test . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5 Conclusion and Future Works 49
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Bibliography
參考文獻 References
[1] European Telecommunications Standardds Institute (ETSI) ETS 300 744 v1.5.1(2004-
11): Digital Video Brocasting (DVB); Framing Structure, Channel Coding and Modula-
tion for Digital Terrestrial Television, 2004.
[2] M. Dawkins, A. P. Burdett, and N. Cowley, “A single-chip tuner for DVB-T,” J. Solid-
State Circuits, vol. 38, no. 8, pp. 1307-1317, Aug. 2003.
[3] L. Tang, Z.-G. Wang, X.-H. He, Z.-Q. Li, and Y. Xu, “Design of high-speed CMOS
frequency dividers for RF receiver,” in Proc. 2007 IEEE Int. Conf. Microwave and Mil-
limeter Wave Technology (ICMMT), Apr. 2007, pp. 1-4.
[4] C. Mandl, M. Bacher, G. Krampl, and F. Kuttner,“0.35 μm CMOS COFDM receiver
chip for terrestrial digital video broadcasting,” in 1998 IEEE Int. Solid-State Circuits
Conf. (ISSCC) Dig. Tech. Papers, Feb. 1998, pp. 200-201.
[5] L. Tan, J. Putnam, F. Lu, L. D’Luna, D. Mueller, K. Kindsfater, K. Cameron, R. Joshi,
R. Hawley, and H. Samueli, “A 70Mb/s variable-rate 1024-QAM cable receiver IC with
integrated 10b ADC and FEC decoder,” in 2007 IEEE Int. Solid-State Circuits Conf.
(ISSCC) Dig. Tech. Papers, Feb. 2000, pp. 76-77.
[6] B. Razavi, RF microelectronics, NJ:Prentice-Hall, 1998.
[7] M. Massel, Digital television DVB-T, COFDM, and ATSC 8-VSB, DigitalTVbooks.com,
2000.
[8] J. Ming and S. Lewis, “An 8-bit 80-Msample/s pipelined analog-to-digital converter with
background calibration,” IEEE J. Solid-State Circuits, vol. 36, no. 10, pp. 1489-1497,
Oct. 2001.
[9] I. Galton, “Digital cancelation of D/A converter noise in pipelined A/D converters,”
IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 47, n0. 3, pp. 185-196, Mar. 2000.
51
52
[10] E. Siragusa and I. Galton, “Gain error correction technique for pipelined analog-to-digital
converters,” Electron. Lett., vol. 36, no. 7, pp. 617-618, Mar. 2000.
[11] H.-G. Ryu, Y.-Y. Kim, H.-M Yu, and S.-B. Ryu, “Design of DDFS-driven PLL frequency
synthesizer with reduced complexity,” IEEE Trans. on Consum. Electron., vol. 47, no. 1,
pp. 194-198, Feb. 2001.
[12] S. Mortezapour and E. K. F. Lee, “Design of low-power ROM-less direct digital frequency
dynthesizer using nonlinear digital-to-analog converter,” IEEE J. Solid-state Circuits, vol.
34, no. 10, pp. 1350- 1359, Oct. 1999.
[13] G. Van Andrews, J. B. Delaney, M. A. Vernon, M. P. Harris, C. T. M. Chang, T. C.
Eiland, C. E. Hastings, V. I. DiPerna, M. C. Brown, and W. A. White, “Recent progress
in wideband monolithic direct digital synthesizers,” in 1996 IEEE Microwave Theory
and Techniques Society Int. Microwave symp. (MTT-S IMS) Dig., June 1996, vol. 3, pp.
1347-1350.
[14] M. J. Flanagan and G. A. Zimmerman, “Spur-reduced digital sinusoid synthesis,” IEEE
Trans. Commun., vol. 43, no. 7, pp. 2254-2262, July 1995.
[15] V. F. Kroupa, V. Cizek, J. Stursa, and H. Svandova, “Spurious signals in direct digital
frequency synthesizers due to the phase truncation,” IEEE Trans. Ultrason., Ferroelectr.,
Freq. Control, vol. 47, no. 5, pp. 1166-1172, Sep. 2000.
[16] G. W. Kent and N.-H. Sheng, “ A high purity, high speed direct digital synthesizer,” in
Proc. 49th IEEE Inter. Frequency Control Symp., Jun. 1995, pp. 207-211.
[17] R. Larson and S.-L. Lu, “ Interpolation-based digital quadrature frequency synthesizer,”
in Proc. 13th Annu. IEEE Int. ASIC/SOC Conf., Sept. 2000, pp. 48-52.
[18] K. I. Palomaki and J. Niittylahti, “ Direct digital frequency synthesizer architecture based
on Chebyshev approximation,” in Conf. Rec. 34th Asilomar Conf. Signals, Systems and
Computers, Nov. 2000, vol. 2, pp. 1639-1643.
[19] A. M. Sodagar and G. R. Lahiji, “ A pipelined ROM-less architecture for sine-output
direct digital frequency synthesizers using the second-order parabolic approximation,”
IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 48, no. 9, pp. 850-857, Sept. 2001.
