Responsive image
博碩士論文 etd-1017116-211642 詳細資訊
Title page for etd-1017116-211642
論文名稱
Title
微流體晶片整合硝酸根離子選擇膜於蔬菜檢測之應用
Microfluidic Chip with Nitrate Ion Selective Membrane for Vegetable Detection Applications
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
114
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-10-21
繳交日期
Date of Submission
2016-11-21
關鍵字
Keywords
硝酸鹽、不對稱感測膜、微流體晶片、離子選擇電極
asymmetric membrane, nitrate, microfluidic chip, ion selective electrode
統計
Statistics
本論文已被瀏覽 5706 次,被下載 66
The thesis/dissertation has been browsed 5706 times, has been downloaded 66 times.
中文摘要
本研究使用離子選擇薄膜快速製作技術,並結合特殊的為結構設計,製作出具有不對稱感測面積的微流體晶片,並將其應用於食品之蔬菜檢測。本研究改良微流體晶片設計,使其封裝效能提升,增加晶片中薄膜的製程良率;也改良微流體感測晶片之銀/氯化銀電極製程,藉由自發性氯化反應,使製程不需要任何額外的儀器設備或是複雜的操作,僅透過銀的自發性化學反應即可完成電極的製作。本研究選用PMMA作為微流體晶片材質,因其成本低廉,且為熱塑性基材,適合發展可攜、拋棄式檢測裝置。
本研究使用不同設計之微結構阻塊,調整其薄膜兩側之感測面積比例,再利用電化學偵測原理,量測自發性氯化電極的電化學檢測效能。電化學循環伏安法結果顯示,自發性氯化電極的氧化還原能力良好,其氯化30秒鐘之銀/氯化銀電極,氧化還原電流為24.7 μA,高出市售銀/氯化銀電極約6.5倍的訊號。電位量測結果也證實,自發性氯化電極偵測硝酸根濃度範圍從10-4 M到1 M,具有良好的線性關係(R2=0.9992)。因此,於微流體晶片檢測中,使用前人已開發之快速自行封裝成膜技術,將硝酸根離子選擇薄膜封裝於感測晶片中,並透過其晶片微結構的設計,創造出不同感測之面積比,提升對於硝酸根離子的感測靈敏度。量測結果顯示,感測晶片於硝酸根濃度範圍10-5 M到1 M內,具有良好的線性關係(R2=0.9920),且樣品溶液與電解液的感測面積比值越高,可有較好的感測靈敏度。其中感測面積比為5:1之晶片,對於硝酸根濃度之感測靈敏度達 -57.0 mV/dec;相較於面積比為1:5之感測晶片,提升了約30%以上的感測度斜率。
在自動連續偵測時,進行濃度梯度量測,其結果顯示,本研究之感測晶片具有良好的再現性反應效能,但由於薄膜具有濃度滯留現象,因此本研究進一步探討反應時間,吸附型薄膜其吸附與脫附硝酸根離子所需要的反應時間不同,由量測結果得知,1 mM之硝酸根離子吸附於感測薄膜時,僅需花3.3秒鐘就可達到95%的反應平衡;而相同濃度之硝酸根離子的脫附反應時間,也只需要花11.4秒鐘即可達到95%的完全反應。最後,本研究也量測不同的干擾源,分別量測醋酸根離子、碳酸根離子以及亞硝酸根離子,探討其干擾離子於感測薄膜的影響,結果顯示這三種干擾離子對於本研究之感測晶片皆不會超過102倍的濃度訊號干擾。綜觀上述,本研究將硝酸根離子選擇薄膜整合於微流體系統,發展簡單製作、高效能且檢測對象範圍廣泛的電極感測晶片,並應用於檢測蔬菜中的硝酸鹽含量。
Abstract
This research develops a rapid fabrication process of self-forming asymmetric polyvinylchloride (PVC) ion selective membrane in a microfluidic chip and using for nitrate ions detection in the vegetable samples. It is easily trapped the amount of polymer liquid with doping nitrate ionophores to form a thin ion selective membrane between microstructures utilizing surface tension force.Due to a large exposed ratio of the membrane surface areas, this method shows higher sensing performance than the traditional electrochemical detection. The Ag/AgCl electrode fabrication process is modified by using spontaneous chlorination reaction, which doesn’t need using any additional equipment or complex operation.
