Responsive image
博碩士論文 etd-1021113-041750 詳細資訊
Title page for etd-1021113-041750
論文名稱
Title
大氣游離質譜法與氣相及液相層析介面之開發與應用
Development of the interfaces for Coupling Ambient Ionization Mass Spectrometry with Gas and Liquid Chromatography
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
231
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-11-15
繳交日期
Date of Submission
2013-11-21
關鍵字
Keywords
質譜、氣相層析、大氣游離質譜法、離子層析、液相層析、電噴灑游離法
Ambient Ionization Mass Spectrometry, Gas Chromatography, Liquid Chromatography, Ion Chromatography, Mass Spectrometry, Electrospray Ionization
統計
Statistics
本論文已被瀏覽 5700 次,被下載 0
The thesis/dissertation has been browsed 5700 times, has been downloaded 0 times.
中文摘要
第一部分、氣相層析結合大氣壓力質譜法之介面開發與應用:
傳統氣相層析質譜儀所搭配的游離源系統通常為電子撞擊游離源 (Electron ionization, EI) 或是化學游離源 (Chemical ionization, CI) 為主,其中電子撞擊游離源所產生一系列的碎裂離子通常具有分析物的結構訊息。而化學游離源是相對軟性較不會造成碎裂離子的游離源,利於推斷分析物的質量。但此兩種游離源都是在真空環境下運作,故在管柱選擇與載流氣體流速上都需考慮到真空的限制,並且分析時也會造成分析物一定程度的碎裂。
本研究開發可在大氣壓力下分析的氣相層析質譜介面,是以一個可通過氣相層析管柱的金屬管為主體,其不但可藉加熱來避免分離出的氣相分析物冷凝於安裝於內部的氣相層析管柱,更通入一高溫氮氣把流出管柱的氣相分析物導出介面,進一步避免氣相分析物的擴散與冷凝,接著氣相分析物會由介面出口端的電噴灑游離源進行游離,而在此過程中,導出的中性氣相分析物會進入到電噴灑噴霧之中,並發生離子-分子反應 (ion-molecular reactions, IMRs),造成分析物游離,進而得到質子化分析物離子訊號。
本研究所開發的大氣壓力氣相層析質譜介面因在常態環境下進行操作,故氣相層析的載流氣體流速不受到限制,可搭配氣相層析填充管柱或氣相層析毛細管管柱進行極高流速,從數mL/min或數十 mL/min (填充管柱: 40 mL/min及毛細管管柱: 5 mL/min) 皆可以大氣壓力氣相層析電噴灑游離質譜法分析混合物中化學組成。此介面隨著熱氮氣流的導入,使得原本電噴灑游離機制轉變成氣相質子轉換反應 (gas-phase proton transfer reaction) 的游離機制,使得此氣相層析電噴灑游離介面不但可分析極性化合物,更可對低極性的芳香環類等化合物進行分析。
由於氣相層析電噴灑游離質譜法對於極性物質具良好的分析能力,並且因為是屬於軟性的游離源,所以不容易使分析物造成碎裂,因此本研究將以所開發的氣相層析電噴灑游離質譜法介面對衍生化處理後的尿液中胺基酸代謝物進行分析,並與氣相層析大氣壓力化學游離法及氣相層析電子撞擊游離法做比較,發現氣相層析電噴灑游離質譜法不但較不具碎片離子的訊號,並以質子化分析物離子的形態存在。並且其對胺基酸標準品的偵測靈敏度最低可達數十 ppb 的等級,其與文獻以化學游離法偵測靈敏度相當。
對於重油樣品分析方面,由於所含的化學組成都是以非極性的碳氫化合物為主,故一般是以電子撞擊游離法進行分析,但其中微量的極性物質變得難以分析,故本研究所開發的氣相層析電噴灑游離質譜介面不但可偵測到重油中微量的極性化合物,更因為介面所搭配的電噴灑游離源不會對碳氫化合物游離,故可以免除其對極性化合物圖譜上的干擾,並可得質子化分析物離子訊號。在油品使用前後差異及機油摻假實驗中,以氣相層析電噴灑游離質譜法的分析結果搭配主成分分析法,可藉由分析所得之特徵性極性物質的訊號來進一步判定油品品質改變及摻假與否。
大氣壓力氣相層析電噴灑游離介面搭配高溫熱裂解法可直接對固體樣品進行分析,不但可對聚甲基丙烯酸甲酯和聚苯乙烯等聚合物分子進行分析,也可對一系列日常用品如塑膠碗及擦擦筆顏料內含的聚合物成分進行分析。在以熱脫附大氣壓力氣相層析電噴灑游離質譜分析時,利用本實驗開發的取樣探針,可簡單、快速地對固體或是液體樣品進行採樣,再進行分析。舉凡運動飲料內及兒童玩具表面所含之塑化劑、水果表面所殘留的殺菌劑,都可以此系統進行分析。如果再搭配快速氣相層析系統,並結合熱脫附裝置,便可達到高通量氣相層析分析的目的。藉著把二維氣相層析系統與大氣壓力氣相層析電噴灑游離介面結合,便可對一維氣相層析無法完全分離的樣品,如薰衣草精油中的陶斯松、茶葉萃取物中的咖啡因,以及胺基酸物質等無法完整與其他物質分離開來的化合物,透過第二維管柱將其分離並進行分析。
第二部分、離子層析融合微滴電噴灑游離質譜法之開發:
離子層析法 (ion chromatography, IC) 為一種以高濃度電解質溶液為動相,透過以離子層析管柱進行分離,但為了降低質譜鹽類干擾,須先將動相的鹽類含量降低。傳統是將管柱流出液先進行分流,再以 modifier 將有機溶劑與分流出的溶液混合,再進行質譜分析,但此設計較繁雜且可能會造成分析物濃度的稀釋。
融合微滴電噴灑游離質譜法 (fused-droplet electrospray ionization mass spectrometry, FD-ESI/MS) 為一種大氣壓力游離質譜法,其不但具有可在大氣環境下進行分析的優勢,更具有不需樣品前處理的前提之下,對高濃度鹽類溶液中的分析物進行分析並得到分析物的離子訊號,具有極高的鹽類容忍度。其是將分析物溶液以一霧化器將分析物溶液霧化成微小液滴,同時導入到電噴灑游離源的噴霧之中,此時分析物液滴會融入到電噴灑帶電液滴之中,並發生類似於電噴灑游離的機制使分析物帶有電荷,形成帶電分析物離子,最後再由後端的質譜儀進行偵測。
本研究利用融合微滴電噴灑游離質譜法具高鹽類容忍度的特性,直接與離子層析法進行串連。由於此離子層析融合微滴電噴灑游離質譜分析法 (IC/FD-ESI/MS) 具有極高的鹽類容忍度,適合於分析高鹽類環境中的樣品,故可在不需加裝modifier的條件底下直接對高濃度鹽類動相中的分析物進行偵測,進而得到分析物離子訊號。本研究中也以 acetaminophen、caffeine,以及amoxicillin為分析物來比較IC/FD-ESI/MS與LC-ESI/MS 在含有高濃度鹽類動相下的分析結果,惟有以IC/FD-ESI/MS進行分析時,可在成功得到分析物的質子化離子訊號。同時對於各式真實樣品如市售藥錠及綠茶葉中的組成,以 IC/FD-ESI/MS 也可得到相關的分析物訊號。
Abstract
The ion sources used in traditional gas chromatography mass spectrometry were always electron ionization or chemical ionization. However, the limitation of vacuum should be considered for these GC/MS systems.
In this study, a new GC-ESI/MS interface was developed. This interface was constructed by running hot N2 gas through a metal tube in which the GC column was enclosed. The interface temperature was kept at 280 oC during analysis with a circumventing heating tape. The analytes eluted from GC and interface immediately joined an ESI plume which was located approximately 2 mm from the interface exit. The analyte ions were subsequently detected by a mass spectrometer. In addition, packed GC or capillary GC-ESI/MS analyses were examined under ambient conditions.
This GC-ESI/MS interface was used to detect derivatized amino acids in human urine. Amount of protonated analyte ions were detected due to the ESI ionization. The LOD could reach ppb level. In the analyses of engine oils, this interface was used for analysis of polar components in samples. In addition, principal component analysis (PCA) combined with GC-ESI/MS was examined for classify the quality of engine oils. This GC-ESI/MS interface coupled with pyrolysis, thermal desorption, Fast GC two dimensional GC were demonstrated.
Ion chromatography fused droplet electrospray ionization mass spectrometry was developed in this study. Because of the high salt tolerance, FD-ESI could coupled with ion chromatography to directly detect analyte ions.
