Responsive image
博碩士論文 etd-1021111-140602 詳細資訊
Title page for etd-1021111-140602
論文名稱
Title
花蓮南濱海域近岸流場受地形水深影響之研究
The topography effect to the flow variation in the coastal region of Nan-bin,Hualien
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
84
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-08-18
繳交日期
Date of Submission
2011-10-21
關鍵字
Keywords
浮力頻率、特徵函數、地形效應、斜壓動能、渦度
vorticity, topography effects, eigenfuction, buoyancy frequency, Baroclinic kinetic energy
統計
Statistics
本論文已被瀏覽 5739 次,被下載 1101
The thesis/dissertation has been browsed 5739 times, has been downloaded 1101 times.
中文摘要
為了解花蓮近海流場受海底地形與附近水文條件之影響,本研究採用2008/4/29、2008/9/5~6、2009/3/17~18及2009/7/21四個航次的現場觀測資料進行分析,使用儀器為拖曳式都普勒流剖儀(Tow-ADCP)、溫鹽深儀(CTD)及水質儀等,於花蓮南濱近岸海域進行流場、溫度、潮位、水質等水文資料探測。資料分析過程利用浮力頻率、特徵模態分析、位渦及動能守恆原理等探討地形水深與流場之相對變化。
研究結果顯示:(1)由流場與渦度平面空間觀測顯示,花蓮港南側近南防波堤之表層流,漲潮時為逆時鐘方向流,退潮呈順時鐘流,而流速、渦度較小,且愈到底層流速、渦度變大。(2)沿斜坡、峽谷、平行岸線之剖面空間流場分佈,發現於水深25公尺附近呈上、下二層流往東、西之反向流場,至水深55公尺後,流速達到最大,流向變化較大。剖面上之斜壓動能密度顯示,海流隨坡降後,動能增加可達0.15m2/s2;底層流爬坡後,能量明顯損耗,動能值遠低於0.05m2/s2。(3) 溫鹽分析可知表層水團高溫、低鹽,判斷黑潮接近近岸海域會受附近河、溪口混合沖淡;而底層水團低溫、高鹽,呈現上、下層密度差。(4) 由浮力頻率分析,海流分層之介面約在25公尺;而特徵值模態分析,第一模態最佳分層介面在53公尺,第二模態分層介面在25、65公尺,皆與海流觀測之分層現象相符合。
Abstract
This study investigates the hydrodynamic variations in the coastal region of Nan-bin, Hualien influence by the topography and water stratification. The data used were collected from four cruises of field observations in 2008/4/29、2008/9/5~6、2009/3/17~18 and 2009/7/21. Instruments applied include sb-ADCP and CTD. Parameters recorded include flow velocities, water temperature and salinity and tidal elevations. The collected data are analyzed through a variety of time series analysis technique, including buoyancy frequency EOF analysis, potential vorticity and kinetic energy.
The results show that (1) the flow field and vorticity in the south side of Hualien Harbor indicate there exist a counterclockwise eddy during flood. The flow pattern reverse to be a clockwise eddy during ebb. The current speed and vorticity is smaller in the surface layer, while the bottom current speed and vorticity is much larger. (2) Currents in transects of along slope, along canyon and along shore all reveal two layers flow separated around 25m, with upper layer flowing eastward and lower layer westward. The current velocity reaches to a maximum at 55m, and the current directions were dominated by the orientation of bottom topography. The baroclinic kinetic energy increase to 0.15m2/s2 along the down slope transect, while the up slope kinetic energy reduced to 0.05m2/s2. (3) The CTD data suggest that the upper layer is warm-fresh water due to river outputs, while the lower layer is dominated by cold-salty open ocean water. (4) The density interface at 25 m is confirmed by buoyance frequency analysis. The EOF analysis of density distribution shows eigenvalue of first mode has maximum at 53m, while the second mode has peaks at 25m and 65m, which match well with the vertical of distribution of flow structures.
