Responsive image
博碩士論文 etd-1020106-170717 詳細資訊
Title page for etd-1020106-170717
論文名稱
Title
運用基因演算法解決微帶天線參數微調設計問題
Parameter Tuning of Microstrip Antennas Design using Genetic Algorithm
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
94
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-10-05
繳交日期
Date of Submission
2006-10-20
關鍵字
Keywords
微帶天線、最佳化、基因演算法
Microstrip antennas, Optimization, Genetic Algorithm
統計
Statistics
本論文已被瀏覽 5776 次,被下載 3945
The thesis/dissertation has been browsed 5776 times, has been downloaded 3945 times.
中文摘要
在最近幾年來,微帶天線由於它具有體積小、重量輕、成本低而且容易製造等優點,因而使其非常適合應用於無線通訊系統中,從早期被使用在火箭、太空梭等飛行器的導航設備到現在的個人行動通訊設備上,它都扮演著非常重要的角色。 不過,在天線設計中存有很多變數會對其效能造成影響,因此要如何快速找到一個最佳化的天線就變成是一件高難度的工作了。早期從事有關天線設計的研究者,在天線設計中對於這些變數的選擇並未使用任何最佳化的工具,他們最常使用的方法是相當耗時的錯誤嘗試法 (Trial and Error),其目的只是為了設法找出一組好的解,用來驗證其所提天線架構之可行性。 近幾年來,雖然基因演算法應用在寬頻微帶天線的設計的效果已被證實,但是這效果的高低還是得取決於基因演算法的技巧。在本論文中,我們先提出了一個具有參數微調功能的基因演算方法來加強在設計微帶天線時的效能。我們將此一具有參數微調能力的基因演算方法與傳統基因演算法比較後證實在最佳化的速度上可以獲得很大的改善,藉由這個方法我們可以得到比單一金屬片大3.84倍的頻寬。接下來,我們進行的另一項工作是有關於 UWB天線的設計。在這裡,我們提出了一個新的設計概念,運用遺傳演算法的強大的搜尋能力,可以快速的找到一個可用解之區間,而非以往僅著重於單一解的搜尋,如此一來可使天線的製造過程,具有更好的便利性與實用性。最後我們也針對在UWB系統中,最常遭遇到不同通訊系統之間訊號干擾的問題,提出一個新的解決辦法,就是從天線端下手先一步抑制這些頻帶,設計一個具有帶拒頻帶 (Band-notched) 的天線。因為從天線端著手,有容易整合以及降低整體製作成本的優點。
Abstract
In recent years, microstrip antennas are suitable for applications in wireless communication systems because they have the characteristics of compact size, light weight, low cost and easy to manufacture. So, they play an important role in the navigation equipment of the rocket, space shutter, personal communication, etc. However, in the design and synthesis of antennas, there are a large number of design variables that affect the antenna performance. In early stages, some researchers did not use any optimization tool in parameter tuning of antennas design. The one utilized most is the “trial and error” method, which is very time-consuming in order to find a suitable solution to verify the possibilities of the antenna structure. Genetic algorithms have been shown to be effective in the design of broadband microstrip antenna. However, their effectiveness with various degrees depends on the skills of the different genetic algorithms. In this dissertation, we propose a Genetic Algorithm (GA)-based refined method to enhance the effectiveness and to solve the gap-coupled microstrip antenna design problem (largest impedance bandwidth). The refined method with optimization process improves the computing performance comparing with the conventional genetic algorithm. By the refined GA method, bandwidth can be widened up to 3.84 times that of a single excited patch. Furthermore, we present a new design for Ultra Wideband (UWB) antenna. In the new research topic, it is expected that the genetic algorithm can find out a range of feasible (range-based) solutions instead of a few of solutions. As a result, the manufacturing process will have more convenience and practicability. Finally, we propose a new method to overcome the problem of signal interference with the UWB system operations. A band notched characteristic is achieved for the antenna to restrain the interference bandwidth. The disclosed antenna and the circuitry for the antenna system are easily integrated. With the simple structure, the fabrication cost for the antenna is also reduced.
