Responsive image
博碩士論文 etd-1019111-111506 詳細資訊
Title page for etd-1019111-111506
論文名稱
Title
四軸水下機械手臂之開發
Development of a 4-DOF Underwater Manipulator
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
74
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-10-11
繳交日期
Date of Submission
2011-10-19
關鍵字
Keywords
水下機械手臂、機構設計、Jacobian、軌跡球
Trackball, Jacobian, Underwater manipulator, Mechanism design
統計
Statistics
本論文已被瀏覽 5766 次,被下載 717
The thesis/dissertation has been browsed 5766 times, has been downloaded 717 times.
中文摘要
海下作業及採樣工作,逐漸被水下無人遙控載具 (Remotely Operated Vehicle)與水下機械手臂取代,以避免潛水人員因為環境高壓低溫可能面臨的危險。而水下無人遙控載具執行任務時,操控者可透過感測器瞭解海底環境與目標物狀態,完成複雜的水下任務如管線檢修、採樣等工作。本實驗室近期開發載具泛用型控制器,希望藉此達到水下載具搭載機械手臂的泛用控制,提升水中採集及作業能力。載具於海水中約呈中性浮力,為求穩定,需謹慎考量系統增減硬體配備時平衡狀態。然而水下機械手臂運行時,重心改變也會造成載具的不平衡,因此重新檢討設計,希望精簡各元件的體積與重量。本研究引入接線盒的設計概念,將各軸複雜的電路、高功率電源轉換器與馬達控制卡置入接線盒中,這種配置方式讓電源與命令分派能有更妥善的規劃,並達到機械手臂體積縮減與便於維修的特性。在機械手臂的更新設計中,我們將傳動機構移至水密箱外部以減少水密空間,並採用電動馬達,依各軸定位需求分別配置伺服馬達與直流馬達。因為機械手臂在水中的動作不求快速,因此軸間傳動採用蝸桿蝸輪,增加高扭矩與平穩的輸出動力。運動控制利用Jacobian座標轉換步驟,計算各軸馬達的轉動增量,達到各軸同動控制。人機介面採用Borland C++Builder搭配OpenGL建立呈現系統運動狀態。控制輸入採用3Dconnexion公司的軌跡球,以搭配機械手臂定位精度與自由度控制。本研究建置成果將提升水中探勘作業性能,並與相關研究搭配,增加在學術領域上的應用。
Abstract
Underwater operation and sampling has been replaced by ROV (Remotely Operated Vehicle) and underwater manipulator gradually, which can avoid divers to face the dangers due to the environmental pressure and low temperature. When ROV to carry out the mission, the operator sees the undersea environment and the target with the information feedback from the sensors. Recently, we developed a general purpose controller for controlling underwater robotic systems. We plan to install the manipulator on the ROV with the same general purpose controller. One of the concerns in desgining is: the ROV generally mantains neutral buoyant in seawater. When adding or removing any components, the arrangement of balast weight needs to done again to keep the balance of the system. Moreover, the center of gravity will be changed such that dynamics of the ROV will be different when collaborating with the underwater manipulator. To resolve these problems, we review the design and hope to reduce the size and weight of each component.The new design also introduces the use of a junction box. The junction box keeps all the circuits, power converters and motor control card. It allows the reconfiguration of power and commands pathway much easier. To reduces of the size of the housings, the gear transmission set is moved out of the housing. According to the positioning accuray requirement of each axis, a DC servomotor or a DC motor is installed. Underwater manipulators do not require agile motion. Therefore we use a gear-worm set as the transmission between links to increase torque. The motion control is implemented with a Jacobian to calculate the increment joint angles for joint coordinate control. Human-interface was developed with Borland C++ Builder and OpenGL to let the operator to simulate and control of the manipulator with an input of a 3D joystick.
目次 Table of Contents
第一章 緒論 1
1.1研究動機………………………………………………………1
1.2文獻回顧………………………………………………………3
1.3研究目的………………………………………………………5
1.4本文架構………………………………………………………6
第二章 機構設計 7
2.1構型設計………………………………………………………7
2.2水密設計………………………………………………………10
2.3傳動系統設計…………………………………………………15
2.4機械夾爪設計…………………………………………………22
第三章 運動分析 25
3.1座標系統………………………………………………………25
3.2 Jacobian運動控制……………………………………………27
3.3模擬工作空間分析……………………………………………28
第四章 測試與實驗 31
4.1採樣平台設計…………………………………………………31
4.2實驗規劃………………………………………………………43
4.3測試結果………………………………………………………45
4.4實海域測試……………………………………………………48
第五章 討論與結果 51
5.1討論……………………………………………………………51
5.2成果……………………………………………………………52
5.3結論……………………………………………………………54
5.4建議……………………………………………………………55
參考文獻 References
[1] 黃裕仁,“晶圓輸送機械手臂之機構分析及運動控制研究”,私立中原大學機械工程研究所碩士論文,1999。
[2] 劉再發,“設計發展機械手臂輔助系統於中風病人的上肢評估與練習”,國立成功大學醫學工程研究所碩士論文,2006。
[3] Fumiaki Takemura, Reyes Tatsuru Shiroku,“Development of the Actuator Concentration Type Removable Underwater Mani,pulator,”IEEE Int. Conf. Robotics and Automation, pp. 2124-2128, Okinawa, Japan, 2010.
[4] S.U. Lee, Y.S. Choi, K.M. Jeong and Seungho Jung,“Development of an Underwater Manipulator for Maintaining Nuclear Power Reactor,” IEEE Int. Conf. Automation and Systems, 2007, pp. 1006-1010.
[5] R.C. Goertz and R. Thompson,“Electronically Controlled Manipulator,”Nucleonics, PP. 46-47, 1954.
[6] L.L. Whitcomb and D.R. Yoerger,”A New Distributed Real-Time Control System for the JASON Underwater Robot,”IEEE IROS Conference, pp. 370-377, Yokohama, Japan, 1999.
[7] Jochen Kerdel, Jan Albiez, Frank Kirchner,“Sensorless Computer Control of an Underwater DC Manipulator,” IEEE, 2008.
[8] Lauren, Alise, Cooney,“Development of a Low-Cost Underwater Manipulator ,” Massachusetts Institute of Technology, 2006.
[9] E. Niemela and T. Virvalo,“Fuzzy Logic Assisted Manual Control of Joystick Operated Hydraulic Crane,” Proceedings of the Third IEEE Conference on Fuzzy Systems, pp. 642-647, 1994.
[10] 洪敏偉,“水下機械手臂之設計與製作”,國立中山大學機械與機電工程學系碩士論文,2006。
[11] 晉茂林,“機器人學”,五南圖書,1998。
[12] 王國誌,“水下無人載具樣本儲存裝置之設計”,國立中山大學海下科技暨應用海洋物理研究所碩士論文,2009。
[13] 黃兆羽,“水下載具採樣機械手臂之設計”,國立中山大學海下科技暨應用海洋物理研究所碩士論文,2009。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code