Responsive image
博碩士論文 etd-1020110-121248 詳細資訊
Title page for etd-1020110-121248
論文名稱
Title
AZ31B 鎂合金的變形集中行為探討
Strain localization behavior of AZ31B magnesium alloy
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
158
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-10-15
繳交日期
Date of Submission
2010-10-20
關鍵字
Keywords
變形集中、動態再結晶、AZ31B鎂合金
Strain localization, AZ31B
統計
Statistics
本論文已被瀏覽 5732 次,被下載 23
The thesis/dissertation has been browsed 5732 times, has been downloaded 23 times.
中文摘要
本研究使用單軸壓縮對AZ31B 鎂合金熱軋延材進行ND 方向及RD 方向試驗,分別在不同溫度、應變速率與變形量觀察材料內部的變形行為。
在變形溫度 200oC 以下,沿板材ND 進行壓縮試驗,結果顯示材料會生成板狀變形集中帶。起初變形帶的方位是平行板材TD 方向與壓延面交約25o,隨後材料沿變形帶處破裂。板狀變形帶的組織因變形條件不同而有不同的組織,分別是含變形雙晶、雙晶誘導動態再結晶與動態再結晶的變形組織。另外,AZ31B 鎂合金晶界動態再結晶的成核機制為晶界凸出,隨後於原始晶界位置形成低角度邊界,隨著變形量增加,低角度邊界轉變成高角度晶界並形成動態再結晶晶粒。當壓縮溫度提升至300 oC 時,變形相當的均勻無變形集中帶形成。在RD 壓縮與變形溫度為200 oC,應變速率為10-3 s-1,在變形過程中材料內部隨應變量的增加依序產生均勻的拉伸雙晶、動態再結晶與對稱且細小的變形帶,因此材料的變形比ND 壓縮來的均勻。本研究結果顯示當晶體的C軸與材料的壓縮軸垂直時能避免AZ31 鎂合金軋延板材的應變集中現象,使材料較能均勻變形。