PMMA is a low cost material, which suitable for developing portable and disposable detection devices of the microfluidic chip. This study design different size of microstructures in the chip for adjusting sensing area ratio on both sides of the film to create an asymmetric membrane. In this system, the current response of cyclic voltammetry detection shows 6.5 times enhancement than the commercial system when the silver electrode treat with 1% FeCl3(aq) for 30 seconds. And the potential response of EC detection for detecting NaNO3(aq) shows a good linear response within the concentration range of 10-5 M to 1 M (R2=0.9920).
In addition, the higher sensing membrane area ratio shows better sensitivity for detecting nitrate ion in the buffer solution. When the sensing area ratio of 5 to 1 shows a linear response for nitrate ion detection in the concentration range from 10-5 M to 1 M. The good sensitivity for detecting nitrate ion is also achieved -57.0 mV/dec. In comparing to the sensing membrane area ratio of 1 to 5, the ratio of 5 to 1 shows an enhancement of the sensing efficiency of about 30% or more. During the continuous detection process, different concentrations of trace samples are injected into the sensing area sequentially. The method for cyclic detecting nitrate ion concentrations is measuring from low concentration to higher concentration and back to base concentration, which measuring the concentration in the range at 10-5 to 1 M per decade. This study of cyclic detecting nitrate ions concentration are in the range at 10-5 M to 1 M, and back to 10-5 M. Each concentration measured for 100 seconds. These results show microfluidic chip exhibit good reproducibility for nitrate ions detection. However, when the concentration in the current real sample is much higher than the next, the nitrate ions will dissolve in the next sample during the process of desorption, resulting in the retention phenomenon of concentration in continuous measurement.
The result also indicates that the response time of the adsorption and the desorption processes reach 95% of the maximum response takes 3.3 s and 11.4 s during detecting 1 mM of nitrate. At last, this study successfully integrates nitrate selective membrane into a microfluidic chip and develop a low cost yet high performance way for wide range nitrate concentration analysis. his microfluidic chip is capable of using the nitrate detection in the vegetables.
目次 Table of Contents
論文審定書 i
致謝 ii
中文摘要 iv
Abstract vi
目錄 viii
圖目錄 xi
表目錄 xiv
符號表 xv
簡寫表 xvii
第一章 緒論 1
1.1 研究背景 1
1.2 硝酸鹽 2
1.2.1 硝酸鹽檢測方法 5
1.3 離子選擇電極 8
1.3.1 離子選擇電極發展 9
1.3.2 市售離子選擇電極 10
1.3.3 離子選擇膜感測晶片 13
1.4 動機與目的 16
1.5 論文架構 17
第二章 工作原理 19
2.1 電化學 19
2.1.1 能斯特方程式 20
2.1.2 濃差電池系統 21
2.1.3 循環伏安法 23
2.2 離子選擇薄膜 24
2.2.1 液態薄膜 27
2.2.2 PVC薄膜 30
2.2.3 電極量測系統 32
2.3 硝酸根ISE 33
2.3.1 離子干擾 35
2.4 離子感測晶片 36
第三章 設計製作 37
3.1 微流體晶片 37
3.2 晶片設計與製作 39
3.2.1 感測電極 39
3.2.2 微流體管道 40
3.2.3 微結構設計 43
3.2.4 微流道製程 45
3.2.5 微晶片製作 49
3.3 實驗藥品 52
3.3.1 溶液配製 53
3.3.2 離子薄膜製備 54
3.3.3 蔬菜樣品配製 54
3.4 實驗架構 55
第四章 結果與討論 56
4.1 離子選擇電極 56
4.1.1 電極效能探討 56
4.1.2 氯化銀形貌 59
4.1.3 硝酸鹽對不同陽離子填充及待測液量測評估 61
4.1.4 硝酸根離子檢測 63
4.1.5 離子干擾評估 65
4.1.6 再現性效能 67
4.2 微流體感測晶片 69
4.2.1 微結構成膜 69
4.2.2 晶片效能 71
4.2.3 連續偵測 73
4.2.4 感測面積的影響 74
4.2.5 反應時間量測 77
4.3 蔬菜檢測 78
第五章 結論與未來展望 81
5.1 結論 81
5.2 未來展望 82
參考文獻 84
附錄 92
自述 96
參考文獻 References
[1] H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, "SU-8: a low-cost negative resist for MEMS," Journal of Micromechanics and Microengineering, vol. 7, pp. 121-124, 1997.
