Responsive image
博碩士論文 etd-1015116-181659 詳細資訊
Title page for etd-1015116-181659
論文名稱
Title
在802.11ah網路使用平均後退次數和睡眠時間的動態時槽分配機制
A Dynamic Slot Allocation Scheme Using Average Backoff Times and Sleeping Time in 802.11ah Networks
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
73
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-10-25
繳交日期
Date of Submission
2016-11-15
關鍵字
Keywords
Slot Allocation、802.11ah、Machine to Machine Communication、Backoff Time、Sleeping Time
Backoff Time, Machine to Machine Communication, 802.11ah, Slot Allocation, Sleeping Time
統計
Statistics
本論文已被瀏覽 6022 次,被下載 28
The thesis/dissertation has been browsed 6022 times, has been downloaded 28 times.
中文摘要
本論文在Machine to Machine (M2M)的通訊環境中根據802.11ah提出一個動態時槽分配機制(Dynamic Slot Allocation Scheme, DSAS),本機制可以有效使用無線資源以達成減少Machines大量競爭的目的,我們在DSAS中設計兩組臨界值,分別用來判斷每個Machine睡眠時間的長短和每個時槽(Slot)的壅塞程度,我們使用睡眠時間計算第一組臨界值,用來將Machine分成三種睡眠等級(High、Average和Low),並使用競爭成功的Machines的平均退避時間來計算第二組臨界值,用來將所有Slots分成三種壅塞等級(High、Average和Low),本論文的創新在於我們將原本使用較壅塞Slot且睡眠時間較短的Machines分配至較閒置的Slots,並將原本使用較閒置Slot且睡眠時間較長的Machines分配至較壅塞的Slots,另外,為了避免壅塞Slots內的Machines全部移至閒置的Slot,當Slot的壅塞等級為Average或是Machines的睡眠等級為Average時,Machines所使用的Slots不做任何調整。為了分析本論文所提出的DSAS並與802.11ah的Slot分配機制做比較,我們修改NS-3的Wi-Fi模組進行模擬,在模擬中我們逐步增加Machines的數量並讓每個Machines隨機產生不同的睡眠時間,模擬結果顯示使用DSAS可以降低Machines的平均退避時間、縮短平均封包延遲(Average Packet Delay, APD)並提高整體系統的吞吐量(Throughput)。
Abstract
In this thesis, we propose a Dynamic Slot Allocation Scheme (DSAS) based on 802.11ah in Machine to Machine (M2M) environments. DSAS can effectively use the wireless resources to reduce the contention problems in M2M. In DSAS, we design two sets of high and low thresholds, respectively, to determine the levels (High, Average, Low) of machine sleeping time and the levels (High, Average, Low) of slot contention, respectively. The innovation of this thesis is that DSAS can allocate shorter sleeping-time machines to the slots that are more congestive. Similarly, the longer sleeping-time machines are allocated to the slots that are less congestive. In addition, to avoid unnecessary slot reallocations, the machines will use their original slots, when the contention level of slots is between high and low thresholds or the sleeping level of machines is between high and low thresholds. In order to analyze the performance of DSAS, we simulate it by modifying NS-3 Wi-Fi modules. In the simulation, we gradually increase the number of machines and randomly assigned the sleeping-time of machines. Simulation results, when compared to IEEE 802.11ah, show that using the proposed DSAS can reduce the average backoff time, shorten the average packet delay, and increase the overall system throughput.
目次 Table of Contents
致謝 i
摘要 ii
Abstract iii
目錄 iv
圖表目錄 vii
第一章 緒論 1
1.1 研究動機 1
1.2 研究方法 2
1.3 章節介紹 3
第二章 M2M網路 4
2.1 M2M的網路架構 4
2.2 802.11ah 8
2.2.1 802.11ah的Beacon 8
2.2.2 802.11ah的Restricted Access Window 9
2.3 文獻調查 10
2.3.1 叢集通訊(CC) 10
2.3.2 BS通訊 (BC) 13
2.3.3 Ad hoc通訊 (AC) 14
2.3.4 Wi-Fi通訊 (WC) 14
2.4 本論文機制 16
第三章 動態分配Machines的時槽 18
3.1 DSAS系統架構 18
3.2 DSAS運作方式 19
3.2.1 SL兩個臨界值的計算 21
3.2.2 CL兩個臨界值的計算 22
3.2.3 Slot的重新分配 23
3.2.4 新增與修改的欄位 26
3.3 DSAS運作流程 29
3.3.1 AP運作流程 30
3.3.2 Machine運作流程 32
第四章 結果與模擬討論 34
4.1 模擬程式架構和Pseudo Code 34
4.1.1 臨界值計算模組 35
4.1.1.1 ComputeSL_TH( ) 35
4.1.1.2 ComputeCL_TH( ) 38
4.1.1.3 CreatBitMap ( ) 39
4.1.2 隨機睡眠模組 41
4.1.3 Slot配置模組 41
4.1.4 RTS傳送模組 44
4.2 模擬結果與討論 45
4.2.1 模擬環境參數設定 45
4.2.2 Machines重新分配使用的Slot 46
4.2.3 Slot中ABT的比較 47
4.2.4 MAC Frame無法傳輸 48
4.2.4.1 在RCP中競爭失敗的Machines個數 48
4.2.4.2 無法排入DTP的Machines個數 49
4.2.5 Machines的平均封包延遲 50
4.2.6 整體系統的Throughput 52
第五章 結論與未來工作 54
5.1 結論 54
5.2 未來工作 55
References 56
Acronyms 60
Index 61
參考文獻 References
[1] A. Untu, C. Duvanaud, and H.N. Teodorescu, “Relationships between the acoustical features of the French /v/ and /f/ and the dentistry pathologies, ” E-Health and Bioengineering Conference (EHB), pp. 1-4, Iasi, Romania, 24-26 Nov. 2011.