Abstract
none
目次 Table of Contents
總目錄 I
表目錄 IV
圖目錄 V
第一章 前言 1
第二章 文獻回顧 2
2-1 鎂合金的變形 2
2-1-1 室溫變形 2
2-1-1-1 差排滑移 2
2-1-1-2 變形雙晶 3
拉伸雙晶(tension twin) 3
壓縮雙晶(compression twin) 4
二次雙晶(double twin) 4
2-1-2 鎂合金的高溫變形行為 6
2-1-2-1 動態再結晶行為 7
2-1-2-2 變形雙晶誘導動態再結晶現象 10
變形雙晶與晶界交會處 11
拉伸雙晶晶界處 11
拉伸雙晶內 12
二次雙晶晶界處 12
2-1-2-3 晶界滑移 (grain boundary sliding) 12
2-2 織構(texture)與相關變形行為 14
2-3 鎂合金的變形集中現象 16
2-3-1 常溫變形集中現象 17
2-3-2 高溫變形集中現象 18
第三章 實驗方法 22
3-1 實驗材料 22
3-2 壓縮試驗 22
3-3 光學顯微鏡與掃瞄式電子顯微鏡的試片製備 23
3-4 晶粒尺寸的量測與晶界凸出尺寸的量測: 23
3-5 EBSD 的試片製備及量測 24
3-6 穿透式電子顯微鏡的試片製備 25
3-7 變形集中角度的量測 25
第四章 實驗結果 26
4-1 ND 壓縮試驗結果 26
4-1-1 室溫與100 oC 的變形組織 26
4-1-2 變形溫度為200 oC,應變速率為10-1 s-1 的變形組織 27
4-1-3 變形溫度為200 oC,應變速率為10-3 s-1 的變形組織 29
4-1-4 變形溫度為300 oC,應變速率為10-3 s-1 的變形組織 33
4-2 RD 壓縮變形 33
4-2-1 室溫變形組織 33
4-2-2 200 oC,應變速率為10-3 s-1 的變形組織 34
第五章 討論 37
5-1 動態再結晶的成核機制 37
5-2 ND 壓縮變形集中帶 39
5-2-1 板材退火織構 39
5-2-2 雙晶變形帶(常溫與100 oC 的變形帶) 40
5-2-3 變形雙晶誘導動態再結晶變形集中帶的演化過程(200
oC ,應變速率為10-1 s-1 所形成的變形帶) 42
5-2-4 動態再結晶的變形集中帶演化過程(200 oC與應變速率為10-3 s-1 所形成的變形帶) 43
5-3 RD 壓縮變形 45
5-3-1 室溫變形 45
5-3-2 200 oC 變形 46
5-4 壓縮方向對變形不均勻性的影響 48
5-4-1 在200 oC,變形雙晶對動態再結晶的影響 48
5-4-2 變形帶的方位 50
5-4-3 在200 oC,變形集中與均勻變形的差異 51
5-5 變形組織與應變曲線之關係 51
第六章 結論 53
參考文獻 55
參考文獻 References
參考文獻
1. William, D.C., J., Materials Science and Engineering: An Introduction. 2007. John Wiley and Son.:p.185
2. Wonsiewicz, B.C. and Backofen, W.A., Plasticity of magnesium crystals. Transactions of AIME, 1967. 239: p. 1422.
3. Kelley, E.W. and Hosford, J.W.F., Plane-strain compression of magnesium and magnesium alloy crystal. Transactions of AIME, 1968. 242: p. 5.
4. Hauser, F.E., Starr, C.D., Tietz, L. and Dorn, J.E., Deformation mechanisms in polycrystalline aggregate of magnesium. Transactions of Metals, 1955. 47: p. 102.
5. Hauser, F.E., Landon, P.R., and Dorn, J.E., Deformation and fracture mechanisms of polycrystalline magnesium at low temperature. Transactions of Metals 1956. 48: p. 986.
6. Yoshinaga, H. and Horiuchi, R., On the non-basal slip in magnesium crystals. Transactions of the Japan Institute of Metals, 1963. 5: p. 14.
7. Roberts, C.S., Magnesium and Its alloys. 1960. John Wiley and Son.:p.88
8. Reed-Hill, R.E. and Robertson, W.D., Deformation of magnesium single crystals by non-basal slip. Journal of Metals, 1957. 5: p. 496.
9. Burke, E.C. and Hibbard, W.R.J., Plastic deformation of magnesium silngle crystals. Transactions of AIME, 1952. 194: p. 295.
10. Obara, T., Yoshinga, H. and Morozumi, S., [112 ‾2 ‾ ](112 ‾3) Slip system in magnesium. Acta Metallurgica, 1973. 21: p. 845.
11. Reed-Hill, R.E. and Robertson, W.D., Pyramidal slip in magnesium. Transactions of AIME, 1958. 212: p. 256.
12. Reed-Hill, R.E. and Robertson, W.D., The crystallographic characteristics of fracture in magnesium single crystals. Acta Metallurgica, 1957. 5: p. 728.
13. Hartt, W.H. and Reed-Hill, R.E., The irrational of second-order {101 ‾1}-{101 ‾2} twins in magnesium. Transactions of AIME, 1967. 239: p. 1511.
14. Hartt, W.H. and Reed-Hill, R.E., Internal deformation and fracture of second-order{101 ‾1}-{101 ‾2} twins in magnesium. Transactions of AIME, 1968. 242: p. 1127.
15. Yoshinaga, H. and Obara, T. and Morozumi, S., Twinning deformation in magnesium compressed along the c-axis. Materials Science and Engineering, 1973. 12: p. 255.
16. Yoshinaga, H. and Horiuchi, R., Deformation mechanisms in magnesium single crystals compressed in the direction parallel to the hexagonal axis. Transactions of the Japan Institute of Metals, 1963. 4: p. 1.
17. Reed-Hill, R.E., A study of the {101 ‾1} and {101 ‾3} twinning mode in magnesium. Transactions of AIME, 1960. 218: p. 554.
18. Koike, J., Enhanced deformation mechanisms by anisotropic plasticity in polycrystalline Mg alloys at room temperature. Metallurgical and Materials Transactions, 2005. 36A: p. 1689.
19. Barnett, M.R., Twinning and the ductility of magnesium alloys Part I: "Tension" twins. Materials Science and Engineering A, 2007. 464: p. 1.
20. Barnett, M.R., Twinning and the ductility of magnesium alloys Part II. "Contraction" twins. Materials Science and Engineering A, 2007. 464: p. 8.
21. Barnett, M.R., Keshavarz, Z. and Nave, M.D., Microstructural features of rolled Mg-3Al-1Zn. Metallurgical and Materials Transactions A, 2005. 36: p. 1697.
22. Nave, M.D. and Barnett, M.R., Microstructures and textures of pure magnesium deformed in plane-strain compression. Scripta Materialia, 2004. 51: p. 881.