53
[20] A. Ashrafi and R. Adhami,“A Direct Digital Frequency Synthesizer Utilizing Quasi-Linear
Interpolation Method,” in Proc. of 37th IEEE Southeastern Symp. System Theory, Mar.
2005, pp. 114-118.
[21] A. Ashrafi and R. Adhami, “An Optimized Direct Digital Frequency Synthesizer Based
on Even Fourth Order Polynomial Interpolation,” in Proc. of 38th IEEE Southeastern
Symp. System Theory, Mar. 2006, pp. 109-113.
[22] H. Jafari, A. Ayatollahi, and S. Mirzakuchaki, “A Low Power, High SFDR, ROM-Less
Direct Digital Frequency Synthesize,” in 2005 IEEE Conf. Electron Devices and Solid-
State Circuits, Dec. 2005, pp. 829-832.
[23] D. De Caro and A. G. M. Strollo, “High-Performance Direct Digital Frequency Synthesiz-
ers in 0.25 μm CMOS Using Dual-Slope Approximation,” IEEE J. Solid-State Circuits,
vol. 40, no 11, pp. 2220 - 2227, Nov. 2005.
[24] T. Sato, K. Kikuchi, and M. Fukase, “Chip design of a wave-pipelined PRNG,” in Proc.
2006 IEEE Int. Symp. Communications and Information Technologies (ISCIT), Sept.
2006, pp. 978-983.
[25] K.-J. Sham; S. Bommalingaiahnapallya, M.R. Ahmadi, and R. Harjani, “A 3×5-Gb/s
Multilane low-power 0.18-μm CMOS pseudorandom bit sequence generator,” IEEE
Trans. Circuits Syst. II, Exp. Briefs, vol. 55, no. 5, pp. 432-436, May 2008.
[26] W. T. Holman, J. A. Connelly, and A. B. Downlatabadi, “An integrated analog-digital
random noise source,” IEEE Trans. Circuits Syst. I, Reg. Ppaers, vol. 44,. no. 6, pp.
521-528, Jun. 1997.
[27] J. Holleman, S. Bridges, B. P. Otis, and C. Diorio,“A 3 μW CMOS true random number
generator with adaptive floating-gate offset cancellation,” IEEE J. Solid-State Circuits,
vol. 43, no 5, pp. 1324-1336, May 2008.
[28] C. S. Petrie, J. A. Connelly, “A noise-based IC random number generator for applications
in cryptography,” IEEE Trans. Circuits Syst. I, Reg. Ppaers, vol. 47, no. 5, pp. 615-621,
May 2000.
[29] J.-L. Danger, S. Guilley, and P. Hoogvorst, “Fast true random generator in FPGAs,” in
Proc. 2007 IEEE Northeast Workshop Circuits and Systems (NEWCAS), Aug. 2007, pp.
506-509.
54
[30] M. Bucci, L. Germani, R. Luzzi, A. Trifiletti, and M. Varanonuovo, “A high-speed
oscillator-based truly random number source for cryptographic applications on a smart
card IC,” IEEE Trans. Comput., vol. 52, no. 4, pp. 403-409, Apr. 2003.
[31] T. Stojanovski, and L. Kocarev, “Chaos-based random number generation - part I: Anal-
ysis,” IEEE Trans. Circuits Syst. I, Reg. Ppaers, vol. 48, no. 3, pp. 281-288, Mar. 2001.
[32] T. Stojanovski, J. Pihl, and L. Kocarev, “Chaos-based random number generation - part
II: practical realization,” IEEE Trans. Circuits Syst. I, Reg. Ppaers, vol. 48, no. 3, pp.
382-385, Mar. 2001.
[33] M. Degaldo-Restituto, and A. Rodriguez-Vazquez, “Integrated chaos generators,” Proc.
of the IEEE, vol. 90, no. 5, pp. 747-767, May 2002.
[34] P. Dudek, and V. D. Juncu, “Compact discrete-time chaos generator circuit,” Electron.
Lett., vol. 39, no. 20, pp. 1431-1432, Oct. 2003.
[35] T. Addabbo, M. Alioto, A. Fort, S. Rocchi, V. Vignoli, “A feedback strategy to improve
the entropy of a chaos-based random bit generator,” IEEE Trans. Circuits Syst. I, Reg.
Ppaers, vol. 53, no. 2, pp. 326-337, Feb. 2006.
[36] M. Degaldo-Restituto, F. Medeiro, and A. Rodriguez-Vazquez, “Nonlinear switched-
current CMOS IC for random signal generation,” Electron. Lett., vol. 29, no. 25, pp.
2190-2191, Dec. 1993.
[37] A. Rodriguez-Vazquez, M. Delgado, S. Espejo, and J. L. Huertas, “Switched-capacitor
broadband noise generator for CMOS VLSI,” Electron. Lett., vol. 27, no. 21, pp. 1913-
1914, Oct. 1991.