目次 Table of Contents
中文摘要 I-1
Abstract II-1
Acknowledgements III-1
Table of Contents IV-1
List of Figures V-1
Chapter 1. Introduction 1-1
1.1 Motivation 1-1
1.2 Overview of the Evolution for Microstrip Antennas 1-4
1.3 Organization of the Dissertations 1-9
Chapter 2. Genetic Algorithm and Literature Reviews 2-1
2.1 Background Materials 2-1
2.2 Hybrid Genetic Algorithms 2-8
2.3 Multiobjective Evolutionary Algorithms (MOEAs) 2-11
Chapter 3. Parameter Tuning of Microstrip Antenna using GA with the Refined Process 3-1
3.1 Antenna Theory 3-1
3.2 Proposed Antenna Configuration 3-2
3.3 The Genetic Algorithm with Refined Process 3-7
3.4 Real-coded Encoding Scheme and Objective Function 3-9
3.5 Refined Process 3-13
3.6 Simulation 3-16
Chapter 4. Design of Indent-Disk Monopole Antenna 4-1
4.1 The Indent-Disk Monopole Antenna Configuration 4-2
4.2 Objective Function 4-5
4.3 Simulation 4-10
Chapter 5. Design of Band-notched Ultra-wideband Slot 5-1
5.1 Band-notched Concepts 5-1
5.2 Antenna Structure and Design 5-4
5.3 Simulation 5-6
Chapter 6. Conclusions 6-1
6.1 Main Contributions 6-1
6.2 Future Research Topics 6-3
References VI-1
參考文獻 References
[1] R. Afzalzadeh and R. N. Karekar, “X-Band Directive Single Microstrip Patch Antenna Using Dielectric Parasite,” Electronics Letters, Vol. 28, pp. 17–19, 1992.
[2] P. K. Agrawal and M. C. Bailey, “An Analysis Technique for Microstrip Antennas,” IEEE Transactions on Antennas and Propagation, Vol. 25, pp. 756–758, 1977.
[3] N. P. Agrawall, G. Kumar, and K. P. Ray, “New Wideband Monopole Antennas,” IEEE AP- Society Int. Symposium, Vol. 1, pp.248-251, 1997.
[4] E. E. Altshuler, “Electrically Small Self-Resonant Wire Antennas Optimized using a Genetic Algorithm,” IEEE Transactions on Antennas and Propagation, Vol. 50, pp. 297-300, 2002.
[5] E. E. Altshuler and D. S. Linden, “Wire-antenna Designs using Genetic Algorithms,” IEEE Antennas Propagation Magazine, Vol. 39, pp. 33–43, Apr. 1997.
[6] M. J. Ammann and Z. N. Chen, “A Wide-Band Shorted Planar Monopole with Bevel,” Antennas and Propagation, IEEE Transactions on, Vol. 51, pp. 901-903, 2003.
[7] P. V. Anob, K. P. Ray, and G. Kumar, “Wideband Orthogonal Square Monopole Antennas with Semi-Circular Base,” IEEE AP- Society Int. Symposium, Vol. 3, pp. 294-297, 2001.
[8] K. Ashkenazy and P. Perlmutter, “A Modular Approach for the Design of Microstrip Array Antennas,” IEEE Transactions on Antennas and Propagation, Vol. 31, pp. 190–193, 1983.
[9] R. Chair, A. A. Kishk, K. F. Lee, and C. E. Smith, “Wideband Flipped Staired Pyramid Dielectric Resonator Antennas,” Electronics. Lett., Vol. 40, pp. 581-582, 2004.
[10] E. Chang, S. A. Long, and W. F. Richards, “Experimental Investigation of Electrically Thick Rectangular Microstrip Antennas,” IEEE Transactions on Antennas and Propagation, Vol. 34, pp. 767–772, June 1986.