23. Barnett, M.R., Nave, M.D. and Bettles, C.J., Deformation microstructures and textures of some cold rolled Mg alloys. Materials Science and Engineering A, 2004. 386: p. 205.
24. Cizek, P. and Barnett, M.R., Characteristics of the contraction twins formed close to the fracture surface in Mg-3Al-1Zn alloy deformed in tension. Scripta Materialia, 2008. 59: p. 959.
25. Reed-Hill, R.E. and Abbaschian, R., Physical Metallurgy Principle. 3ed. 1994, PWS publishing company.:p. 555.
26. Meyers, M.A., Vohringer, O. and Lubarda, V.A., The onset of twinning in metals: a constitutive description. Acta Materialia, 2001. 49: p. 4025.
27. Ecob, N. and Ralph, B., The effect of grain-size on deformation twinning in a textured zinc alloy. Journal of Materials Science, 1983. 18: p. 2419.
28. Barnett, M.R., A rationale for the strong dependence of mechanical twinning on grain size. Scripta Materialia, 2008. 59: p. 696.
29. Barnett, M.R., Keshavarz, Z., Beer, A.G. and Atwell, D., Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn. Acta Materialia, 2004. 52: p. 5093.
30. Barnett, M.R., A Taylor model based description of the proof stress of magnesium AZ31 during hot working. Metallurgical and Materials Transactions A, 2003. 34: p. 1799.


31. Ion, S.E., Humphreys, F.J. and White, S.H., Dynamic recrystallization and the development of microstructure during the high-temperature deformation of magnesium. Acta Metallurgica, 1982. 30: p. 1909.
32. Kaibyshev, R.O. and Sitdikov, O.S., The relation of crystallographic slip and dynamic recrystallization to the local migraion of grain boundary: I. experimental results. The Physics of Metals and Metallography, 1994. 78: p. 420.
33. Mwembela, A., Konopleva, E.B. and McQueen, H.J., Microstructural development in Mg alloy AZ31 during hot working. Scripta Materialia, 1997. 37: p. 1789.
34. Galiyev, A., Kaibyshev, R.O. and Gottstein, G., Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60. Acta Materialia, 2001. 49: p. 1199.
35. Beer, A.G. and Barnett, M.R., Microstructural development during hot working of Mg-3Al-1Zn. Metallurgical and Materials Transactions A, 2007. 38: p. 1856.
36. del Valle, J.A. and Ruano, O.A., Influence of texture on dynamic recrystallization and deformation mechanisms in rolled or ECAPed AZ31 magnesium alloy. Materials Science and Engineering A, 2008. 487: p. 473.
37. Al-Samman, T. and Gottstein, G., Dynamic recrystallization during high temperature deformation of magnesium. Materials Science and Engineering A, 2008. 490: p. 411.



38. Drury, M.R., Humphreys, F.J. and White, S.H., Large strain deformation studies using polycrystalline magnesium as a rock analog dynamic recrystallization mechanisms at high-temperatures. Physics of the Earth and Planetary Interiors, 1985. 40: p. 208.
39. Humphreys, F.J. and Hatherly, M., Recrystallization and related annealing phenomena. 1996, Pergamon press.:p.363.
40. Ding, S.X., Chang, C.P. and Kao, P.W., Effects of processing parameters on the grain refinement of magnesium alloy by equal-channel angular extrusion. Metallurgical and Materials Transactions A, 2009. 40: p. 415.
41. Beck, P.A. and Perry, P.R., Strain induced grain boundary migration in high purity aluminum. Jounal of Applied Physics, 1950. 21: p. 150.
42. Bailey, J.E. and Hirsch, P.B., Recrystallization process in some polycrystalline metals. Proceedings of the Royal Society of London Series A, 1962. 267: p. 11.
43. Bailey, J.E., Electron microscope observations on the annealing processes occurring in cold-worked silver. Philosophical Magazine, 1960. 5: p. 833.
44. Luton, M.J. and Sellars, C.M., Dynamic recrystallization in nickel and nickel-iron alloys during high temperature deformation. Acta Metallurgica, 1969. 17: p. 1033.
45. Derby, B. and Ashby, M.F., On dynamic recrystallization. Scripta Metallurgica, 1987. 21: p. 879.
46. Roberts, W. and Ahlblom, B., Nucleation criterion for dynamic recrystallization during hot working. Acta Metallurgica, 1978. 26: p. 801.