[2] B. A. Cornell, V. Braach-Maksvytis, L. King, P. Osman, B. Raguse, L. Wieczorek, and R. Pace, "A biosensor that uses ion-channel switches," Nature, vol. 387, pp. 580-583, 1997.
[3] P. D'Orazio, "Biosensors in clinical chemistry," Clinica Chimica Acta, vol. 334, pp. 41-69, 2003.
[4] C. Eggenstein, M. Borchardt, C. Diekmann, B. Gründig, C. Dumschat, K. Cammann, M. Knoll, and F. Spener, "A disposable biosensor for urea determination in blood based on an ammonium-sensitive transducer," Biosensors and Bioelectronics, vol. 14, pp. 33-41, 1999.
[5] G. Dimeski, T. Badrick, and A. St John, "Ion selective electrodes (ISEs) and interferences-A review," Clinica Chimica Acta, vol. 411, pp. 309-317, 2010.
[6] D. Keeney, B. Byrnes, and J. Genson, "Determination of nitrate in waters with the nitrate-selective ion electrode," Analyst, vol. 95, pp. 383-386, 1970.
[7] "Toxicological evaluation of certain food additives and contaminants," Joint FAO/WHO Expert Committee on Food Additives, 1993.
[8] T. T. Mensinga, G. J. Speijers, and J. Meulenbelt, "Health implications of exposure to environmental nitrogenous compounds," Toxicological Reviews, vol. 22, pp. 41-51, 2003.
[9] I. S. Babiker, M. A. Mohamed, H. Terao, K. Kato, and K. Ohta, "Assessment of groundwater contamination by nitrate leaching from intensive vegetable cultivation using geographical information system," Environment International, vol. 29, pp. 1009-1017, 2004.
[10] J. C. Liu, Y. Q. Chen, and H. Jin, "A review of nitrate pollution in domestic vegetable production," Fujian Journal of Agricultural Sciences, vol. 18, pp. 59-63, 2002.
[11] P. Santamaria, "Nitrate in vegetables: toxicity, content, intake and EC regulation," Journal of the Science of Food and Agriculture, vol. 86, pp. 10-17, 2006.
[12] R. Walker, "Nitrates, nitrites and N‐nitrosocompounds: A review of the occurrence in food and diet and the toxicological implications," Food Additives and Contaminants, vol. 7, pp. 717-768, 1990.
[13] S. D. Gangolli, P. A. Van Den Brandt, V. J. Feron, C. Janzowsky, J. H. Koeman, G. J. Speijers, B. Spiegelhalder, R. Walker, and J. S. Wishnok, "Nitrate, nitrite and N-nitroso compounds," European Journal of Pharmacology: Environmental Toxicology and Pharmacology, vol. 292, pp. 1-38, 1994.