目次 Table of Contents
目錄
論文摘要............................................................i
目錄...............................................................vi
圖目錄..............................................................x

壹、緒論.............................................................1
1. 層析質譜法.......................................................2
2. 層析質譜儀游離源................................................2
3. 氣相層析質譜儀之游離源..........................................4
4. 氣相層析質譜儀介面..............................................6
5 液相層析質譜法之游離源方法.....................................12
6 大氣壓力游離法.................................................16
研究動機...........................................................20
參考文獻...........................................................22
貳、電噴灑游離質譜法結合氣相層析儀介面之開發........................27
2.1 前言...........................................................27
2.2實驗部分........................................................29
2.2.1實驗樣品與試劑................................................29
2.2.2 儀器裝置......................................................30
2.2.3 實驗樣品之製備................................................33
2.3 結果與討論.....................................................35
(1) GC-ESI/MS 介面之建立與改良.....................................35
(2) GC-ESI/MS 介面(make-up gas) 對游離機制之影響與探討..............37
(3) GC-ESI/MS 介面實驗參數最佳化之探討...........................40
(4) 高流速氣相層析填充管柱 (packed column) GC-ESI/MS 分析...........42
2.4 結論...........................................................43
參考文獻...........................................................44
参、以氣相層析電噴灑游離質譜法分析尿液中代謝物
...............................................................62
3.1 前言...........................................................62
3.2 實驗部分.......................................................67
3.2.1 實驗樣品與試劑................................................67
3.2.2 儀器裝置......................................................68
3.2.3 樣品之製備....................................................71
3.2.4 衍生化反應....................................................71
3.3 結果與討論.....................................................72
3.3.1 GC-ESI/MS於胺基酸衍生物之最佳分析參數探討....................72
(1) 不同電噴灑溶液組成對訊號的影響..................................73
(2) 電噴灑所施加電壓強度對訊號的影響................................75
3.3.2 比較GC-ESI/MS、GC-APCI/MS,及GC-EI/MS分析各衍生化後胺基酸的結果...............................................................77
3.3.3 以GC-ESI/MS分析尿液樣品.....................................79
3.4 結論...........................................................81
參考文獻...........................................................82
肆、以氣相層析電噴灑游離質譜法搭配多變量分析法分析重油中的微量極性化合物及摻假機油..................................................100
4.1 前言..........................................................100
4.2實驗部分.......................................................103
4.2.1實驗樣品與試劑...............................................103
4.2.2 儀器裝置.....................................................104
4.2.3 實驗樣品之製備...............................................107
4.2.4 實驗用統計軟體...............................................108
4.3 結果與討論....................................................109
4.3.1 以氣相層析電噴灑游離質譜法搭配多變量分析法分析重油中的微量極性化合物..............................................................109
(1)以GC-ESI/MS分析未使用機油.....................................109
(2)以GC-ESI/MS分析未使用及使用過的機油...........................112
4.3.2以氣相層析電噴灑游離質譜法搭配多變量分析法分析摻假機油中極性化合物................................................................114
4.4 結論..........................................................116
參考文獻..........................................................117
伍、以高溫熱裂解/熱脫附、快速、二維氣相層析與電噴灑游離質譜法之聯用............................................................145
5.1 前言..........................................................145
5.2 實驗部分......................................................152
5.2.1 實驗樣品與試劑...............................................152
5.2.2 儀器裝置.....................................................154
5.3 結果與討論....................................................160
5.3.1 熱裂解氣相層析電噴灑游離質譜法 (Pyrolysis GC-ESI/MS, Py-GC-ESI/MS) ....................................................161
5.3.2 熱脫附氣相層析電噴灑游離質譜法 (Thermal desorption GC-ESI/MS, TD-GC-ESI/MS) ...................................................161
5.3.3 快速氣相層析電噴灑游離質譜法 (Fast GC-ESI/MS, Fast GC-ESI/MS) 與二維氣相層析電噴灑游離質譜法 (2D GC-ESI/MS)
..................................................................162
5.4 結論..........................................................164
參考文獻..........................................................165
陸、離子交換層析融合微滴電噴灑游離質譜法之開發...................181
6.1 前言..........................................................181
6.2 實驗部分......................................................185
6.2.1實驗樣品與試劑...............................................185
6.2.2 儀器裝置.....................................................186
6.2.3 實驗樣品之製備...............................................187
6.3 結果與討論....................................................189
(1) IC/FD-ESI/MS 之霧化器的流速、質譜的dry gas 流速及 dry gas 的溫度最佳化.............................................................189
(2) IC/FD-ESI/MS 之霧化器與、電噴灑毛細管及質譜入口的相對角度及距離的最佳化.........................................................190
(3) IC/FD-ESI/MS 與 LC-ESI/MS 所得質譜結果之比較..................191
(4) 真實樣品之分析.................................................193
6.4結論...........................................................194
參考文獻..........................................................195
柒、總結...........................................................207

圖目錄
圖1.1、LC及GC層析質譜法及各游離源所適合之分析物極性、分子量及揮發性分佈圖…………………………………………………………………………………3
圖1.2、第一台於1959年發展出的GC/MS (TOF) 裝置示意圖…………………….4
圖1.3、電子游離源之結構示意圖………………………………………………5
圖1.4、化學游離法裝置示意圖………………………………………………………6
圖1.5、化學游離法之游離機制……………………………………………………....6
圖1.6、各式GC和MS 結合介面的示意圖…………………………………………..7
圖1.7、Mitchum等人所開發之GC-APCI介面裝置示意圖…………………………8
圖1.8、McEwen等人所開發之GC-APCI&LC-APCI整合介面裝置示意圖………..9
圖1.9、Kostiainen等人所開發之微晶片GC-APCI介面裝置示意圖………………9