[2] 3GPP TR 36.888, Study on provision of low-cost Machine-Type Communications (MTC) User Equipments (UEs) based on LTE, v.12.0.0, June, 2013.
[3] Status of Project IEEE 802.11ah Specification Framework for TGah, IEEE Std. 802.11-11/1137r15, May, 2013.
[4] F. J. Lin, Y. Ren, and E.Cerritos, “A Feasiblity Study on Developing IoT/M2M Applications over ETSI M2M Architecture, ” International Conference on Parallel and Distributed System (ICPADS 2013), pp. 558-563, Seoul, Korea, 15-18 Dec. 2013.
[5] F. Ghavimi and H. H. Chen, “M2M Communications in 3GPP LTE/LTE-A Networks: Architectures, Service Requirements, Challenges, and Applications, ” IEEE Communications Surveys & Tutorials, vol. 17, no. 2, pp. 525-549, Sep. 2015.
[6] H. K. Lee, D. M. Kim, Y. Hwang, S. M. Yu, and S. L. Kim, “Feasibility of Cognitive Machine-to-Machine Communication using Cellular Bands, ” IEEE Wireless Communications, vol. 20, no. 2, pp. 97-103, April 2013.
[7] A. Lo, Y. W. Law, and M. Jacobsson, “A Cellular-Centric Service Architecture For Machine-to-Machine (M2M) Communications, ” IEEE Wireless Communications, vol. 20, no. 5, pp. 143-151, Oct. 2013.
[8] G. Hu, W. P. Tay, and Y. Wen, “Cloud Robotics: Architecture, Challenges and Applications, ” IEEE Network, vol. 26, no. 3, pp. 21-28, June 2012.
[9] T. Adame, A. Bel, B. Bellalta, J. Barcelo, and M. Oliver, “IEEE 802.11AH: the WiFi approach for M2M communications, ” IEEE Wireless Communiations, vol. 21, no. 6, pp. 144-152, Dec. 2014.
[10] Y. Yang and S. Roy, “Grouping-Based MAC Protocols for EV Charging Data Transmission in Smart Metering Network, ” IEEE Journal on Selected Areas in Communications, vol. 32, no. 7, pp. 1328-1343, June 2014.
[11] P. Zhang and G. Miao, “Energy-Efficient Clustering Design for M2M Communications, ” IEEE Global Conference on Signal and Information Processing (GlobalSIP 2014), Atlanta, Georgia, USA, pp. 163-167, 3-5 Dec. 2014.
[12] S. Hamdoun, A. Rachedi, and Y. Ghamri-Doudane, “Radio resource sharing for MTC in LTE-A: An interference-aware bipartite graph approach, ” IEEE Global Conference on Communication (GlobalSIP 2015), Orlando, Florida, USA, pp. 1-7, 14-16 Dec. 2015.
[13] A.S.K. Mammu, A. Sharma, U. Hernandez-Jayo, and N. Sainz, “A Novel Cluster-Based Energy Efficient Routing, ” IEEE International Conference on Advanced Information Networking and Application (AINA 2013), Barcelona, Spain, pp. 41–47, 25-28 March 2013.
[14] H. W. Kao, Y. H. Ju, and M. H. Tsai, “Two-stage radio access for group-based machine type communication in LTE-A, ” IEEE International Conference on Communication (ICC 2015), London, UK, pp. 3825-3830, 8-12 June 2015.
[15] Y Li, K. K. Chai, Y. Chen, and J. Loo, “QoS-Aware Joint Access Control and Duty Cycle Control for Machine-to-Machine Communication, ” IEEE Global Conference on Communications (GLOBECOM), San Diego, CA, USA, pp. 1-6, 6-10 Dec. 2015.
[16] G. Miao, A. Azari, and T. Hwang, “ -MAC: Energy Efficient Medium Access for Massive M2M Communications, ” IEEE Transactions on Communications, Vol. PP, no. 99, pp. 1-1, Sep. 2016.
[17] J. Chen, Y. T. Lin, and R. G. Cheng, “A Delayed Random Access Speed-Up Scheme for Group Paging in Machine-Type Communications, ” IEEE International Conference on Communication (ICC 2015), London, UK, pp.623-627, 8-12 June 2015.
[18] M. Koseoglu, “Lower Bounds on the LTE-A Average Random Access Delay Under Massive M2M Arrivals, ” IEEE Transactions on Communications, vol. 64, no. 5, pp. 2104-2115, April, 2015.