[14] J. Lundberg, E. Weitzberg, S. Nordvall, R. Kuylenstierna, J. Lundberg, and K. Alving, "Primarily nasal origin of exhaled nitric oxide and absence in Kartagener's syndrome," European Respiratory Journal, vol. 7, pp. 1501-1504, 1994.
[15] S. H. Ralston, D. Todd, M. Helfrich, N. Benjamin, and P. S. Grabowski, "Human osteoblast-like cells produce nitric oxide and express inducible nitric oxide synthase," Endocrinology, vol. 135, pp. 330-336, 1994.
[16] B. Spiegelhalder, G. Eisenbrand, and R. Preussmann, "Influence of dietary nitrate on nitrite content of human saliva: possible relevance to in vivo formation of N-nitroso compounds," Food and Cosmetics Toxicology, vol. 14, pp. 545-548, 1976.
[17] A. S. Pannala, A. R. Mani, J. P. Spencer, V. Skinner, K. R. Bruckdorfer, K. P. Moore, and C. A. Rice-Evans, "The effect of dietary nitrate on salivary, plasma, and urinary nitrate metabolism in humans," Free Radical Biology and Medicine, vol. 34, pp. 576-584, 2003.
[18] D. B. Kim Shapiro, M. T. Gladwin, R. P. Patel, and N. Hogg, "The reaction between nitrite and hemoglobin: the role of nitrite in hemoglobin-mediated hypoxic vasodilation," Journal of Inorganic Biochemistry, vol. 99, pp. 237-246, 2005.
[19] I. R. Epstein, K. Kustin, and L. J. Warshaw, "A kinetics study of the oxidation of iron (II) by nitric acid," Journal of the American Chemical Society, vol. 102, pp. 3751-3758, 1980.
[20] D. Jenkins and L. Medsker, "Brucine method for the determination of nitrate in ocean, estuarine, and fresh Waters," Analytical Chemistry, vol. 36, pp. 610-612, 1964.
[21] A. P. H. Association and A. W. W. Association, "Standard methods for the examination of water and wastewater," 1965.
[22] D. Langmuir and R. L. Jacobson, "Specific-ion electrode determination of nitrate in some fresh waters and sewage effluents," Environmental Science and Technology, vol. 4, pp. 834-838, 1970.
[23] K. M. Miranda, M. G. Espey, and D. A. Wink, "A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite," Nitric Oxide, vol. 5, pp. 62-71, 2001.
[24] E. Morcos and N. P. Wiklund, "Nitrite and nitrate measurement in human urine by capillary electrophoresis," Electrophoresis, vol. 22, pp. 2763-2768, 2001.
[25] C. Merusi, C. Corradini, A. Cavazza, C. Borromei, and P. Salvadeo, "Determination of nitrates, nitrites and oxalates in food products by capillary electrophoresis with pH-dependent electroosmotic flow reversal," Food Chemistry, vol. 120, pp. 615-620, 2010.
[26] M. Ximenes, S. Rath, and F. Reyes, "Polarographic determination of nitrate in vegetables," Talanta, vol. 51, pp. 49-56, 2000.
[27] S. Prasad and A. A. Chetty, "Nitrate-N determination in leafy vegetables: Study of the effects of cooking and freezing," Food Chemistry, vol. 106, pp. 772-780, 2008.
[28] W. E. Morf, The principles of ion-selective electrodes and of membrane transport. vol. 246: Elsevier, 2012.
[29] E. Bakker, P. Bühlmann, and E. Pretsch, "Carrier-based ion-selective electrodes and bulk optodes. 1. general characteristics," Chemical Reviews, vol. 97, p. 3083, 1997.
[30] P. Bühlmann, E. Pretsch, and E. Bakker, "Carrier-based Ion-selective electrodes and bulk optodes. 2. ionophores for potentiometric and optical sensors," Chemical Reviews, vol. 98, p. 1593, 1998.