圖1.10、Kostiainen等人所開發之微晶片GC-APPI介面裝置示意圖..……………10
圖1.11、Shiea 等人所開發之GC- multiple channel ESI 介面……………………..11
圖1.12、Kostiainen等人所開發之GC-ESI 介面..…………………………………11
圖1.13、電噴灑游離源裝置示意圖…………………………………………………13
圖1.14、大氣壓力化學游離源裝置示意圖…………………………………...…….14
圖1.15、大氣壓力化學游離法游離機制,其中M代表分析物……………………..14
圖1.16、LC-APPI裝置示意圖…………………………………...…………………..15
圖1.17、大氣壓力光游離法的反應游離機制…………...……………...…………..15
圖1.18、Ionspray 裝置示意圖. ……………………………………………………..16
圖1.19、FD-ESI裝置示意圖,右上方插圖為以該大氣壓力游離源所得的蛋白質多價電荷訊號……………………………………………………………………………...17
圖1.20、Liquid-DESI裝置示意圖,sample solution 會經由圖中2的毛細管流至其尖端,並以DESI 直接進行脫附游離,進而得到分析物的離子訊號…………..……….18
圖1.21、Liquid-ELDI示意圖,將混有碳粉的樣品溶液以脈衝雷射直接進行脫附,再由上方的ESI 進行游離。(b) Liq-ELDI裝置照片,亮點為雷射轟擊時的spot…19
圖1.22、EESI裝置示意圖,裡頭含有一對樣品溶液霧化的sample nebulizer,以及產生帶電液滴供分析物游離的 ionizing spray……..…………………...………19
圖2.1所使用脂肪酸甲酯 (fatty acid methyl ester, FAME) 及多環芳香烴 (polycyclic aromatic hydrocarbons, PAHs) 及 caffeine結構圖……………………45
圖2.2、未把make-up gas 加入的GC-ESI/MS介面,其中 (a) 為裝置的整體設置圖,(b) 為 GC-ESI/MS介面近照,而 (c) 為GC-ESI/MS之介面出口、ESI 毛細管及質譜入口延伸管的相對位置及角度示意圖 …………………………………46
圖2.3、將make-up gas 加入的GC-ESI/MS介面,其中 (a) 和 (c) 為裝置的側視圖,(b) 為介面上視圖 (插圖為ESI毛細管、介面出口及質譜入口的放大圖),而 (d) 為GC-ESI/MS介面內部的介面出口及質譜入口延伸管相對位置的照片…..47
圖2.4、Caffeine 與 methyl decanoate 在不同濃度下以設計初期的GC-ESI/MS介面進行分析的EIC圖與質譜圖,其中BLANK代表只注入溶劑DCM進行分析(管柱為毛細管柱)……………………………………………………………………….48
圖2.5、Caffeine 與 methyl decanoate 在不同濃度下以有導入make-up gas的GC-ESI/MS介面進行分析的EIC圖與質譜圖(管柱為毛細管柱)…………………………………………………………………………………….49
圖2.6、以一般 ESI 游離源對methyl decanoate: m/z 187、methyl tridecanoate: m/z 229、methyl stearate: m/z 299、methyl tricosanoate: m/z 369進行分析所得的質譜圖…..…………………………………………………………………………………50
圖2.7、加入make-up gas之GC-ESI/MS介面的游離示意圖………………………51
圖2.8、GC-ESI/MS介面分別於 (a) 未加入make-up gas 及 (b) 加入make-up gas 時分析FAMEs、pyrene、perylene及 caffeine所得的EIC圖。其中F代表FAMEs,P代表PAHs: pyrene 及 perylene,peak 11為caffeine (管柱為毛細管柱) …………………………………………………………………………..………..52
圖2.9、以make-up gas GC-ESI/MS介面分析FAMEs、caffeine、pyrene及perylene 混合溶液所得之(a)caffeine、(b)pyrene、(c)perylene、(d)methyl dodecanote、(e)methyl palmitate 及(f)methyl tricosanoate 質譜圖(管柱為毛細管柱)……..……………...53
圖2.10、GC-ESI/MS中電噴灑溶液中不同含量的酸對methyl decanoate 質子化分析物離子 (m/z 187) 訊號的影響(管柱為毛細管柱)………....................…………54
圖2.11、GC-ESI/MS中電噴灑溶液中不同MeOH含量對methyl decanoate 質子化分析物離子 (m/z 187) 及methyl pentacosanoate (m/z 397)訊號的影響(管柱為毛細管柱)……………………………………………………………………………….54
圖2.12、GC-ESI/MS中,(a) make-up gas流速、(b) 質譜儀Dry gas 流速及(c) GC coulumn深入到GC-ESI/MS介面的長度,對methyl decanoate 質子化分析物離子 (m/z 187) 訊號的影 (管柱為毛細管柱) …………………….…………………...55
圖2.13、GC-ESI/MS中,質譜儀Dry gas temperature 對 FAMEs 質子化分析物離子訊號強度的影響。其中 (b) 及 (c) 分別為FAMEs: C6-C9:0及FAMEs: C22-C25:0的變化圖 (管柱為毛細管柱)…………………………………………56
圖2.14、以GC-ESI/MS/MS 所得的各 FAMEs 的MS/MS圖譜(管柱為毛細管柱)…………………………………………………………………..………………...57
圖2.15、(a) 介面mak-up gas 流速及(b) 管柱延伸長度 (column extended length) 對packed column GC-ESI/MS 所得離子訊號m/z 187的影響….............................58
圖2.16、以packed column GC-ESI/MS分析FAMEs,質譜儀Dry gas temperature 對FAMEs 質子化分析物離子訊號強度的影響。其中(b) 及(c) 分別為FAMEs: C6-C9:0及FAMEs: C22-C25:0的變化圖...................................................................................58
圖2.17、以packed column GC-ESI/MS 所得的(a) TIC圖及(b~u)各FAMEs 的EIC圖譜…………………………………………………….……………………….……59
圖2.18 、以packed column GC-ESI/MS 所得的各FAMEs 的質譜圖………..…..60
圖2.19 、以packed column GC-ESI/MS/MS 所得的各FAMEs 的MS/MS圖譜..61
圖3-1. 衍生化後各胺基酸結構資訊…………….…..……………………………..86
圖3-2. 以GC-ESI/MS分析衍生後之胺基酸標準品所得之 (a) EIC 圖譜及各個衍生後胺基酸的質譜圖 (b~o)………………………………………………………...87
圖3-3. 分別以(a) 20 % MeOH + 80 % H2O + 1.0 % AA;(b) 20 % MeOH + 80 % H2O + 1.0 % FA;(c) 20 % MeOH + 80 % H2O + 10 mM sodium formate;(d) 20 % MeOH + 80 % H2O + 10 mM ammonium acetate的電噴灑溶液分析所得的Leu-衍生化質子化離子GC-ESI/MS質譜圖………………………………………….……88
圖3-4. 比較各個不同組成的電噴灑溶液分析所得的衍生化胺基酸質子化離子訊號強度………………………………………………………………………………..89
圖3-5. 以不同電壓強度3.5 ~ 4.50 kV施加於ESI所得的Leu、Met、Asp,及Ala質譜圖(a ~ p) ………………………………………………………………………..90
圖3-6. 衍生化胺基酸分析物的 MH+ 訊號和其質譜圖中訊號最強的碎片離子訊號的相對值與分析時 ESI 所施加之電壓值的變化圖……………………………91
圖3-7. 將各個衍生化後胺基酸 MH+ 訊號進行MS/MS分析所得之質譜圖 ….92
圖3-8、衍生化後胺基酸分別以GC-ESI/MS、 GC-APCI/MS及GC-EI/MS所得的層析圖……………………………………………………………………………..93
圖3-9、衍生化後胺基酸分別以GC-ESI/MS、GC-APCI/MS及GC-EI/MS所得的質譜圖………………………………………………………………………………..94
圖3-10、以GC-ESI/MS分析 (a) amino acid standards、(b) female urine,及 (c) male urine 的TIC 圖…………………………………………………...…………………96
圖3-11、以(a,d)GC-ESI/MS、(b,e)GC-APCI/MS,及(c,f)GC-EI/MS搭配DB-5管柱分析女性與男性尿液樣品所得的TIC圖譜…………….…………………….…97
圖3-12、分別以(a、c) DB-5 及(b、d) DB-WAX 氣相層析管柱以GC-ESI/MS分析胺基酸標準品所得的TIC及EIC圖譜……………………………….…………..98
圖3-13、分別以(a、c) DB-5 及(b、d) DB-WAX 氣相層析管柱以GC-ESI/MS分析女性尿液樣品所得的TIC及EIC圖譜………………...………………………..99
圖3-14、分別以(a、c) DB-5 及(b、d) DB-WAX 氣相層析管柱以GC-ESI/MS分析男性尿液樣品所得的TIC及EIC圖譜………………....……...…………………99
圖4-1、本研究單元所用的 GC-ESI/MS 搭配主成分分析法 (PCA) 的分析策略。藉著GC-ESI/MS所得的層析及質譜圖進行統計分析…………………………...122
圖4-2、以GC-EI/MS 分別分析未使用的(a)~(b) No. 1-4 機油所得的質譜層析圖,其中內插圖片為所用機油的瓶身照片..…………………………………….…….122
圖4-3、氣相層析電噴灑游離質譜法分別分析未使用的(a)~(b) No. 1-4 機油所得的質譜層析圖,其中內插圖片為所用機油的瓶身照片..........................................123
圖4-4、以氣相層析電噴灑游離質譜法分析未使用的No. 1-4機油所得質譜層析圖進行主成分分析法統計所得的score plot圖…………………………………123
圖4-5、以氣相層析電噴灑游離質譜法分別分析未使用的No. 1-4機油所得質譜層析圖進行主成分分析法統計所得的loading plot 圖……………………..……124
圖4-6、以分析新機油所得的loading plot 圖,具特異性的訊號(a)6.25 min,m/z 187、(b)10.45 min,m/z 338、(c)10.05 min,m/z 243、(d)5.65 min,m/z 187,及(e)9.05,m/z 296…………………..…………………………………………………….……124
圖4-7、機油於機車引擎中經不同里程數使用後的收集的樣品照片,由左至右分別為未使用、行駛100公里、300公里及500公里收集所得的機油……………...125
圖4-8、以GC-EI/MS 分析未使用及使用過的No. 2 機油所得的質譜層析圖….125
圖4-9、氣相層析電噴灑游離質譜法分析未使用及不同里程使用程度的No. 1 機油所得的質譜層析圖………………………………………………………………126
圖4-10、以氣相層析電噴灑游離質譜法分析未使用及不同里程使用程度的No. 1機油所得質譜層析圖進行主成分分析法統計所得的score plot圖……………...126
圖4-11、以氣相層析電噴灑游離質譜法分析未使用及不同里程使用程度的No. 1機油所得質譜層析圖進行主成分分析法統計所得的loading plot圖……………127
圖4-12、根據所得的loading plot 圖,具特異性的訊號(a)10.45 min,m/z 338 (b)6.25 min,m/z 187、(c)5.65 min,m/z 187,及(d)9.05,m/z 296之MS/MS圖譜................127
圖4-13、以GC-EI/MS 分析未使用及不同里程使用程度的No. 2 機油所得的質譜層析圖……………………………………………………………………………128
圖4-14、氣相層析電噴灑游離質譜法分析未使用及不同里程使用程度的No. 2 機油所得的質譜層析圖………………………………………………………………129
圖4-15、以氣相層析電噴灑游離質譜法分析未使用及不同里程使用程度的No. 2機油所得質譜層析圖進行主成分分析法統計所得的score plot圖…………...…129