[19] M. Tavana, V. S. Mansouri, and V. W. S. Wong, “Congestion control for bursty M2M traffic in LTE networks, ” IEEE International Conference on Communication (ICC), London, UK, pp. 5815–5820, 8-12 June 2015.
[20] A. M. Ahmadian, O. Galinina, S. Andreev, and Y. Koucheryavy, “Modeling contention-based M2M transmissions over 3GPP LTE cellular networks, ” IEEE Internetional Communications Workshops (ICC 2014), Sydney, Australia, pp. 441–447, 10-14 June 2014.
[21] C. W. Chang, J. C. Chen, C. Chen, and R. H. Jan, “Scattering random-access intensity in LTE Machine-to-Machine (M2M) communications, ” IEEE Global Conference on Communication (GLOBECOM 2013), Atlanta, GA., USA, pp. 4729-4734, 9-13 Dec 2013.
[22] H. S. Dhillon, H. Huang, H. Viswanathan, and R. A. Valenzuela, “Fundamentals of Throughput Maximization With Random Arrivals for M2M Communications, ” IEEE Transactions on Communications, vol. 62, no. 11, pp. 4094-4109, 19, Sept, 2014.
[23] N. A. Surobhi and A. Jamalipour, “M2M-Based Service Coverage for Mobile Users in Post-Emergency Environments, ”IEEE Transactions on Vehicular Technology, vol. 63, no. 7, pp. 3294-3303, Jan. 2014.
[24] B. Panigrahi, H. K. Rath, R. Ramamohan, and A. Simha, “Energy and Spectral Efficient Direct Machine-to-Machine (M2M) Communication for Cellular Internet of Things (IoT) Networks, ” IEEE International Conference on Internet of Thing and Application (IOTA), Maharashtra Institute of Technology, Pune, India, pp. 337-342, 22-24 Janu. 2016.
[25] M. Saedy and V. Mojtahed, “Ad Hoc M2M communications and security based on 4G cellular system, ” IEEE International Conference on Wireless Telecommunications Symposium (WTS), NY, USA, pp. 1-5, 13-15 Apr. 2011.
[26] X. Luan, J. Wu, Y. Cheng, and H. Xiang, “Dynamic Transmission Mode Selection and Resource Sharing Schemes for M2M Communication in Cellular Networks, ” IEEE International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), Blumenau, Brazil, pp. 348-352, 8-10 July 2015.
[27] K. Ogawa, Y. Sangenya, M. Morikura, K. Yamamoto, and T. Sugihara, “IEEE 802.11ah based M2M Networks employing Virtual Grouping and Power Saving Methods, ” IEEE 78th Vehicular Technology Conference (VTC Fall), Las Vegas, USA, pp.1-5, 2-5 September 2013.
[28] L. Zheng, M. Ni, L. Cai, J. Pan, C. Ghosh, and K. Doppler, “Performance Analysis of Group-Synchronized DCF for Dense IEEE 802.11 Networks, ” IEEE Transactions on Wireless Communications, Vol. 13, no. 11, pp.6180-6192, July. 2014.
[29] L. Zheng, L. Cai, J. Pan, and M. Ni, “Performance Analysis of Grouping Strategy for Dense IEEE 802.11 Networks, ” Global Communication Conference (GLOBECOM), Atlanta, GA., USA, pp.219-224, 9-13 Dec 2013.
[30] C. W. Park, D. Hwang, and T. J. Lee, “Enhancement of IEEE 802.11ah MAC for M2M Communications, ” IEEE Communications Letters, vol. 18, no. 7, pp. 1151 -1154, July, 2014.
[31] R. P. Liu, G. J. Sutton, and I. B. Collings, “Power Save with Offset Listen Interval for IEEE 802.11ah Smart Grid Communications, ” IEEE International Conference on Communication (ICC 2013), Budapest, Hungary, pp. 4488-4492, 9-13 June 2013.
[32] R. P. Liu, G. J. Sutton, and I. B. Collings, “WLAN Power Save with Offset Listen Interval for Machine-to-Machine Communications, ”IEEE Transactions on Wireless Communications, Vol. 13, no. 5, pp. 2552-2562, March, 2014.
[33] G. C. Madueño, Č. Stefanović, and P. Popovski, “Reliable and Efficient Access for Alarm-Initiated and Regular M2M Traffic in IEEE 802.11ah Systems, ”IEEE Journal of Internet of Things, Vol. 3, no. 5, pp. 673-682, Oct, 2015.
[34] O. Raeesi, J. Pirskanen, A. Hazmi, T. Levanen, and M. Valkama1, “Performance Evaluation of IEEE 802.11ah and its Restricted Access Window Mechanism, ” IEEE Communications Workshops (ICC 2014), Sydney, Australia, pp.460-466, 10-14 June 2014.
[35] A. Argyriou, “Power-efficient estimation in IEEE 802.11ah wireless sensor networks with a cooperative relay, ” IEEE International Conference on Communications(ICC 2015), London, UK, pp.6755-6760, 8-12 June 2015.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code