[11] H. D. Chen, “Broadband CPW-Fed Square Slot Antenna with a Widened Tuning Stub,” IEEE Trans Antennas Propagat, Vol. 51, pp. 1982-1986, 2003.
[12] W. C. Chew and Q. Liu, “Resonance Frequency of a Rectangular Microstrip Patch,” IEEE Transactions on Antennas and Propagation, Vol. 36, pp. 1045-1056, 1988.
[13] J. Choi, K. L. Chung, and Y. Roh, “Parametric Analysis of A Band-Rejection Antenna for UWB Application,” Microwave and Optical Technology Letters, Vol. 47, pp. 287-290, 2005.
[14] S. H. Choi, J. K. Park, S. K. Kim, and J. Y. Park, “A New Ultra Wideband Antenna for UWB Applications,” Microwave Opt. Technol. Lett., Vol. 40, No. 5, pp. 399-401, 2004.
[15] H. Choo, A. Hutani, L. Trintinalia, and H. Ling, “Shape Optimization of Broadband Microstrip Antennas using Genetic Algorithm,” Electronics Letters, Vol. 36, pp. 2057-2058, 2000.
[16] H. Choo, R. L. Rogers, and H. Ling, “Design of Electrically Small Wire Antennas using Genetic Algorithm Taking into Consideration of Bandwidth and Efficiency,” Proceedings of IEEE Antennas and Propagation Society International Symposium, Vol. 1, pp. 330-333, 2002.
[17] H. Choo, R. L. Rogers and H. Ling, “Design of Electrically Small Wire Antennas using a Pareto Genetic Algorithm,” IEEE Transactions on Antennas and Propagation, Vol. 53, pp. 1038-1046, 2005.
[18] Y. L. Chow and K. H. Shiu, “A Theory on the Broadbanding of a Patch Antenna,” Proceedings of the Asia Pacific Microwave Conference, pp. 245-248, 1997.
[19] A. D. Chuprin, J. C. Batchelor, and E. A. Parker, “Design of Convoluted Wire Antennas using a Genetic Algorithm,” IEE Proceedings- Microwave, Antennas and Propagation, Vol. 148, pp. 323-326, 2001.
[20] M. Datta and G. Kumar, “Broadband Gap-Coupled Circular Microstrip Antennas,” Proceedings of Antennas and Propagation Society International Symposium, Vol. 3, pp. 1418-1421, 2000.
[21] A. G. Derneryd, “A Theorectical Investigation of the Rectangular Microstrip Antenna,” IEEE Transactions on Antennas and Propagation, Vol. 26, pp. 532-535, 1978.
[22] S. Egashira and E. Nishiyama, “Stacked Microstrip Antenna with Wide Bandwidth and High Gain,” IEEE Transactions on Antennas and Propagation, Vol. 44, pp. 1533-1534, 1996.
[23] P. Eskelinen and T. Tarvainen, “Improving an Inverted Trapezoidal Antenna for Mobile Communications,” IEEE AP- Society Int. Symposium, Vol. 3, pp. 1266-1269, 2002.
[24] First Report and Order in the matter of Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission Systems, Released by Federal Communications Commission, ET-Docket 98-153, Apr. 22, 2002.
[25] N. Fortino, G. Kossiavas, J. Y. Dauvignac, and R. Staraj, “Novel antennas for ultra-wideband communications,” Microwave Opt. Technol. Lett., Vol. 41, pp. 166-169, 2004.
[26] Y. Gao, B. L. Ooi, and A. P. Popov, “Band-Notched Ultra-Wideband Ring-Monopole Antenna,” Microwave and Optical Technology Letters, Vol. 45, pp. 125-126, 2006.
[27] M. Gen and R. Cheng, Genetic Algorithms and Engineering Design, Wiley, 1997.