圖4-16、以氣相層析電噴灑游離質譜法分析未使用及不同里程使用程度的No. 2機油所得質譜層析圖進行主成分分析法統計所得的loading plot圖……………130
圖4-17、根據所得的loading plot 圖,具特異性的訊號(a)9.05 min,m/z 296 及(b)8.9 min,m/z 282之MS/MS圖譜………………………………………………..130
圖4-18、以GC-EI/MS 分析未使用及不同里程使用程度的No. 3 機油所得的質譜層析圖……………………………………………………………………………131
圖4-19、氣相層析電噴灑游離質譜法分析未使用及不同里程使用程度的No. 3 機油所得的質譜層析圖………………………………………………………………132
圖4-20、以氣相層析電噴灑游離質譜法分析未使用及不同里程使用程度的No. 3機油所得質譜層析圖進行主成分分析法統計所得的score plot圖……………...132
圖4-21、以氣相層析電噴灑游離質譜法分析未使用及不同里程使用程度的No. 3機油所得質譜層析圖進行主成分分析法統計所得的loading plot圖……………133
圖4-22、根據所得的loading plot 圖,具特異性的訊號(a)5.65 min,m/z 187、(b) 及(b)8.55 min,m/z 282及(c)10.55 min,m/z 338之MS/MS圖譜…………………133
圖4-23、以GC-EI/MS 分析未使用及不同里程使用程度的No. 4 機油所得的質譜層析圖……………………………………………………………………………134
圖4-24、氣相層析電噴灑游離質譜法分析未使用及不同里程使用程度的No. 4 機油所得的質譜層析圖................................................................................................135
圖4-25、以氣相層析電噴灑游離質譜法分析未使用及不同里程使用程度的No. 4機油所得質譜層析圖進行主成分分析法統計所得的score plot圖……………...135
圖4-26、以氣相層析電噴灑游離質譜法分析未使用及不同里程使用程度的No. 4機油所得質譜層析圖進行主成分分析法統計所得的loading plot圖……………136
圖4-27、根據所得的loading plot 圖,具特異性的訊號(a)8.55 min,m/z 282、(b) 、(b)9.05 min,m/z 296、(c)10.5 min,m/z 338及(d)10.1 min,m/z 243之MS/MS圖譜...........................................................................................................................136
圖4-28、高品質機油D中分別摻入(a) 1 %、(b)10 %、(c)25 % 及(d)50 % 之低品質機油 A以GC-EI/MS分析所得的TIC圖……………………………………….137
圖4-29、高品質機油D中分別摻入(a) 1 %、(b)10 %、(c)25 % 及(d)50 % 之低品質機油 B以GC-EI/MS分析所得的TIC圖………………………………………….137
圖4-30、高品質機油D中分別摻入(a) 1 %、(b)10 %、(c)25 % 及(d)50 % 之低品質機油 C以GC-EI/MS分析所得的TIC圖……………………………………….138
圖4-31、高品質機油D中分別摻入(a) 1 %、(b)10 %、(c)25 % 及(d)50 % 之低品質機油 A以GC-ESI/MS分析所得的TIC圖…………………….......…………...139
圖4-32、高品質機油D中分別摻入(a) 1 %、(b)10 %、(c)25 % 及(d)50 % 之低品質機油 B以GC-ESI/MS分析所得的TIC圖……………………………………...139
圖4-33、高品質機油D中分別摻入(a) 1 %、(b)10 %、(c)25 % 及(d)50 % 之低品質機油 C以GC-ESI/MS分析所得的TIC圖……………………………………...140
圖4-34、以氣相層析電噴灑游離質譜法分析混有低品質機油A之高品質機油D (機油A摻假體積比例: 1%、10%、25%、50%) 所得質譜層析圖進行主成分分析法統計所得的score plot圖………………………………………………………...141
圖4.35、以氣相層析電噴灑游離質譜法分析混有低品質機油A之高品質機油D (機油A摻假體積比例: 1%、10%、25%、50%) 所得質譜層析圖進行主成分分析法統計所得的loading plot圖………………………………………………………141
圖4-36、37 min的m/z 422訊號以GC-ESI/MS/MS分析所得的MS/MS圖譜.......142
圖4-37、以氣相層析電噴灑游離質譜法分析混有低品質機油B之高品質機油D (機油A摻假體積比例: 1%、10%、25%、50%) 所得質譜層析圖進行主成分分析法統計所得的score plot圖………………………………………………………...142
圖4-38、以氣相層析電噴灑游離質譜法分析混有低品質機油B之高品質機油D (機油A摻假體積比例: 1%、10%、25%、50%) 所得質譜層析圖進行主成分分析法統計所得的loading plot圖………………………………………………………143
圖4-39、以氣相層析電噴灑游離質譜法分析混有低品質機油C之高品質機油D (機油A摻假體積比例: 1%、10%、25%、50%) 所得質譜層析圖進行主成分分析法統計所得的score plot圖………………………………………………………...143
圖4-40、以氣相層析電噴灑游離質譜法分析混有低品質機油C之高品質機油D (機油A摻假體積比例: 1%、10%、25%、50%) 所得質譜層析圖進行主成分分析法統計所得的loading plot圖………………………………………………………144
圖4-41、以GC-ESI/MS3對31 min的m/z 563訊號分析所得的質譜圖..................144
圖5.1 熱裂解氣相層析質譜儀 (Py-GC/MS)之裝置示意圖……………………170
圖5.2 (a) heart cut GC-GC 及 (b) Comprehensive GC x GC 的裝置示意圖........170
圖5.3 Heart-cutting GC-GC 二維氣相層析系統之 (a) 示意圖、(b) 遠照及 (c) 近照……………………………………………………………………………………171
圖5.4、TD-GC-ESI/MS所用之(a) 熱脫附取樣探針。(b)用於液體採樣之探針及(c) 用於固體表面採樣之探針………………………………………………...……….171
圖5.5 以Py-GC-ESI/MS 分別分析polycaprolactam (Mn=~35k Da) 及 poly(butyl acrylate) (Mn=~99k) 所得的EIC圖及質譜圖…………………………………….172
圖5.6 以Py-GC-ESI/MS 分別分析PMMA (20K、100K、120K) 及 PS (1K、97K、211.6K) 所得的 EIC 圖及質譜圖………………………………………………..173
圖5.7 以Py-GC-ESI/MS 分別分析擦擦筆中所含的polyvinylpyrrolidone、10 ppm 的N-Vinylpyrrolidone 標準溶液,以及塑膠碗中polystyrene 所得的 EIC 圖及質譜圖…………………………………………………………………………………174
圖5.8 以TD-GC-ESI/MS分別分析運動飲料中及腳踏車椅墊所含之塑化劑所得之EIC圖及質譜圖…………………………………………………………………175
圖5.9 以TD-GC-ESI/MS分別分析葡萄柚表面之農藥殘留及兒童玩具表面所含的塑化劑所得之EIC圖及質譜圖…………………………………………………176
圖5.10 以(a) 20 M Fast GC column 及 (b) 10 M Fast GC column 進行Fast-GC-ESI/MS 分析1 ppm FAME標準溶液所得的FAMEs 之 EIC圖……...177
圖5.11 以10 M Fast GC column 進行Fast-TD-GC-ESI/MS 分析市售塑膠玩具表面所得之塑化劑DEHP之(a) EIC圖及(b) 質譜圖,以及塑膠手機殼表面殘留的塑化劑DEHP之(c) EIC圖及(d) 質譜圖………………………………………….…178
圖5.12 以二維氣相層析法結合電噴灑游離質譜法分析綠茶葉萃取溶液,其中(a) 為綠茶葉萃取溶液的GC-FID圖,(b) GC-GC-ESI/MS分析綠茶葉萃取溶液之第一管柱的GC-FID圖,(c) 為GC-GC-ESI/MS分析綠茶葉萃取溶液之第二管柱的GC-ESI之TIC圖,(d) 為GC-GC-ESI/MS分析綠茶葉萃取溶液之第二管柱的GC-ESI之EIC圖 (m/z 195) ……………………………………………………….179
圖5.13 以二維氣相層析法結合電噴灑游離質譜法分析衍生後胺基酸標準混合溶液,其中 (a) 為GC-GC-ESI/MS分析所得之第一管柱的GC-ESI之TIC與EIC之疊圖,(b) 為GC-GC-ESI/MS分析所得之第二管柱的GC-ESI之Ala和Gly 的EIC圖 (m/z 162、 m/z 176) ………………………………………………………..180
圖6.1、商業化離子層析電噴灑游離質譜儀之裝置示意圖………....……………198
圖6.2、IC/FD-ESI/MS 系統照片。其中 (a) 為裝置全景照,(b)為FD-ESI/MS介面,(c) 為 FD-ESI/MS 俯視圖,而 (d) 為 FD-ESI/MS 側視圖………………198
圖6.3、IC/FD-ESI/MS之裝置示意圖……………………………………………...199
圖6.4、IC/FD-ESI/MS 之(a) 霧化氣體流速、(b) Dry gas 流速及 (c) Dry gas 溫度對10 mM NaH2PO4動相溶液中 (pH=4) 的caffeine (m/z 195)訊號強度的影響……………………………………………………………………………………199
圖6.5、IC/FD-ESI/MS 之(a) ESI 尖端與霧化器尖端之相對距離、(b) 平行地面方向之 ESI 尖端與霧化器尖端之相對角度、(c) 垂直地面方向之 ESI 尖端與霧化器尖端之相對角度及 (d) ESI 尖端與質譜入口之相對距離對10 mM NaH2PO4動相溶液 (pH=4) 中的caffeine (m/z 195)訊號強度的影響……………………...200
圖6.6、分別以(a~d) 95 % H2O + 5 % ACN,10、20、30 及 50 mM monosodium phosphate溶液(pH=4) 為動相,並以IC-ESI/MS (無加裝去鹽類裝置) 分析10 ppm caffeine 及acetaminophen混合液所得之EIC 圖………………………………...201
圖6.7、分別以(a~d) 95 % H2O + 5 % ACN,10、20、30 及 50 mM monosodium phosphate溶液(pH=4) 為動相,並以 IC-ESI/MS (無加裝去鹽類裝置)分析10 ppm caffeine 及acetaminophen混合液所得之質譜圖………………….………………..202
圖6.8、分別以(a~d) 95 % H2O + 5 % ACN,10、30、50 及 100 mM monosodium phosphate溶液(pH=4) 為動相,以IC/FD-ESI/MS分析10 ppm caffeine 及acetaminophen混合液所得之EIC圖譜………………………….………………….203
圖6.9、分別以(a~d) 95 % H2O + 5 % ACN,10、30、50 及 100 mM monosodium phosphate溶液(pH=4) 為動相,以IC/FD-ESI/MS分析10 ppm caffeine 及acetaminophen混合液所得之質譜圖………………………………………………..204
圖6.10、以30 mM之 monosodium phosphate 溶液 (pH=4) 為動相,利用IC/FD-ESI/MS 分析 caffeine、acetaminophen 及 amoxicillin 混合溶液所得的EIC圖(a)~(c),以及所得的質譜圖(d)~(f) …………………………………………205
圖6.11、以30 mM之 monosodium phosphate 溶液 (pH=4) 為動相,利用IC/FD-ESI/MS 分析市售感冒藥錠所得的TIC圖,以及質譜圖,其中內插圖為m/z 152 之 MS/MS 圖譜……………………………………………….…………206
圖6.12、以30 mM之 monosodium phosphate 溶液 (pH=4) 為動相,利用IC/FD-ESI/MS 分析市售綠茶葉所得的TIC圖,以及質譜圖,其中內插圖為m/z 195 之 MS/MS 圖譜…………………………………………………...…………206
參考文獻 References
參考文獻1
[1] A. J. Dempster, The Ionization and Dissociation of Hydrogen Molecules and the Formation of H3. Phil. Mag. 1916, 31, 438-443.