[31] E. Bakker, P. Bühlmann, and E. Pretsch, "Polymer membrane ion‐selective electrodes–What are the limits?," Electroanalysis, vol. 11, pp. 915-933, 1999.
[32] J. Koryta, "Ion-selective electrodes," Annual Review of Materials Science, vol. 16, pp. 13-27, 1986.
[33] E. Bakker and E. Pretsch, "Peer reviewed: The new wave of ion-selective electrodes," Analytical Chemistry, vol. 74, pp. 420 A-426 A, 2002.
[34] C. M. Chen, G. L. Chang, and C. H. Lin, "Performance evaluation of a capillary electrophoresis electrochemical chip integrated with gold nanoelectrode ensemble working and decoupler electrodes," Journal of Chromatography A, vol. 1194, pp. 231-236, Jun 20 2008.
[35] Y. T. Chuang, S. P. Ju, and C. H. Lin, "Novel palladium nanorod electrode ensemble for electrochemical evaluation of hydrogen adsorption," in 16th International Solid-state Sensors, Actuators and Microsystems Conference, 2011, pp. 166-169.
[36] Y. C. Wei, L. M. Fu, and C. H. Lin, "Electrophoresis separation and electrochemical detection on a novel thread-based microfluidic device," Microfluidics and Nanofluidics, vol. 14, pp. 723-730, 2013.
[37] J. W. Ross, "Calcium-selective electrode with liquid ion exchanger," Science, vol. 156, pp. 1378-1379, 1967.
[38] J. E. W. Davies, J. D. R. Thomas, and G. J. Moody, "Nitrate ion selective electrodes based on polyvinyl-chloride matrix membranes," Analyst, vol. 97, pp. 87-&, 1972.
[39] C. C. Rundle, "A beginners guide to ion-selective electrode measurements," Enligne]. Disponible sur: http://www.nico2000.net/Book/Guide1.html. [Consulté le: 14-sept-2013], 2000.
[40] "Hach > Meters and probes: sension+ meters and probes > Sension+ probes," http://www.hach.com/sension-meters-and-probes/sension-probes/family?productCategoryId=35547408096.
[41] "Coleparmer > pH Meters and Water Quality Products > Electrodes Laboratory," http://www.coleparmer.com/Search/ISE?navstate=/_/N-1z12inz.
[42] "Electrode and sensors," http://www.nico2000.net/datasheets/electrodes.html.
[43] "Home > ion selective," http://www.vl-pc.com/default/index.cfm/ion-selective.
[44] K. A. Erickson and P. Wilding, "Evaluation of a novel point-of-care system, the i-STAT portable clinical analyzer," Clinical Chemistry, vol. 39, pp. 283-287, 1993.
[45] E. Jacobs, E. Vadasdi, L. Sarkozi, and N. Colman, "Analytical evaluation of i-STAT Portable Clinical Analyzer and use by nonlaboratory health-care professionals," Clinical Chemistry, vol. 39, pp. 1069-1074, 1993.
[46] R. Tantra and A. Manz, "Integrated potentiometric detector for use in chip-based flow cells," Analytical Chemistry, vol. 72, pp. 2875-2878, 2000.
[47] D. Qin, Y. Xia, J. A. Rogers, R. J. Jackman, X.-M. Zhao, and G. M. Whitesides, "Microfabrication, microstructures and microsystems," in Microsystem Technology in Chemistry and Life Science, ed: Springer, 1998, pp. 1-20.
[48] A. Berduque, J. O’Brien, J. Alderman, and D. W. Arrigan, "Microfluidic chip for electrochemically-modulated liquid∣ liquid extraction of ions," Electrochemistry Communications, vol. 10, pp. 20-24, 2008.
[49] H. Hisamoto, Y. Shimizu, K. Uchiyama, M. Tokeshi, Y. Kikutani, A. Hibara, and T. Kitamori, "Chemicofunctional membrane for integrated chemical processes on a microchip," Analytical Chemistry, vol. 75, pp. 350-354, 2003.