[28] H. C. Go and Y. W. Jang, “Multi-Band Modified Fork-Shaped Microstrip Monopole Antenna with Ground Plane Including Dual-Triangle Portion,” Electronics. Lett., Vol. 40, 2004.
[29] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, 1989.
[30] D. E. Goldberg and K. Deb, A Comparison of Selection Schemes Used in Genetic Algorithms, In Foundations of Genetic Algorithms 1 (FOGA-1), pp. 69-93, 1991.
[31] P. S. Hall, “Probe Compensation in Thick Microstrip Patches,” Electronics Letters, Vol. 23, pp. 606–607, 1987.
[32] R. L. Haupt, “An Introduction to Genetic Algorithms for Electromagnetics,” IEEE Antennas Propagation Magazine, Vol. 37, pp. 7-15, 1995.
[33] N. Herscovici, M. F. Osorio, and C. Peixeiro, “Miniaturization of Rectangular Microstrip Patches using Genetic Algorithms,” IEEE Antennas and Wireless Propagation Letters, Vol. 1, pp. 94-97, 2002.
[34] J. Holland, “Outline of Control Parameters for Genetic Algorithms,” Journal of the Association for Computer Machinery, Vol. 3, pp. 297-314, 1962.
[35] J. Q. Howell, “Microstrip Antennas,” IEEE Transactions on Antennas and Propagation, Vol. 23, pp. 90-93, 1975.
[36] C. Y. Huang and W. C. Hsia, “Planar Elliptical Antenna for Ultra-Wideband Communication,” Electronics Lett., Vol. 41, pp. 296-297, 2005.
[37] C. Y. Huang, W. C. Hsia, and J. S. Kuo, “Planar Ultra-Wideband Antenna with a Band-Notched Characteristic,” Microwave Optical Technol Lett, Vol. 48, pp. 99-101, 2006.
[38] T. Itoh and W. Menzel, “A Full-Wave Analysis Method for Open Microstrip Structure,” IEEE Transactions on Antennas and Propagation, Vol. 29, pp. 63-67, 1981.
[39] Y. W. Jang, “A Circular Microstrip-Fed Single-Layer Single-Slot Antenna for Multi-Band Mobile Communications,” Microwave Opt Technol Lett, Vol. 37, pp. 59-62, 2003.
[40] G. T. Jeong, J. H. Yoon, S. M. Lee, and K. S. Kwak, “Design of Multiple U-Shaped Slot Microstrip Patch Antenna in Hiper-Lan Band,” Microwave Opt. Technol. Lett., Vol. 40, pp. 368-370, 2004.
[41] J. M. Johnson and Y. Rahmat-Samii, “Genetic Algorithms in Engineering Electromagnetics,” IEEE Antennas Propagation Magazine, Vol. 39, pp. 7-21, Aug. 1997.
[42] J. M. Johnson and Y. Rahmat-Samii, “Genetic Algorithms and Method of Moments (GA/MOM) for the Design of Integrated Antennas,” IEEE Transactions on Antennas and Propagation, Vol. 47, pp. 1606-1614, 1999.
[43] D. Kalyanmoy, Multi-Objective Optimization Using Evolutionary Algorithms, John-Wiley & Sons, 2001.
[44] S. Y. Ke and K. L. Wong, “Full-Wave Analysis of Microstrip Yagi Array Antennas,” Microwave and Optical Technology Letters, Vol. 8, pp. 287-291, 1995.
[45] A. Kerkhoff and H. Ling, “Design of a planar monopole antenna for use with ultra-wideband having a band-notched characteristic,” IEEE AP- Society Int. Symposium, Vol. 1, pp. 830-833, 2003.
[46] A. Kerkhoff and H. Ling, “A Parametric Study of Band-Notched UWB Planar Monopole Antennas,” IEEE Antennas Propagat Soc Int. Symp. Dig Vol. 2, pp. 1768-1771, 2004.