[2] M. S. B. Munson, F. H. Field, Chemical ionization Mass Spectrometry. I. Generation Introduction. J. Am. Chem. Soc. 1966, 88, 2621-2630.
[3] M. Barber, R. S. Bordoli, R. D. Sedgwick, A. N. Tyler, Fast atom bombardment of solids as an ion source in mass spectrometry. Nature. 1981, 293. 270-275.
[4] M. Barber, R. S. Bordoli, G. J. Elliott, R. D. Sedgwick, A. N. Tyler. Fast atom bombardment mass spectrometry. Anal. Chem. 1982, 54, 645A.
[5] M. A. Posthumus, P. G. Kistemker, H. L. C. Meuzelaar, M. C. Brauw. Laser desorption mass spectrometry of polar nonvolatile bio-organic molecules. Anal. Chem. 1978, 50, 985-991.
[6] J. C. Tabet, R. J. Cotter, Laser desorption time-of-flight mass spectrometry of high mass molecules. Anal. Chem. 1984, 56, 1662-1667.
[7] M. Karas, D. Bachmann, F. Hillenkamp, Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Anal. Chem. 1985, 57, 2935-2939.
[8] K. Tanaka, H. Waki, Y. Ido, S. Akita, Y. Yoshida, T. Yoshida, Protein ane polymer analysis up to m/z 100,000 by laser ionization time-of flight mass spectrometry. Rapid Commum. Mass Spectrom. 1988, 2, 151-153.
[9] M. Karas, F. Hellenkamp, Laser desorption ionization of proteins woth molecules masses exceeding 10,000 Daltons. Anal. Chem. 1988, 60, 2299-2301.
[10] R. C. Pandey, J. C. Cook, K. L. Rinehart, High Resolution and Field Desorption Mass Spectrometry Studies and Revised Structures of Alamethicins I and II. J. Am. Chem. Soc, 1977, 99, 8469-8483.
[11] D. M. Desiderio, M. Kai, Preparation of stable isotope-incorporated peptide internal standards for field desorption mass spectrometry quantification of peptides in biologic tissue. Biol. Mass Spectrom. 1983, 10, 471-479.
[12] M. L. Vestal, C. R. Blakley, Thermospray interface for liquid chromatography/mass spectrometry. Anal. Chem. 1983, 55, 750-754.
[13] M. Yamashita, J. Fenn, Electrospray ion source. Another variation on the Free-jet theme. J. Phys. Chem. 1984, 88, 4451-4459.
[14] D. I. Carroll, I. Dzidic, R. N. Stillwell, K. D. Haegele, E. C. Horning, Atmospheric pressure ionization mass spectrometry: corona discharge ion source for use in liquid chromatography-mass spectrometry-computer analytical system. Anal. Chem. 1975, 47, 2369-2373.
[15] E. C. Horning, D. I. Carroll, I. Dzidic, K. D. Haegele, G. Horning, R. N. Stillwell. Atmospheric pressure ionization mass spectrometry. Solvent-mediated ionization of samples introduced in solution and in a liquid chromatography effluent stream. J. Chromatogr. Sci. 1974. 12, 725-729.
[16] D. B. Robb, T. R. Covey, A. P. Bruins, Atmospheric pressure photoionization: An ionization method for liquid chromatography mass spectrometry. Anal. Chem. 2000, 72, 3653-3659.
[17] S. Wilm, M. Mann, Analytical properties of the Nano-electrospray ion source. Anal. Chem. 1996, 68,1-8.
[18] R. Ramanathan, N. Raghavan, S. N. Comezoglu, W. G. Humphreys. A low flow ionization technique to integrate quantitative and qualitative small molecule bioanalysis. Int. J. Mass spectrom. 2011, 301, 127–135.
[19] http://www.shimadzu.com/an/hplc/support/lib/lctalk/47/47intro.html
[20] A. T. James, A. J. P. Martin. Gas-liquid Partition Chromatography: The Separation and Micro-estimation of Ammonia and the Methylamines. Biochem. J. 1952, 52, 238-242.
[21] F. W. McLafferty, R. S. Gohlke, Time-of-Flight Mass Spectrometry and Gas- Liquid Partition Chromatography. Anal Chem. 1959, 31, 535-41.
[22] J. H. Gross, Mass spectrometry A textbook, Spronger-Verlag: Berlin, Heidelberg, New York, 2004.
[23] R. R. Ogorzalek Loo, H. R. Udseth, R. D. Smith. Evidence of Charge Inversion in the Reaction of Singly Charged Anions with Multiply Charged Macroions. J. Phys. Chem. 1991, 95, 6412-6415.
[24] J. V. Iribarne, B. A. Thomson. On the evaporation of small ion from charged droplets. J. Chem. Phys. 1976, 64, 2287-2294.
[25] E. C. Horning, M. G. Horning, D. I. Carroll, I. Dzidic, and R. N. Stillwell. New Picogram Detection System Based on a Mass Spectrometer with an External Ionization Source at Atmospheric Pressure. Anal. Chem. 1973, 45, 936-943.
[26] C. N. McEwen. GC/MS on an LC/MS instrument using atmospheric pressure photoionization. Int. J. Mass Spectrom. 2007, 259, 57–64.
[27] P. Ostman, L. Luosujärvi, M. Haapala, K. Grigoras, R. A. Ketola, T. Kotiaho, S. Franssila, R. Kostiainen. Gas Chromatography-Microchip Atmospheric Pressure Chemical Ionization-Mass Spectrometry. Anal. Chem. 2006, 78, 3027-3031.
[28] T. J. Kauppila, P. Östman, S. Marttila, R. A. Ketola, T. Kotiaho,§ S. Franssila, R. Kostiainen. Atmospheric Pressure Photoionization-Mass Spectrometry with a Microchip Heated Nebulizer. Anal. Chem. 2004, 76, 6797–6801
[29] C. Y. Lee, J. Shiea. Gas Chromatography Connected to Multiple Channel Electrospray Ionization Mass Spectrometry for the Detection of Volatile Organic Compounds. Anal. Chem. 1998, 70, 2757-2761.
[30] N. Brenner,; M. Haapala,; K. Vuorensola,; R. Kostiainen. Simple coupling of gas chromatography to electrospray ionization mass spectrometry. Anal Chem. 2008, 80, 8334-8339.
[31] J. B. Fenn, M. Mann, C. K. Meng, S. F. Wong, C. M. Whitehouse, Electrospray ionization for mass spectrometry of large biomolecules. Science. 1989, 246, 64–71.
[32] R. R. O. Loo, H. R. Udseth, R. D. Smith. Evidence of charge inversion in the reaction of single charged anions with multiply charged macroions. J. Phys. Chem., 1991, 95, 6412–6415.
[33] J. V. Iribarne, B. A. Thomson. On the evaporation of small ion from charged droplets. J. Chem. Phys. 1976, 64, 2287-2291.
[34] M. Wilm, M. Mann. Analytical Properties of the Nanoelectrospray Ion Source. Anal Chem. 1996, 68, 1-8.
[35] C. C. Lee, D. Y. Chang, J. Y. Jeng, J. Shiea, Generating Multiply Charged Protein Ions via Two-Step Electrospray Ionization Mass Spectrometry. J. Mass Spectrom. 2002, 37, 115-117
[36] D. Y. Chang, C. C. Lee, J. Shiea, Detecting Large Biomolecules fromHigh-salt Solutions by Fused-Droplet Electrospray Ionization Mass Spectrometry . Anal. Chem. 2002, 74, 2465-2469.
[37] Z. Taka´ts, J. M. Wiseman,B. Gologan, R. G. Cooks. Mass Spectrometry Sampling Under Ambient Conditions with Desorption Electrospray Ionization. Science. 2004, 306, 471-473.
[38] Z. Miao, H. Chen. Direct Analysis of Liquid Samples by Desorption Electrospray Ionization-Mass Spectrometry (DESI-MS). J. Am. Soc. Mass Spectrom. 2009, 20, 10–19.