[38] J. H. Stott, “The DVB terrestrial (DVB-T) specification and its implementation in a
practical modem,” in Proc. IEE Int. Broadcasting Convention, Sept. 1996, pp. 255-260.
[39] H. Nogami and T. Nagashima, “A frequency and timing period acquisition technique for
OFDM systems,” in Proc. 1995 IEEE Int. Symp. Personal, Indoor and Mobile Radio
Communications (PIMRC), Sept. 1995, vol. 3, pp. 1010-1015.
[40] D. Lee and K. Cheun, “A new symbol timing recovery algorithm for OFDM systems,”
IEEE Trans. Consum. Electron., vol. 43, no. 3, pp. 767-775, Aug. 1997.
55
[41] J. Echavarri, M. E. Woodward, and S. K. Barton, “A comparison of time and frequency
synchronization algorithms for the European DVB-T system,” in Proc. 1999 IEEE Ve-
hicular Technology Conf. (VTC), Sept. 1999, vol. 2, pp. 678 - 682.
[42] S. Anikhindi, G. Cradock, R. Makowitz, and C. Petzelt, “A commercial DVB-T demod-
ulator chipset,” in Proc. 1997 IEE Int. Broadcasting Convention, Sep. 1997, pp. 528-533.
[43] E. Bidet, J. C. Castekain, and P. Senn, “A fast single-chip implementation of 8192 com-
plex point FFT,” IEEE J. Solid-State Circuits, vol. 20, no. 3, pp. 300-305, Mar. 1995.
[44] A. Buttar, R. Makowitz, C. Patzelt, J. Gledhill, S. Anikhindi, “FFT And OFDM receiver
ICS for DVB-T decoders,” in 1997 IEEE Int. Conf. Consumer Electronics (ICCE) Dig.
Tech. Papers, June 1997, pp. 102-103.
[45] P. Combelles, C. Del Toso, D. Hepper, D. Le Goff, J. J. Ma, P. Rovertson, F. Scalise, L.
Soyer, and M. Zamboni, “A receiver architecture conforming to the OFDM based digital
video broadcasting standard for terrestrial transmission (DVB-T),” in Proc. 1998 IEEE
Int. Conf. Communications (ICC), June 1998, vol. 2, pp. 7-11.
[46] L. Jia, Y. Gao, J. Isoaho, and H. Tenhunen, “A new VLSI-oriented FFT algorithm and
implementation,” in Proc. 11th Annu. IEEE Int. ASIC Conf., Sept. 1998, pp. 337-341.
[47] J.-H. Suk, D.-W. Kim, T.-W. Kwon, S.-K. Hyung, and J.-R. Choi, “A 8192 complex point
FFT/IFFT for COFDM modulation scheme in DVB-T system,” in Proc. 2003 IEEE Int.
SOC (System-on-Chip) Conf., Dec. 2003, vol. 5, pp. 131-134.
[48] C.-C. Wang, Y.-L. Tseng, H.-C. She, C.-C. Li and R. Hu, “13-bit resolution ROM-less
direct digital frequency synthesizer based on a trigonometric quadruple angle formula,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 12, no. 9, pp. 895-900, Sep. 2004.
[49] J. Yoo, K. F. Smith, and G. Gopalakrishnan, “A fast parallel squarer based on divide-
and-conquer,” IEEE J. Solid-State Circuits, vol. 32, no. 6, pp. 909-912, June 1997.
[50] A. M. Sodagar, G. R. Lahiji, and A. Azarpeyvand “ A novel architecture for sine-output
direct digital frequency synthesizers using parabolic approximation,” in Proc 7th IEEE
Int. Conf. Electronics, Circuits and Systems, (ICECS) , Sept. 2000, vol. 1, pp. 256-259.
[51] F. Cortigiani, C. Petri, S. Rocchi, and V. Vignoli, “Very high-speed true random noise
generator,” in Proc. 2000 IEEE Int. Conf. Electronics Circuits and Systems (ICECS),
Dec. 2000, vol. 1, pp. 120-123.
56
[52] Z. Huang, G. Bai, and H. Chen, “A chaotic circuit for truly random number generation,”
in Proc. 2003 Int. Conf. ASIC, Oct. 2003, vol. 1, pp. 548-551.
[53] R. J. Baker, H. W. Li, and D. E. Boyce, “CMOS - circuit design, layout, and simulation,”
New York: IEEE Press, 1998.
[54] C. Chien, “ Digital radio systems on a chip,” Boston: Kluwer Academic Publishers, 2001.
[55] D. Jakonis and C. Svensson, “A 1 GHz linearized CMOS track-and-hold circuit,” 2002
IEEE Symp. on Circuits and Systesms (ISCAS’2002), vol. V, pp. 577-580, May 2002.
[56] J. B. Hughes, I. C. Macbeth and D. M. Pattullo, “Switched current filters,” IEE Proc.
Circuits, Devices, and System, vol. 137, no.2, pp. 156-162, Apr. 1990.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.223.172.252
論文開放下載的時間是 校外不公開

Your IP address is 18.223.172.252
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code