[47] A. Kerkhoff, R. Rogers, and H. Ling, “The Use of the Genetic Algorithm Approach in the Design of Ultra-Wideband Antennas,” IEEE Radio and Wireless Conference, pp. 93-96, 2001.
[48] Y. Kim and D.H. Kwon, “CPW-Fed Planar Ultra Wideband Antenna Having a Frequency Band Notch Function,” Electronics. Lett., Vol. 40, 2004.
[49] Y. Kim and D. H. Kwon, “Planar ultra wide band slot antenna with frequency band notch function,” IEEE AP- Society Int. Symposium, Vol. 2, pp. 1788-1791, 2004.
[50] J. Kim and S. O. Park, “Novel Ultra Wideband Discone Antenna,” Microwave Opt. Technol. Lett., Vol. 42, pp. 113-115, 2004.
[51] G. Kumar and K. C. Gupta, “Directly Coupled Multiple Resonator Wide-Band Microstrip Antennas,” IEEE Transactions on Antennas and Propagation, Vol. 33, pp. 588-593, 1985.
[52] G. Kumar and K. C. Gupta, “Nonradiating Edges and Four Edges Gap-Coupled Multiple Resonator Broad-Band Microstrip Antennas,” IEEE Transactions on Antennas and Propagation, Vol. 33, pp. 173-178, 1985.
[53] A. Lai, W. D. Burnsiade, and A. Sinopoli, “A Novel Ultra Wideband Antenna,” IEEE AP- Society Int. Symposium, Vol. 2, pp. 703-706, 1991.
[54] A. K. Y. Lai, A. L. Sinopoli, and W. D. Burnside, “A Novel Antenna for Ultra-Wide-Band Application,” IEEE AP- Society Int. Symposium, Vol.40, pp. 755-760, 1992.
[55] K. F. Lee, K. Y. Ho and J. S. Dahele, “Circular-Disk Microstrip Antenna with an Air Gap,” IEEE Transactions on Antennas and Propagation, Vol. 32, pp. 880-884, 1984.
[56] W. S. Lee, K. J. Kim, D. Z. Kim, and J. W. Yu, “Compact Frequency-Notched Wideband Planar Monopole Antenna with an L-Shaped Ground Plane,” Microwave and Optical Technology Letters, Vol. 46, pp. 340-343, 2005.
[57] R. Q. Lee and K. F. Lee, “Characteristics of a Two-Layer Electromagnetically Coupled Rectangular Patch Antenna,” Electronics Letters, Vol. 23, pp. 1070-1072, 1987.
[58] R. Q. Lee, and K. F. Lee, “Gain Enhancement of Microstrip Antennas with Overlaying Parasitic Directors,” Electronics Letters, Vol. 24, pp. 656-658, 1988.
[59] R. Q. Lee and K. F. Lee, “Experimental Study of the Two-Layer Electromagnetically Coupled Rectangular Patch Antenna,” IEEE Transactions on Antennas and Propagation, Vol. 38, pp. 1298-1302, 1990.
[60] J. N. Lee, J. K. Park, and S. S. Choi, “Design of A Compact Frequency-Notched UWB Slot Antenna,” Microwave and Optical Technology Letters, Vol. 45, pp. 105-107, 2006.
[61] A. C. Lepage and X. Begaud, “A Compact Ultra Wideband Triangular Patch Antenna,” Microwave Opt. Technol. Lett., Vol. 40, 2004.
[62] J. Liang, C. C. Chiau, X. Chen, and C. G. Parini, “Printed Circular Disk Monopole Antenna for Ultra-Wideband Applications,” Electronics Lett., Vol. 40, pp. 1246-1247, 2004.
[63] Y. F. Liu, K. L. Lau, Q. Xue, and C.H. Chan, “Experimental Studies of Printed Wide-Slot Antenna for Wide-Band Applications,” IEEE Antennas and Wireless Propagation Letters, Vol. 3, pp. 273-275, 2003.