[50] T. Y. Chiang, L. M. Fu, C. H. Tsai, and C. H. Lin, "Ion-selective membrane formed in a microfluidic chip utilizing surface tension force for high sensitive ammonia ion sensing," in International Conference on Miniaturized Systems for Chemistry and Life Sciences, Okinawa, Japan, 2012, pp. 848-850.
[51] T. Y. Chiang and C. H. Lin, "Enzyme-doped ion selective membrane (ED-ISM) formed with surface force and microstrucures for high perforlance urea detection," in 26th International Conference on Micro Electro Mechanical Systems (MEMS), 2013, pp. 1171-1174.
[52] A. J. Bard, and Larry R. Faulkner., Electrochemical methods: fundamentals and applications. New York: Wiley, 1980.
[53] P. D. Voegel and R. P. Baldwin, "Electrochemical detection in capillary electrophoresis," Electrophoresis, vol. 18, pp. 2267-2278, 1997.
[54] U. Oesch, D. Ammann, and W. Simon, "Ion-selective membrane electrodes for clinical use," Clinical Chemistry, vol. 32, pp. 1448-1459, 1986.
[55] D. R. Crow, Principles and applications of electrochemistry: CRC Press, 1994.
[56] W. Vielstich, Cyclic voltammetry: Wiley online library, 2010.
[57] M. J. Gismera, D. Hueso, J. R. Procopio, and M. T. Sevilla, "Ion-selective carbon paste electrode based on tetraethyl thiuram disulfide for copper (II) and mercury (II)," Analytica Chimica Acta, vol. 524, pp. 347-353, 2004.
[58] G. A. Crespo, S. Macho, and F. X. Rius, "Ion-selective electrodes using carbon nanotubes as ion-to-electron transducers," Analytical Chemistry, vol. 80, pp. 1316-1322, 2008.
[59] J. Wang, B. Tian, and E. Sahlin, "Integrated electrophoresis chips/amperometric detection with sputtered gold working electrodes," Analytical Chemistry, vol. 71, pp. 3901-3904, 1999.
[60] E. M. Richter, J. A. Fracassi da Silva, I. G. R. Gutz, C. L. do Lago, and L. Angnes, "Disposable twin gold electrodes for amperometric detection in capillary electrophoresis," Electrophoresis, vol. 25, pp. 2965-2969, 2004.
[61] e. R.A. Durst,et al., Ion-selective Electrodes. Washington: NBS Spec.Pub., 1969.
[62] N. Lakshminarayanaiah, Membrane electrodes: Elsevier, 2012.
[63] D. Gourley, "Glass electrodes for hydrogen and other cations. Principles and practice," Journal of Medicinal Chemistry, vol. 10, pp. 990-990, 1967.
[64] A. H. S. Głąb Ion-selective electrodes | Glass, 2005.
[65] C. Fuchs, "Solid-state ion-selective electrodes in clinical chemistry," Medical and Biological Applications of Electrochemical Devices, pp. 93-108, 1980.
[66] E. Bakker, "Selectivity of liquid membrane ion‐selective electrodes," Electroanalysis, vol. 9, pp. 7-12, 1997.
[67] B. Muller, K. Buis, R. Stierli, and B. Wehrli, "High spatial resolution measurements in lake sediments with PVC based liquid membrane ion-selective electrodes," Limnology and Oceanography, vol. 43, pp. 1728-1733, Nov 1998.
[68] K. Sollner, "Ion exchange membranes," Annals of the New York Academy of Sciences, vol. 57, pp. 177-203, 1953.
[69] J. A. Cox and N. Tanaka, "Application of ion-exchange reactions between membranes and resins," Talanta, vol. 32, pp. 34-6, Jan 1985.
[70] W. E. Morf, The principles of ion-selective electrodes and of membrane transport vol. 2: Elsevier, 2012.