[39] J. Shiea, M. Z. Huang, H. J. Hsu, C. Y. Lee, C. H. Yuan, I. Beech, J. Sunner, Electrospray-assisted laser desorption ionization mass spectrometry for direct ambient analysis of solids. Rapid Commun. Mass Specrtom. 2005, 19, 3701-3704.
[40] J. Shiea, C. H. Yuan, M. Z. Huang, S. C. Cheng, Y. L. Ma, W. L. Tseng, H. C. Chang, W. C. Hung,. Detection of Native Protein Ions in Aqueous Solution under Ambient Conditions by Electrospray Laser Desorption Ionization (ELDI) Mass Spectrometry. Anal. Chem. 2008, 80, 4845-4852.
[41] M. Z. Huang, S. C. Cheng, S. S. Jhang, C. C. Chou, C. N. Cheng, J. Shiea, I. A. Popov., E. N. Nikolaev. Ambient Molecular Imaging of Dry Fungus Surface by Electrospray Laser Desorption Ionization Mass Spectrometry. Int. J. Mass Spectrom. 2012. 325, 172-182
[42] H. Chen, A. Venter, R. G. Cooks. Extractive electrospray ionization for direct analysis of undiluted urine, milk and other complex mixtures without sample preparation. Chem. Commun., 2006, 2042–2044.
[43] J. Abian. The Coupling of Gas and Liquid Chromatography with Mass Spectrometry.J. Mass Spectrom. 1999, 34, 157-168.
參考文獻2
[1] N. Brenner, M. Haapala, K. Vuorensola, R. Kostiainen. Simple coupling of gas chromatography to electrospray ionization mass spectrometry. Anal Chem. 2008, 80, 8334-8339.
[2] C. Y. Lee, J. Shiea. Gas Chromatography Connected to Multiple Channel Electrospray Ionization Mass Spectrometry for the Detection of Volatile Organic Compounds. Anal. Chem. 1998, 70, 2757-2761.
[3] R. Dams, T. Benijts, W. Gu¨nther, W. Lambert, A. De Leenheer. Influence of the eluent composition on the ionization efficiency for morphine of pneumatically assisted electrospray, atmospheric-pressure chemical ionization and sonic spray. Rapid Commun. Mass Spectrom. 2002, 16, 1072–1077.
[4] L. Li, D. Campbell, P. Bennett, J. Henion. Acceptance Criteria for Ultratrace HPLC−Tandem Mass Spectrometry:  Quantitative and Qualitative Determination of Sulfonylurea Herbicides in Soil. Anal. Chem. 1996, 68, 3397−3404.
[5] W. Lu, B. D. Bennett, J. D. Rabinowitz. J. Chromatogr. B, 2008, 871, 236−242.
[6] M. Careri, L. Elviri, A. Mangia. J. Chromatogr. A 1999, 854, 233−244.
[7] F. Boscaro, G. Pieraccini, G. La Marca, G. Bartolucci, C. Luceri, F. Luceri, G. Moneti. Rapid Commun. Mass Spectrom. 2002, 16, 1507−1514.
[8] A. Vaikkinen, B. Shrestha, J. Nazarian, R. Kostiainen, A. Vertes, T. J. Kauppila. Simultaneous Detection of Nonpolar and Polar Compounds by Heat-Assisted Laser Ablation Electrospray Ionization Mass Spectrometry. Anal. Chem. 2013, 85, 177−184.
參考文獻3
[1] K. Dettmer, P. A. Aronov, B. D. Hammock. Mass Spectrometry-Based Metabolomics. Mass Spectrom. Rev. 2007, 26, 51–78
[2] http://www.cem.msu.edu/~cem252/sp97/ch24/ch24aa.html
[3] D. R. Knapp. Handbook of Analytical Derivatization Reactions. John Wiley & Sons, New York, 1979.
[4] K. Blau, G. King, Handbook of Derivatives for Chromatography. Heyden & Sons Ltd. London, 1979.
[5] P. Hušek. Rapid derivatization and gas chromatographic determination of amino
acids. J. Chromatogr. A. 1991, 552, 289–299.
[6] P. Hušek. Amino acid derivatization and analysis in five minutes. FEBS LETT. 1991, 280, 354-356.
[7] H. F. N. Kvitvang, T. Andreassen, T. Adam, S. G. Villas-Bôas, P. Bruheim. Highly Sensitive GC/MS/MS Method for Quantitation of Amino and Nonamino Organic Acids. Anal. Chem. 2011, 83, 2705–2711
[8] A. Namera, M. Yashiki, M. Nishida, T. Kojima. Direct extract derivatization for determination of amino acids in human urine by gas chromatography and mass spectrometry. J. Chromatogr. B. 2002, 776, 49–55
[9] C. Deng, N. Li, X. Zhang. Rapid determination of amino acids in neonatal blood samples based on derivatization with isobutyl chloroformate followed by solid-phase microextraction and gas chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 2004, 18, 2558–2564
[10] P. Hušek. Simultaneous profile analysis of plasma amino and organic acids by capillary gas chromatography. J. Chromatogr. B. 1995, 669, 352-357
[11] P. Hušek. J. A. Rijks, P. A. Leclercq, C. A. Cramers. Fast Esterification of Fatty Acids with Alkyl Chloroformates Optimization and Application in Gas Chromatography. J. High Res. Chromatogr. 1990, 13, 633-638.
[12] A. P. Vellasco, R. Haddad, M. N. Eberlin, N. F. Höehr. Combined cysteine and homocysteine quantitation in plasma by trap and release membrane introduction mass spectrometry. Analyst, 2002, 127, 1050–1053.
[13] P. Hušek. Chloroformates in gas chromatography as general purpose derivatizing agents. J. Chromatogr. B, 1998, 717, 57–91
[14] Y. Shinohara, H. Hasegawa, K. Tagoku, T. Hashimoto. Simultaneous determination of methionine and total homocysteine in human plasma by gas chromatography–mass spectrometry. J. Chromatogr. B, 2001, 758, 283–288
[15] S. W. Myunga, M. Kima, H. K. Min, E. A. Yoo, K. R. Kim. Determination of homocysteine and its related compounds by solidphase microextraction–gas chromatography–mass spectrometry. J. Chromatogr. B, 1999, 727, 1–8.
[16] W. P. Chen, X. Y. Yang, A. D. Hegeman, W. M.Gray, J. D.Cohen. Microscale analysisofaminoacidsusinggaschromatography–mass spectrometry after methylchloroformate derivatization. J. Chromatogr. B, 2010, 878, 2199–2208
[17] N. Domergue, M. Pugniere, A. Previero. One-Step Conversion of Amino Acids into N-Methyloxycarbonyl Alkyl Ester Derivatives for Chiral Gas Chromatography. Anal. Biochem. 1993, 214, 420-425
[18] P. Hušek, P. Matucha, A. Vra´nkova´, P. Sˇ imek. Simple plasma work-up for a fast chromatographic analysis of homocysteine, cysteine, methionine and aromatic amino acids. J. Chromatogr. B, 2003, 789, 311–322.
[19] B. J. Hall, A. R. Parikh, J. S. Brodbelt. Aqueous Phase Hexylchloroformate Derivatization and Solid Phase Microextraction: Determination of Benzoylecgonine in Urine by Gas Chromatography-Quadrupole Ion Trap Mass Spectrometry. J Forensic Sci. 1999,44,527–534.
[20] T. Y. Yen, M. J. Charles, R. D. Voyksner. Processes that Affect Electrospray Ionization-Mass Spectrometry of Nucleobases and Nucleosides. J. Am Soc Mass Spectrom. 1996, 7, 1106-1108
[21] Z. Wu, W. Gao, M. A. Phelps, D. Wu, D. D. Miller, J. T. Dalton. Favorable Effects of Weak Acids on Negative-Ion Electrospray Ionization Mass Spectrometry. Anal. Chem. 2004, 76, 839-847
[22] N. Devenport, L. C. Sealey, F. H. Alruways, D. J. Weston, J. C. Reynolds, C. S. Creaser. Direct Detection of a Sulfonate Ester Genotoxic Impurity by Atmospheric-Pressure Thermal Desorption−Extractive Electrospray−Mass Spectrometry. Anal. Chem. 2013, 85, 6224–6227
[23] J. B. Hedges, S. Vahidi, X. Yue, L. Konermann. Effects of Ammonium Bicarbonate on the Electrospray Mass Spectra of Proteins: Evidence for Bubble-Induced Unfolding. Anal. Chem. 2013, 85, 6469−6476.
參考文獻4
[1] P.C. Tsai, W. H. Ding. Determination of alkyl trimethyl ammonium surfactants in hair conditioners and fabric softeners by gas chromatography–mass spectrometry with electron-impact and chemical ionization. J Chromatogr A. 2004, 1027, 103-108
[2] T. Čajka, J. Hajšlová. Gas chromatography–high-resolution time-of-flight mass spectrometry in pesticide residue analysis: advantages and limitations. J. Chromatogra. A, 2004, 1058, 251-261.