[64] Y. T. Lo, D. Solomon, and W. F. Richards, “Theory and Experiment on Microstrip Antennas,” IEEE Transactions on Antennas and Propagation, Vol. 27, pp. 137-145, 1979.
[65] Y. Lu and Y. Rahmat-Samii, “Optimal Design of the Generalized Three-parameter Aperture Distribution by the Emperor-Selective Genetic Algorithm,” Proceedings of Antennas and Propagation Society International Symposium, pp. 422-425, 1999.
[66] K. M. Luk, Y. X. Guo, K. F. Lee, and Y. L. Chow, “L-Probe Proximity Fed U-Slot Patch Antenna,” Electronics Letters, Vol. 34, pp. 1806-1807, 1998.
[67] K. M. Luk, K. F. Lee and Y. L. Chow, “Proximity-Coupled Stacked Circular-Disk Microstrip Antenna with Slots,” Electronics Letters, Vol. 34, pp. 419-420, 1998.
[68] K. M. Luk, C. L. Mak, Y. L. Chow and K. F. Lee, “Broadband Microstrip Patch Antenna,” Electronics Letters, Vol. 34, pp. 1442-1443, 1998.
[69] C. L. Mak, K. M. Luk and K. F. Lee, “Proximity-Coupled U-Slot Patch Antenna,” Electronics Letters, Vol. 34, pp. 715-716, 1998.
[70] C. L. Mak, K. M. Luk, K. F. Tong, Y. L. Chow and K. F. Lee, “A Novel Broadband Rectangular Microstrip Antenna,” Proceedings of the Asia Pacific Microwave Conference, Vol. 2, pp. 1031-1033, 1998.
[71] E. Nishiyama, S. Egashira and M. Aikawa, “Analysis of Stacked Microstrip Antenna with High Gain Using FDTD Method,” Proceedings of the Asia Pacific Microwave Conference, Vol. 2, pp. 1019-1022, 1998.
[72] A. V. Nogueira, and M. F. Bataller, “A Wideband Arrowhead Planar Monopole Antenna for Multi-Service Mobile Systems,” Microwave Opt. Technol. Lett., Vol. 37, 2003.
[73] H. Okado, “Antenna and Wireless Communication Card,” U.S. Patent No.:0100407, 2004.
[74] H. Okado, “Wide Bandwidth Antenna,” U.S. Patent No.:0100408, 2004.
[75] B. Orchard and A. R. Clark, “Comparison of Various Genetic Algorithm Techniques for Optimisation of Simple Wire Antennas,” Proceedings of Antennas and Propagation Society International Symposium Digest, Vol. 1, pp. 165-168, 2003.
[76] C. J. Pan, T. Y. Chou, C. Lee, and C. Y. Huang, “Effective and Tolerant Wide-Range Solutions for Ultra-Wideband Indented-Disk Monopole Antenna,” Microwave and Optial Technology Letters, Vol. 48, pp. 693-695, 2006.
[77] C. J. Pan, C. Lee, C. Y. Huang, and H. C. Lin, “Band-notched Ultra-wideband Slot Antenna,” Microwave and Optial Technology Letters, Vol. 48, pp. 2444-2446, 2006.
[78] J. Powell and A. Chandrakasan, “Differential and single ended elliptical antennas for 3.1-10.6 GHz ultra wideband communication,” IEEE AP- Society Int. Symposium, Vol. 3, pp. 2935-2938, 2004.
[79] D. M. Pozar, “Microstrip Antennas,” Proceedings of the IEEE, Vol. 80, pp. 79-91, 1992.
[80] D. M. Pozar and S. D. Targonski, “Improved Coupling for Aperture Coupled Microstrip Antennas,” Electronics Letters, Vol. 27, pp. 1129-1131, 1991.