47. Bellier, S.P. and Doherty, R.D., Structure of deformed aluminum and its recrystallization - investigations with transmission kossel diffraction. Acta Metallurgica, 1977. 25: p. 52.
48. Jones, A.R., Ralph, B. and Hansen, N., Subgrain coalescence and the nucleation of recrystallization at grain-boundaries in aluminum. Proceedings of the Royal Society of London Series A, 1979. 368: p. 345.
49. Hu, H., Direct observations on annealing of a Si-Fe crystal in electron microscope. Transactions of AIME, 1962. 224: p. 75.
50. Doherty, R.D. and Cahn, R.W., Nucleation of new grains in recrystallization of cold-worked metals. Journal of the Less-Common Metals, 1972. 28: p. 279.
51. Hurley, P.J. and Humphreys, F.J., Modelling the recrystallization of single-phase aluminium. Acta Materialia, 2003. 51: p. 3779.
52. Humphreys, F.J., A unified theory of recovery, recrystallization and grain growth, based on the stability and growth of cellular microstructures: The basic model. Acta Materialia, 1997. 45: p. 4231.
53. Frommert, M. and Gottstein, G., Mechanical behavior and microstructure evolution during steady-state dynamic recrystallization in the austenitic steel 800H. Materials Science and Engineering A, 2009. 506: p. 101.
54. Belyakov, A., Miura, H.and Sakai, T., Dynamic recrystallization under warm deformation of a 304 type austenitic stainless steel. Materials Science and Engineering, 1998. A 255: p. 139.
55. Ito, T., Taketani, T. and Nakayama, Y., Dynamic recrystallization by the bulging of grain-boundaries in polycrystalline dilute copper-alloys. Scripta Metallurgica, 1986. 20: p. 1329.

56. Miura, H. Sakai, T. Mongawa, R. and Gottstein, G., Nucleation of dynamic recrystallization at grain boundaries in copper bicrystals. Scripta Materialia, 2004. 51: p. 671.
57. Miura, H., Ozama, M., Mongawa, R. and Sakai, T., Strain-rate effect, on dynamic recrystallization at grain boundary in Cu alloy bicrystal. Scripta Materialia, 2003. 48: p. 1501.
58. Miura, H., Sakai, T., Hanaji, H. and Jonas, J.J., Preferential nucleation of dynamic recrystallization at triple junctions. Scripta Materialia, 2004. 50: p. 65.
59. Ponge, D. and Gottstein, G., Necklace formation during dynamic recrystallization: Mechanisms and impact on flow behavior. Acta Materialia, 1997. 46: p. 69.
60. Kaibyshev, R.O. and Sitdikov, O.S., On the role of twinning in dynamic receystallization. The Physics of Metals and Metallography, 2000. 89: p. 384.
61. Myshlyaev, M.M., McQueen, H.J., Mwembela and Kpnopleva, E., Twinning, dynamic recovery and recrystallization in hot worked Mg-Al-Zn alloy. Materials Science and Engineering A, 2002. 337: p. 121.
62. Lee, B.H., Bang, W. Ahn, S. and Lee, C.S., Effects of temperature and strain rate on the high-temperature workability of strip-cast Mg-3Al-1Zn alloy. Metallurgical and Materials Transactions, 2008. A39: p. 1426.
63. Yin, D.L., Zhang, K.F., Wang, G.F. and Han, W.R., Warm deformation behavior of hot-rolled AZ31 Mg alloy. Materials Science and Engineering, 2005 A. 392: p. 320.


64. Koike, J., Ohyama, R., Kobayashi, T. Suzuki, M. and Maruyama, K., Grain-boundary sliding in AZ31 magnesium alloys at room temperature to 523 K. Materials Transactions, 2003. 44: p. 445.
65. Tan, J.C. and Tan, M.J., Superplasticity in a rolled Mg-3A1-1Zn alloy by two-stage deformation method. Scripta Materialia, 2002. 47: p. 101.
66. Tan, J.C. and Tan, M.J., Superplasticity and grain boundary sliding characteristics in two stage deformation of Mg-3Al-lZn alloy sheet. Materials Science and Engineering A, 2003. 339: p. 81.