[3] H. J. Stan. Pesticide residue analysis in foodstuffs applying capillary gas chromatography with mass spectrometric detection: State-of-the-art use of modified DFG-multimethod S19 and automated data evaluation. J. Chromatogra. A. 2000, 892, 347–377.
[4] J. Quintana, I. Marti, F. Ventura. Monitoring of pesticides in drinking and related waters in NE Spain with a multiresidue SPE-GC–MS method including an estimation of the uncertainty of the analytical results. J. Chromatogr. A. 2001, 938, 3–13.
[5] N. Ochiai1, K. Sasamoto1, H. Kanda1, T. Yamagami, F. David, B. Tienpont, P. Sandra. Optimization of a multi-residue screening method for the determination of 85 pesticides in selected food matrices by stir bar sorptive extraction and thermal desorption GC-MS. J. Sep. Sci. 2005, 28, 1083–1092.
[6] T, Henriksena, B. Svensmarkb, B. Lindhardta, R. K. Juhlera. Analysis of acidic pesticides using in situ derivatization with alkylchloroformate and solid-phase microextraction (SPME) for GC–MS. Chemosphere. 2001, 44, 1531–1539.
[7] R. Bravo, W. J. Driskell, R. D. Whitehead Jr., L. L. Needham, D. B. Barr. Quantitation of Dialkyl Phosphate Metabolites of Organophosphate Pesticides in Human Urine Using GC-MS-MS with Isotopic Internal Standards. J. Anal. Toxicol. 2002, 26, 245-252.
[8] H. Goebel, H. J. Stan. Automated gas chromatographic analysis of pesticide residues in food samples by means of fused-silica capillary columns data processing. J. Chromatogr. A. 1983, 279, 523–532.
[9] Y.J. Liu, E.Y. Chen, S.B. Wen. The preparation and evaluation of oil-soluble catalyst for aquathermolysis of heavy oil. Chem Eng Oil Gas, 2005, 34, 511–512.
[10] L. H. Lu, M. H. Li, Y. L. Su. The overview of the heavy oil exploitation. Neimenggu Chemistry Industry, 2005, 3, 110–112.
[11] Y. Chen, J. He, Y. Wang, P. Li. GC-MS used in study on the mechanism of the viscosity reduction of heavy oil through aquathermolysis catalyzed by aromatic sulfonic H3PMo12O40. Energy, 2010, 35, 3454-3460
[12] A. C. Bejarano, J. Michel. Large-scale risk assessment of polycyclic aromatic hydrocarbons in shoreline sediments from Saudi Arabia: Environmental legacy after twelve years of the Gulf war oil spill. Environ. Pollut. 2010, 158, 1561–1569.
[13] O. T. Garcia, J. O. Grimalt. GC and GC-MS characterization of crude oil transformation in sediments and microbial mat samples after the 1991 oil spill in the Saudi Arabian Gulf coast. Environ. Pollut. 2006, 139, 523-531.
[14] C. Wang, X. Hu, S. He, X. Liu, M. Zhao. Source diagnostic and weathering indicators of oil spills utilizing bicyclic sesquiterpanes. Acta Oceanol. Sin. 2013, 32, 79-84.
[15] J. B. Lee, O. S. Kwon, J. H. You, S. Shon, Ki. J. Paeng, T. M. Sung. The Comparison of Derivatization Methods for the Determination of Ethylene Glycol in Lubricant Oil Sample by GC/MS. Bull. Korean Chem. Soc. 2012, 33, 4243-4246.
[16] E. Dominguez-Rosado, J. Pichtel. Chemical Characterization of Fresh, Used and Weathered Motor Oil via GC/MS, NMR and FTIR Techniques. Proceedings of the Indiana Academy of Science. 2003, 112, 109-116.
[17] G. Isaacman, A. W. H. Chan, T. Nah, D. R. Worton, C. R. Ruehl, K. R. Wilson, A. H. Goldstein. Heterogeneous OH Oxidation of Motor Oil Particles Causes Selective Depletion of Branched and Less Cyclic Hydrocarbons. Environ. Sci. Technol. 2012, 46, 10632–10640.
[18] Z. Yang, C. Yang, Z. Wang, B. Hollebone, M. Landriault, C. E. Brwon. Oil fingerprinting analysis using commercial solid phase extraction (SPE ) cartridge and gas chromatography-mass spectrometry (GC-MS ). Anal. Methods, 2011, 3, 628-635
[19] A. Guart, F. Bono-Blay, A. Borrell, S. Lacorte. Migration of plasticizersphthalates, bisphenol A and alkylphenols from plastic containers and evaluation of risk. Food Addit. Contam. 2011, 28, 676–685.
[20] E. Eljarrat, D. Barceló. Congener-specific determination of dioxins and related compounds by gas chromatography coupled to LRMS, HRMS, MS/MS and TOFMS. J. Mass Spectrom. 2002, 37, 1105–1117.
[21] U. Wollein, N. Schramek. Simultaneous determination of alkyl mesilates and alkyl besilates in finished drug products by direct injection GC/MS. Eur. J. Pharm. Sci. 2012, 45, 201-204.
[22] D. Zhan, J. B. Fenn. Electrospray mass spectrometry of fossil fuels. Int. J. Mass Spectrom. 2000, 194, 197–208.
[23] R. P. Rodgers, G. C. Klein, V. Nowlan, A. G. Marshall. Petroleomics: ESI FT-ICR MS identification of hydrotreatment - resistant neutral and acidic nitrogen species in crude oil. Prepr. Pap. Am. Chem. Soc., 2003, 48, 574-575.
[24] R. P. Rodgers, G. C. Klein, Z. Wu, A. G. Marshall. Environmental Applications of ESI FT-ICR Mass Spectrometry : The Identification of Polar N, S and O Containing PAH Species in Crude Oil and Coal Extracts. Prepr. Pap. Am. Chem. Soc. 2003, 48, 758-759.
[25] R. P. Rodgers, G. C. Klein, L. A. Stanford, S. Kim, A. G. Marshall. Characterization of Heavy, Biodegraded Crude Oils by High Resolution ESI FT-ICR Mass Spectrometry. Prepr. Pap.-Am. Chem. Soc. 2004, 49, 483-484.
[26] Y. E. Corilo, D. C. Podgorski, A. M. McKenna, K. L. Lemkau, C. M. Reddy, A. G. Marshall, R. P. Rodgers. Oil Spill Source Identification by Principal Component Analysis of Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectra. Anal. Chem. 2013.
[27] R. Schiewek, M. Lorenz, R. Giese, K. Brockmann, T. Benter, S. Gäb, O. J. Schmitz. Development of a multipurpose ion source for LC-MS and GC-API MS. Anal. Bioanal. Chem. 2008, 392, 87-96.
[28] T. Bristow, M. Harrison, M. Sims. The application of gas chromatography/atmospheric pressure chemical ionisation time-of-flight mass spectrometry to impurity identification in Pharmaceutical Development. Rapid Commun. Mass Spectrom. 2010, 24, 1673–1681.
[29] T. Pacchiarotta, E. Nevedomskaya, A. Carrasco-Pancorbo, A. M. Deelder, O. A. Mayboroda. Evaluation of GC-APCI/MS and GC-FID As a Complementary Platform. J. Biomol Tech. 2010, 21, 205–213.
[30] N. Strehmel, J. Kopka, D. Scheel, C. Böttcher. Annotating unknown components from GC/EI-MS-based metabolite profiling experiments using GC/APCI(+)-QTOFMS. Metabolomics. 2013.
[31] GC/APCI-TOF MS: A New Valuable Tool for Analysis of Biofluids in Metabolomics Studies. J. Biomol Tech. 2010, 21, S41–S42.
[32] E. C. Horning, M. G. Horning, D. I. Carroll, I. Dzidic, and R. N. Stillwell. New Picogram Detection System Based on a Mass Spectrometer with an External Ionization Source at Atmospheric Pressure. Anal. Chem. 1973, 45, 936-943.
[33] Y. J. Lee, E. A. Smith, J. H. Jun. Gas Chromatography-High Resolution Tandem Mass Spectrometry Using a GC-APPI-LIT Orbitrap for Complex Volatile Compounds Analysis. Mass Spectrom. Letters. 2012, 3, 29-38.
[34] C. N. McEwen. GC/MS on an LC/MS instrument using atmospheric pressure photoionization. Int. J. Mass Spectrom. 2007, 259, 57–64.
[35] A. W. Nørgaard,; V. Kofoed-Sørensen,; B. Svensmark,; P. Wolkoff,; P. A. Clausen. Gas Chromatography Interfaced with Atmospheric Pressure Ionization-Quadrupole Time-of-Flight-Mass Spectrometry by Low-Temperature Plasma Ionization. Anal. Chem. 2013, 85, 28−32.
[36] B. Rahimi, A. Semnani, A. Nezamzadeh-Ejhieh, H. S. Langeroodi, M. H. Davood. Monitoring of the Physical and Chemical Properties of a Gasoline Engine Oil during Its Usage. J. Anal. Methods Chem. 2012. 1-8.
[37] S. Amir, M. Hafidia, G. Merlina, H. Hamdi, A. Jouraiphy, M. El Gharous, J. C. Revel. Fate of phthalic acid esters during composting of both lagooning and activated sludges. Process Biochem. 2005, 40, 2183–2190.