[81] D. M. Pozar and S. M. Voda, “A Rigorous Analysis of a Microstrip Fed Patch Antenna,” IEEE Transactions on Antennas and Propagation, Vol. 35, pp. 1342-1350, 1987.
[82] X. Qing, M. Y. W. Chia, and X. Wu, “Wide-Slot Antenna for UWB Applications,” IEEE AP- Society Int. Symposium, Vol. 1, pp. 834-837, 2003.
[83] J. Qiu, Z. Du, J. Lu, and K. Gong, “A Band-Notched UWB Antenna,” Microwave and Optical Technology Letters, Vol. 45, pp. 152-154, 2005.
[84] Y. Rahmat-Samii and E. Michielssen, Electromagnetic Optimization by Genetic Algorithms, New York: Wiley, 1999.
[85] W. F. Richards, Y. T. Lo, and D. D. Harrison, “An Improved Theory of Microstrip Antennas and Applications,” IEEE Transactions on Antennas and Propagation, Vol. 29, pp. 38-46, 1981.
[86] J. S. Row and K. L. Wong, “Resonance in a Superstrate-Loaded Rectangular Microstrip Structure,” IEEE Transactions on Microwave Theory Techniques, Vol. 41, pp. 1349-1355, 1993.
[87] H. G. Schantz, “Measurement of UWB Antenna Efficiency,” Vehicular Technology Conference 2001 (VTC 2001), Vol. 2, pp.1189-1191, 2001.
[88] H. G. Schantz, “UWB Magnetic Antennas,” IEEE AP-Society Int. Symposium, Vol. 3, pp. 604-607, 2003.
[89] H. G. Schantz, “Introduction to Ultra-Wideband Antennas,” IEEE UWBST, pp. 1-9, 2003.
[90] H. G. Schantz, “A Brief History of UWB Antennas,” IEEE A&E Systems Magazine, Vol. 19, pp. 22-26, 2004.
[91] H. G. Schantz, and M. Barnes, “The COTAB UWB Magnetic Slot Antenna,” IEEE AP-Society Int. Symposium, Vol.4, pp. 104-107, 2001.
[92] H. G. Schantz, G. Wolence, and E. M. Myszka, “Frequency notched UWB antennas,” IEEE UWBST Conference, pp. 214-218, 2003.
[93] D. H. Schaubert, “A Review of Some Microstrip Antenna Characteristics,” in Microstrip Antennas: The Analysis and Design of Microstrip Antennas and Arrays, D. M. Pozar and D. H. Schaubert, Eds. New York: IEEE Press, pp. 59-67, 1995.
[94] C. J. Shannon, M. Okoniewski, and E. C. Fear, “A Dielectric Filled Ultra Wideband for Breast Cancer Detection,” IEEE AP- Society Int. Symposium, Vol.1, pp.218-221, 2003.
[95] K. Siwiak and D. McKeown, Ultra-Widebnad Radio Technology, Wiley, New York, 2004.
[96] T. G. Spence and D. H. Werner, “Genetically Optimized Fractile Microstrip Patch Antennas,” Proceedings of IEEE Antennas and Propagation Society International Symposium, Vol. 4, pp. 4424-4427, 2004.
[97] S. W. Su, K. L. Wong, and C. L. Tang, “Ultra-Wideband Square Planar Monopole Antenna for IEEE 802.16a Operation in the 2-11 GHz Band,” Microwave Opt. Technol. Lett., Vol. 42, 2004.
[98] S. Y. Suh, W. L. Stutzman, and W. A. Davis, “A New Ultra Wideband Printed Monopole Antenna: the Planar Inverted Cone Antenna (PICA),” IEEE Transactions on Antennas and Propagation, Vol. 52, pp. 1361-1364, 2004.
[99] S. Y. Suh, W. Stutzman, W, Davis, A. Waltho, and J. Schiffer, “A Novel CPW-Fed Disk Antenna,” IEEE Antennas Propagation Society Int. Symp. Dig., Vol. 3, pp. 2919-2922, 2004.