67. Wu, X. and Liu, Y., Superplasticity of coarse-grained magnesium alloy. Scripta Materialia, 2002. 46: p. 269.
68. Vespa, G., Mackenzie, L.W.F., Verma, R., Zarandi, F., Essadiqi, E. and Yue, S., The influence of the as-hot rolled microstructure on the elevated temperature mechanical properties of magnesium AZ31 sheet. Materials Science and Engineering A, 2008. 487: p. 243.
69. Del Valle, J.A., Perez-Prado,M.T. and Ruano, O.A., Deformation mechanisms responsible for the high ductility in a Mg AZ31 alloy analyzed by electron backscattered diffraction. Metallurgical and Materials Transactions A, 2005. 36: p. 1427.
70. Panicker, R., ChoKshi, A.H., Mishra, R.K., Verma, R and Krajewski, P.E., Microstructural evolution and grain boundary sliding in a superplastic magnesium AZ31 alloy. Acta Materialia, 2009. 57: p. 3683.
71. Bell, R.L., Graeme-Barber, C. and Langdon, T.G., Contribution of grain boundary sliding to overall strain of a polycrystal. Transactions of AIME, 1967. 239: p. 1821.

72. Barnett, M.R. and Stanford, N., Influence of microstructure on strain distribution in Mg-3Al-1Zn. Scripta Materialia, 2007. 57: p. 1125.
73. del Valle, J.A., Carreno, F. and Ruano, O.A., Influence of texture and grain size on work hardening and ductility in magnesium-based alloys processed by ECAP and Rolling. Acta Materialia, 2006. 54: p. 4247.
74. Beer, A.G. and Barnett, M.R., Influence of initial microstructure on the hot working flow stress of Mg-3Al-1Zn. Materials Science and Engineering A, 2006. 423: p. 292.
75. Barnett, M.R., Influence of deformation condition and texture on the high temperature flow stress of magnesium AZ31. Jounal of Light Metals, 2001. 1: p. 167.
76. Choi, S.H., Shin, E.J. and Seong, B.S., Simulation of deformation twins and deformation texture in an AZ31 Mg alloy under uniaxial compression. Acta Materialia, 2007. 55: p. 4181.
77. Jain, A. and Agnew, S.R., Modeling the temperature dependent effect of twinning on the behavior of magnesium alloy AZ31B sheet. Materials Science and Engineering A, 2007. 462: p. 29.
78. Jiang, J., Godfrey, A, Liu, W and Liu, Q., Microtexture evolution via deformation twinning and slip during compression of magnesium alloy AZ31. Materials Science and Engineering A, 2008. 483: p. 576.
79. Yukutake, E., Kaneko, J. and Sugamata, M., Anisotropy and non-uniformity in plastic behavior of AZ31 magnesium alloy plates. Materials Transactions, 2003. 44: p. 452.


80. Kelley, E.W. and Hosford, W.F,. Plane-strain compression of magnesium and magnesium alloy crystals. Transactions of AIME, 1968. 242: p. 5.
81. Jiang, J., Godfrey, A. and Liu, Q., Influence of grain orientation on twinning during warm compression of wrought Mg-3Al-1Zn. Materials Science and Technology, 2005. 21: p. 1417.
82. Ernst, T. and Laves, F., The deformation of magmesium and its alloys. Z. Metallk., 1949. 40: p. 1.
83. Couling, S.L., Pashak, J.F., and Sturkey, L., Unique deformation and aging characteristics of certain magnesium alloys. Transactions of AIME, 1959. 51: p. 94
84. Couling, S.L. and Pearsall, G.W., Determination of orientation in magnesium by polarized light examination. Transactions of AIME, 1957. 209: p. 939.
85. del Valle, J.A., Perez-Prado, M.T. and Ruano, O.A., Texture evolution during large-strain hot rolling of the Mg AZ61 alloy. Materials Science and Engineering A, 2003. 355: p. 68.
86. Bach, F.W., Behrens, B.A., Rodman, M., Rossberg. A. and Kurz, G., Macroscopic damage by the formation of shear bands during the rolling and deep drawing of magnesium sheets. JOM, 2005. 57: p. 57.
87. ASM Handbook. Properties and Selection: Nonferrpus Alloys and Special-Purpose Materials. 1990. Vol. 2.
88. Bay, B., Hansen, N., Hughes, D. and Kuhlmanwilsdorf, D., Evolution of FCC deformation structures in polyslip. Acta Metallurgica, 1992. 40: p. 205.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.222.179.186
論文開放下載的時間是 校外不公開

Your IP address is 18.222.179.186
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code