目次 Table of Contents
謝誌i
中文摘要ii
英文摘要iii
目錄v
圖目錄vii
表目錄xi
第一章、緒論1
1-1. 前言1
1-2. 環境背景介紹2
1-2-1. 海底峽谷介紹2
1-2-2. 防波堤介紹3
1-3. 文獻回溯4
1-4. 研究目的8
第二章、現場觀測與資料蒐集9
2-1. Tow-ADCP資料觀測9
2-2. 地形水深資料觀測與整合12
2-3. 水質資料蒐集13
第三章、資料品管與分析方法15
3-1. 資料品管15
3-1-1. Tow-ADCP資料品管15
3-1-2. CTD資料處理17
3-2. 分析方法17
3-2-1. 調和分析17
3-2-2. 防波堤效應與雷諾數分析18
3-2-3. 渦度分析19
3-2-4. 動能分析20
3-2-5. 浮力頻率分析20
3-2-6. 特徵函數模態分析21
第四章、結果與討論23
4-1. 剖面與平面流場整合23
4-2. 平面流場與渦度觀測30
4-3. 沿地形剖面流場與動能計算40
4-4. CTD溫鹽與分層分析51
第五章、結論與建議64
5-1. 結論64
5-2. 建議65
第六章、參考文獻66
附錄一、中英文縮寫對照表69
附錄二、CTD測站資料表70
參考文獻 References
馮世墩,1988。高屏峽谷底層流之變化,國立中山大學海洋資源研究所碩士論文,42頁。
黃國書、吳盈志、陳信宏,1996。花蓮北濱海岸(養灘)改善方案驗核分析研究。
俞何興、宋國士,1999。花蓮海底峽谷之地形地貌及地體結構造意義,地質,第十九卷,第一期,49-67頁。
吳孟麟,2004。高屏海底峽谷與陸棚流場之研究,國立中山大學海洋地質及化學研究所碩士論文,119頁。
林育如,2006。高屏峽谷水團運動受地形水深之影響,國立中山大學海洋物理研究所碩士論文,85頁。
王君豪,2006。高屏溪口流場三維結構的觀測分析,國立中山大學海洋物理研究所碩士論文,85頁。
李盈槽,2009。高屏峽谷內潮受地形及分層效應之數值模擬,國立中山大學海下科技暨應用海洋物理研究所碩士論文,59頁。
王玉懷,2009。南濱及化仁海岸生態情勢調查及新工法之研發,第九河川局委託調查。
高明雄,2011。應用觀測水文資料分析沿高屏峽谷流場受地形改變之影響,81頁。
Carter, G.S., M.C. Gregg, 2002. Intense, variable mixing near the head of Monterey Submarine Canyon. American Meteorological Society, 3145-3165.
Chapman, D.C., D.B. Haidvogel, 1992. Formation of Taylor caps over a tall isolated seamount in a stratified ocean. Journal of Geophysical and Astrophysical Fluid Dynamics, 64, 31-65.
Chiao, L.Y., Y.H. Wang, 2004. Multiresolution Interpolation and Detiding of the ADCP Data. Journal of Atmospheric and Oceanic Technology, 21, 122-134.
Cowen, R.K., K.M.M. Lwiza, S. Sponaugle, C.B. Paris, D.B. Olson, 2000. Connectivity of marine populations: open or closed? Science, 287, 857-859.
Denman, K.L., H.J. Freeland, 1982. A topographically controlled off southem Vancouver Island. Journal of Marine Research, 40, 1069-1093.
Durrieu, X., 1994. Hydrographic and nepheloid structures in the Grand-Rhône canyon. Cont. Shelf Res., 14, 457- 477.
Emery, W.J., R.E. Thomson, 1998. Data analysis methods in physical oceanography. Pergamon, 634.
Hotchkiss, F.S., C. Wunsch, 1982. Internal waves in Hudson Canyon with possible geological implications. Deep-Sea Research, 29, 415-442.
Hickey, B., E. Baker, N. Kachel, 1986. Suspended particle movement in and around Quinault Submarine Canyon. Marine Geology, 71, 35-83.
Inman, D.L., C.E. Nordstrom, R.E. Flick, 1976. Current in submarine canyon: An air-sea-land interaction. Ann.Rev.Fluid Mech., 8, 275-310.
Kunze, E., L.K. Rosenfeld, G. Carter, M.C. Gregg, 2001. Internal waves in Monterey Submarine Canyon. Journal of Phyical Oceanography, 32, 1890-1913.
Lewis, K.B., P.M. Barnes, 1999. Kaikoura Canyon, New Zealand: active conduit from near-shore sediment zones to trench-axis channel. Marine Geology, 162, 39-69.
Liu, J.T., K.J. Liuand, J.C. Huang, 2002. The effect of a submarine canyon on the river sediment dispersal and inner shelf sediment movements in southern Taiwan. Marine Geology, 181, 357-386.
Pattiaratchi, C., A. James, M. Collins, 1986. Island wakes and headland eddies:A comparison between remotely sensed data and laboratory experiments. J. Geophys. Res., 92, 783-794.
Pritchard, D.W., 1952. Estuarine hydrography.In: Advances in Geophysics, vol 1 Academic Press Inc., New York,NY.
Pritchard, D.W., 1954. A Study of the Salt Balance in a Coastal Plain Estuary. Journal of Marine Research, 13(1): 133-144.
Pritchard, D.W., 1956. The Dynamic Structure of a Coastal Plain Estuary. Journal of Marine Research, 15(1): 33-42.
Wang Y.H., I.H. Lee, J.T. Liu, 2008. Observation of internal tidal currents in the Kaoping Canyon off southwestern Taiwan. Estuarine, Coastal and Shelf Science, 80, 153-160.
Wolanski, E., J. Imberger, M.L. Heron, 1984. Island Wakes in Shallow Coastal Waters. J. Geophys. Res., 89, 553-569.
Yanagi, T., K. Yoshikawa, 1983. Generation mechanisms of tidal residual circulation. Journal of Oceanography, 156-166.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code