[100] T. Taniguchi and T. Kobayashi, “An Ominidirectional and Low-VSWR Antenna for the FCC-Approved UWB Frequency Band,” IEEE AP- Society Int. Symposium, Vol. 3, pp. 460-463, 2003.
[101] S. D. Targonski and D. M. Pozar, “Design of Wide-Band Circularly Polarized Aperture Coupled Microstrip Antennas,” IEEE Transactions on Antennas and Propagation, Vol. 41, pp. 214-220, 1993.
[102] S. D. Targonski, R. B. Waterhouse and D. M. Pozar, “Design of Wide-Band Aperture-Stacked Patch Microstrip Antennas,” IEEE Transactions on Antennas and Propagation, Vol. 46, pp. 1245-1251, 1998.
[103] A. Valero-Nogueira and M. Ferrando-Bataller, “Analysis of Wideband Planar Monopole Antennas Using Characteristic Modes,” IEEE AP- Society Int. Symposium, Vol. 3, pp. 733-736, 2003.
[104] W. M. Vose, The Role of Mutation and Recombination in Evolutionary Algorithms, Ph. D. Thesis, Fairfax, VA: George Mason University, 1998.
[105] M. D. Vose, Simple Genetic Algorithm: Foundation and Theory, Ann Arbor, MI: MIT Press, 1999.
[106] K. L. Wong, Y. W. Chi, C. M. Su, and F. S. Chang, “Band-Notched Ultra-Wideband Circular-Disk Monopole Antenna with an Arc-Shaped Slot,” Microwave and Optical Technology Letters, Vol. 45, pp. 188-191, 2005.
[107] K. L. Wong, T. C. Tseng, and P. L. Teng, “Low-Profile Ultra Wideband Antenna for Mobile Phone Applications,” Microwave Opt. Technol. Lett., Vol. 43, 2004.
[108] X. H. Wu, Z. N. Chen, and N. Yang, “Optimzation of Planar Diamond Antenna for Single-Band and Multiband UWB Wireless Communication,” Microwave Opt. Technol. Lett., Vol. 42, pp. 451-455, 2004.
[109] K. K. Yan and Y. Lu, “Sidelobe Reduction in Array Pattern Synthesis using Genetic Algorithm,” IEEE Transactions on Antennas and Propagation, Vol. 45, pp. 1117-1122, 1997.
[110] T. Yang and W. A. Davis, “Planar Half-Disk Antenna Structures for Ultra-Wideband Communications,” IEEE Antennas Propagation Society Int. Symp. Dig., Vol. 3, pp. 2508-2511, 2004.
[111] T. Yang, S. Y. Suh, R. Nealy, W. A. Davis, and W. L. Stutzman, “Compact Antennas for UWB Application,” IEEE A&E SYSTEM MAGAZINE, vol. 19, pp. 16-20, 2004.
[112] K. Y. Yazdandoost and R. Hohno, “Ultra Wideband Antenna,” IEEE Communications Magazine, Vol. 42, pp.S29-S32, 2004.
[113] C. Ying, G. Y. Li, and Y. P. Zhang, “An LTCC Planar Ultra Wideband Antenna,” Microwave Opt. Technol. Lett., Vol. 42, pp. 220-222, 2004.
[114] H. Yoon, H. Kim, K. Chang, Y. J. Yoon and Y. H. Kim, “A Study on the UWB Antenna with Band-Rejection Characteristic,” IEEE AP- Society Int. Symposium, Vol. 2, pp. 1784-1787, 2004.
[115] R. Zentner, Z. Sipus and J. Bartolic, “Optimization Synthesis of Broadband Circularly Polarized Microstrip Antennas by Hybrid Genetic Agorithm,” Microwave and Optical Technology Letters, Vol. 31, pp. 197-201, 2001.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code