[71] M. S. Frant, "Where did ion selective electrodes come from? The story of their development and commercialization," J. Chem. Educ, vol. 74, p. 159, 1997.
[72] Y. Tanaka, Ion exchange membranes: fundamentals and applications: Elsevier, 2015.
[73] A. Yartsev, "Ion-selective electrode membranes," Deranged Physiology, vol. Chapter 5.0.2, 2015.
[74] R. S. K. Erin M. Gross, Donald M. Cannon, Jr., "Analytical electrochemistry: potentiometry," Enligne]. Disponible sur: http://www.nico2000.net/Book/Guide1.htm, 2010.
[75] A. Craggs, G. Moody, and J. Thomas, "PVC matrix membrane ion-selective electrodes. Construction and laboratory experiments," Journal of Chemical Education, vol. 51, p. 541, 1974.
[76] R. Bloch, A. Shatkay, and H. Saroff, "Fabrication and evaluation of membranes as specific electrodes for calcium ions," Biophysical Journal, vol. 7, pp. 865-877, 1967.
[77] G. Moody and J. Thomas, "Selectivity ratios/coefficients of selective ion sensitive electrodes," Talanta, vol. 18, pp. 1251-1252, 1971.
[78] P. Anker, E. Wieland, D. Ammann, R. E. Dohner, R. Asper, and W. Simon, "Neutral carrier based ion-selective electrode for the determination of total calcium in blood serum," Analytical Chemistry, vol. 53, pp. 1970-1974, 1981.
[79] U. Schaller, E. Bakker, U. E. Spichiger, and E. Pretsch, "Ionic additives for ion-selective electrodes based on electrically charged carriers," Analytical Chemistry, vol. 66, pp. 391-398, 1994.
[80] E. Bakker, "Determination of improved selectivity coefficients of polymer membrane ion‐selective electrodes by conditioning with a discriminated ion," Journal of the Electrochemical Society, vol. 143, pp. 83-85, 1996.
[81] R. G. Zhen, S. J. Smith, and A. J. Millar, "A comparison of nitrate-selective microelectrodes made with different nitrate sensors and the measurement of intracellular nitrate activities in cells of excised barley roots," Journal of Experimental Botany, vol. 43, pp. 131-138, 1992.
[82] A. S. Watts, V. G. Gavalas, A. Cammers, P. S. Andrada, M. Alajarín, and L. G. Bachas, "Nitrate-selective electrode based on a cyclic bis-thiourea ionophore," Sensors and Actuators B: Chemical, vol. 121, pp. 200-207, 2007.
[83] S. Wakida, M. Yamane, A. Kawahara, S. Takasuka, and K. EQgashi, "Durable poly (vinyl chloride) matrix ion-selective field effect transistors for nitrate ions," Bunseki Kagaku, vol. 38, p. 510, 1989.
[84] R.-G. Zhen, H.-W. Koyro, R. A. Leigh, A. D. Tomos, and A. J. Miller, "Compartmental nitrate concentrations in barley root cells measured with nitrate-selective microelectrodes and by single-cell sap sampling," Planta, vol. 185, pp. 356-361, 1991.
[85] M. Knoll, K. Cammann, C. Dumschat, J. Eshold, and C. Sundermeier, "Micromachined ion-selective electrodes with polymer matrix membranes," Sensors and Actuators B: Chemical, vol. 21, pp. 71-76, 1994.
[86] M. Knoll, K. Cammann, C. Dumschat, C. Sundermeier, and J. Eshold, "Potentiometric silicon microsensor for nitrate and ammonium," Sensors and Actuators B: Chemical, vol. 18, pp. 51-55, 1994.
[87] L. Campanella, C. Colapicchioni, G. Crescentini, M. Sammartino, Y. Su, and M. Tomassetti, "Sensitive membrane ISFETs for nitrate analysis in waters," Sensors and Actuators B: Chemical, vol. 27, pp. 329-335, 1995.
[88] P. C. Hauser and S. S. Tan, "All-solid-state instrument for fluorescence-based fibre-optic chemical sensors," Analyst, vol. 118, pp. 991-995, 1993.
[89] M. Alajarín, P. Molina, P. Sánchez-Andrada, and M. Concepción Foces-Foces, "Preparation and intramolecular cyclization of bis (carbodiimides). Synthesis and X-ray structure of 1, 3-diazetidine-2, 4-diimine Derivatives," The Journal of Organic Chemistry, vol. 64, pp. 1121-1130, 1999.
[90] J. A. Ortuño, R. Expósito, C. Sánchez-Pedreño, M. I. Albero, and A. Espinosa, "A nitrate-selective electrode based on a tris (2-aminoethyl) amine triamide derivative receptor," Analytica Chimica Acta, vol. 525, pp. 231-237, 2004.
[91] D. Wegmann, H. Weiss, D. Ammann, W. Morf, E. Pretsch, K. Sugahara, and W. Simon, "Anion-selective liquid membrane electrodes based on lipophilic quaternary ammonium compounds," Microchimica Acta, vol. 84, pp. 1-16, 1984.
[92] H. Hara, Y. Kondoh, O. Mitani, and S. Okazaki, "Solid solvent membrane coated wire electrodes and their response to nitrate, p-toluenesulfonate, chloride, calcium, and potassium," Analytical Chemistry, vol. 62, pp. 1139-1143, 1990.
[93] http://www.sigmaaldrich.com/catalog/product/sial/72549?lang=en&region=TW.
[94] D. G. Hall, "Ion-selective membrane electrodes: a general limiting treatment of interference effects," The Journal of Physical Chemistry, vol. 100, pp. 7230-7236, 1996.
[95] D. Martorell, E. Martinez-Fabregas, J. Bartroli, S. Alegret, and C. Tran-Minh, "Urea potentiometric biosensor based on all-solid-state technology," Sensors and Actuators B: Chemical, vol. 16, pp. 448-452, 1993.
[96] A. Senillou, N. Jaffrezic-Renault, C. Martelet, and S. Cosnier, "A miniaturized urea sensor based on the integration of both ammonium based urea enzyme field effect transistor and a reference field effect transistor in a single chip," Talanta, vol. 50, pp. 219-226, 1999.
[97] M. J. Syu and Y. S. Chang, "Ionic effect investigation of a potentiometric sensor for urea and surface morphology observation of entrapped urease/polypyrrole matrix," Biosensors and Bioelectronics, vol. 24, pp. 2671-2677, Apr 15 2009.
[98] I. Isildak, O. Cubuk, M. Altikatoglu, M. Yolcu, V. Erci, and N. Tinkilic, "A novel conductometric creatinine biosensor based on solid-state contact ammonium sensitive PVC–NH2 membrane," Biochemical Engineering Journal, vol. 62, pp. 34-38, 2012.
[99] L. M. Fu and C. H. Lin, "Numerical analysis and experimental estimation of a low-leakage injection technique for capillary electrophoresis," Electrophoresis, vol. 21, pp. 107-115, 2000.
[100] Y. F. Lin, "The applications of atmospheric plasma systems on microfluidic chip fabrication and surface modification," 93, Mechanical and Electro-mechanical Engineering, National sun yat-sen university, 2005.
[101] C. H. Lin, G. B. Lee, Y. H. Lin, and G. L. Chang, "A fast prototyping process for fabrication of microfluidic systems on soda-lime glass," Journal of Micromechanics and Microengineering, vol. 11, pp. 726-732, 2001.
[102] A. J. Miller and R. G. Zhen, "Measurement of Intracellular Nitrate Concentrations in Chara Using Nitrate-Selective Microelectrodes," Planta, vol. 184, pp. 47-52, 1991.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code