[38] M. R. Reardon, L. Allen, E. C. Bender, K. M. Boyle.Comparison of Motor Oils Using High-Temperature Gas Chromatography-Mass Spectrometry. J. Forensic Sci, 2007, 52, 656-663.
參考文獻5
[1] E. A. Radell, H. C. Strutz. Identification of Acrylate and Methacrylate Polymers by Gas Chromatography. Anal. Chem. 1959, 31, 1890.
[2] 許秀容,“開發電噴灑游離輔助熱裂解質譜 (ESA-Py/MS)之技術快速
鑑定合成及天然高分子物質",博士論文, 2006.
[3] C.A. Lytle, W. Bertsch, M. Mckinley. Determination of nonvolatile resin thermal decomposition products by pyrolysis-gas chromatography-mass spectrometry. J Anal. Appl. Pyrolysis. 1998, 42, 121.
[4] N. Dimitrova, L. K. Krehula, A. P. Siročić, Z. Hrnjak-Murgićb. Analysis of recycled PET bottles products by pyrolysis-gas chromatography. Polym. Defrad. Stabil. 2013, 98, 972-979.
[5] Q. Lu, X. C. Yang, C. Q. Dong, Z. F. Zhang, X. M. Zhang, X. F. Zhu. Influence of pyrolysis temperature and time on the cellulose fast pyrolysis products: Analytical Py-GC/MS study. J. Anal. Appl. Pyrol. 2011, 92, 430-438.
[6] J. M. Challinor. A pyrolysis-Derivatisatiom-Gas Chromatography Technique for the Structoral Elucidation of some Synthetic Polymers. J. Anal. Appl.Pyrolysis, 1996, 37, 185.
[7] M. Herrera, G. Matuschek, A. Kettrup. Fast identification of polymer additives by pyrolysis-gas chromatography/mass spectrometry. J. Anal. Appl. Pyrolysis. 2003, 70, 35-42.
[8] S. D. Hanton. Mass Spectrometry of Polymers and Polymer Surfaces. Chem. Rev. 2001, 101, 527-569.
[9] M. Sato, M. Hida, H. Nagase. Analysis of Pyrolysis Products of Methamphetamine. J. Anal. Toxicol, 2004, 28, 638-643.
[10] M. G. Brasuel, A. D. McCarter, N. W. Bower. Forensic Art Analysis Using Novel Reflectance Spectroscopy and Pyrolysis Gas Chromatography – Mass Spectrometry Instrumentation. Chem. Educator, 2009, 14, 150–154
[11] W. J. Egan, R. C. Galipo, B. K. Kochanowski, S. L. Morgan, E. G. Bartick, M. L. Miller, D. C. Ward, R. F. Mothershead II. Forensic discrimination of photocopy and printer toners. III. Multivariate statistics applied to scanning electron microscopy and pyrolysis gas chromatography/mass spectrometry. Anal. Bioanal. Chem. 2003, 376, 1286-1297.
[12] B. K. Kochanowski, S. L. Morgan. Forensic Discrimination of Automotive Paint Samples Using Pyrolysis-Gas Chromatography–Mass Spectrometry with Multivariate Statistics. J. Chromatogr. Sci. 2000, 38, 100-108.
[13] O. F. Folmer. Laser Pyrolysis Gas Chromatography Application to Polymers. Anal. Chem. 1971, 43, 1057
[14] T. Kojima, F. Morishita. Application of Laser to Pyrolysis Gas Chromatography I . J. Chromatogr. Sci., 1970, 8, 471-473.
[15] N. E. Vanderborgh,; W. T. Ristau. Reproducibility of Laser Induced Pyrolysis. J. Chromatogr. Sci., 1973, 11, 535-537.
[16] M. Carmona, J. Martínez, A. Zalacain, M. L. Rodríguez-Méndez, J. A. de Saja, G. L. Alonso. Analysis of saffron volatile fraction by TD–GC–MS and e-nose. Eur. Food Res. Technol. 2006, 223, 96-101.
[17] W. Filipiak, A. Sponring, A. Filipiak, C. Ager, J. Schubert, W. Miekisch, A. Amann, J. Troppmair. TD-GC-MS Analysis of Volatile Metabolites of Human Lung Cancer and Normal Cells In vitro. Cancer Epidemiol Biomarkers Prev. 2010, 19, 182-196.
[18] F. L. Dorman, E. B. Overton, J. J. Whiting, J. W. Cochran, J. Gardea-Torresdey. Gas Chromatography. Anal. Chem., 2008, 80, 4487–4497.
[19] Harynuk, James (2009, June 18). Comprehensive Two-dimensional Gas Chromatography (GCxGC). SciTopics. Retrieved October 4, 2013, from http://www.scitopics.com/Comprehensive_Two_dimensional_Gas_Chromatography_GCxGC.html
[20] P. Q. Tranchida, D. Sciarrone, P. Dugo, L. Mondello. Heart-cutting multidimensional gas chromatography: a review of recent evolution, applications, and future prospects. Anal. Chim. Acta. 2012, 716, 66-75.
[21] A. Mostafa, M. Edwards, T. Górecki. Optimization aspects of comprehensive two-dimensional gas chromatography. J. Chromatogr. A. 2012, 1255, 38-55.
[22] P. J. Marriott, S. T. Chin, B. Maikhunthod, H. Schmarr, S. Bieri. Multidimensional gas chromatography. Trends Anal. Chem. 2012, 34, 1-21.
[23] J. F. Hamilton. Using comprehensive two-dimensional gas chromatography to study the atmosphere. J. Chromatogr. Sci. 2010, 48, 274-282.
[24] J. E. Welke, V. Manfroi, M. Zanus, M. Lazarotto, C. A. Zini. Characterization of the volatile profile of Brazilian Merlot wines through comprehensive two dimensional gas chromatography time-of-flight mass spectrometric detection. J. Chromatogr. A. 2012, 1226, 124-139.
[25] D. Sciarrone, R. Costa, C. Ragonese, P. Q. Tranchida, L. Tedone, L. Santi, P. Dugo, G. Dugo, L. Mondello. Application of a multidimensional gas chromatography system with simultaneous mass spectrometric and flame ionization detection to the analysis of sandalwood oil. J. Chromatogr. A. 2011, 1218, 137-142
[26] L. A. de Godoy, L. W. Hantao, M. P. Pedroso, R. J. Poppi, F. Augusto. Quantitative analysis of essential oils in perfume using multivariate curve resolution combined with comprehensive two-dimensional gas chromatography. Anal. Chim . Acta. 2011, 699, 120-125.
[27] V. Wulf, N. Wienand, M. Wirtz, H. W. Kling, S. Gäb, O. J. Schmitz. Analysis of special surfactants by comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry. J. Chromatogr. A. 2010, 1217, 749-754.
[28] A. Villière, G. Arvisenet, L. Lethuaut, C. Prost, T. Sérot. Selection of a representative extraction method for the analysis of odourant volatile composition of French cider by GC–MS–O and GC X GC–TOF-MS. Food Chem. 2012, 131, 1561–1568.
[29] N. S. Tessarolo, L. R. dos Santos, R. S. Silva, D. A. Azevedo. Chemical characterization of bio-oils using comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry. J. Chromatogr. A. 2013, 1279, 68-75.
[30] G. S. Frysinger, R. B. Gaines. Separation and identification of petroleum biomarkers by comprehensive two-dimensional gas chromatography. J. Sep. Sci. 2001, 24, 87–96.
[31] R. B. Gaines, G. S. Frysinger, M. S. Hendrick-Smith, J. D. Stuart. Oil Spill Source Identification by Comprehensive Two-Dimensional Gas Chromatography. Environ. Sci. Technol. 1999, 33, 2106-2112.
[32] S. M. Song, P. Marriott, A. Kotsos A, O. H. Drummer, P. Wynne. Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC x GC-TOFMS) for drug screening and confirmation. Forensic Sci. Int. 2004, 143, 87-101.
[33] J. D. Dimandja, S. College. Comprehensive 2-D GC provides high-performance separations in terms of selectivity, sensitivity, speed, and structure. Anal. Chem. 2004, 167A-174A.
[34] M. Z. Huang, C. C. Zhou, D. L. Liu, S. S. Jhang, S. C. Cheng, J. Shiea. Rapid characterization of chemical compounds in liquid and solid states using thermal desorption electrospray ionization mass spectrometry. Anal Chem. 2013, 85, 8956-8963.
參考文獻6
[1] S. B. Mohsin. Ion Chromatography Coupled with Mass Spectrometry for the Determination of Ionic Compounds in Agricultural Chemicals. Anal. Chem. 1999, 71, 3603-3609
[2] S. B. Mohsin. Use of ion chromatography–electrospray mass spectrometry for the determination of ionic compounds in agricultural chemicals. J. Chromatogr. A. 2000, 884, 23–30.
[3] D. A. Omana, J. Wang, J. Wu. Co-extraction of egg white proteins using ion-exchange chromatography from ovomucin-removed egg whites. J. Chromatogr. B. 2010, 878, 1771–1776.
[4] S.R. Gallant, S. Vunnum, S.M. Cramer. Optimization of preparative ion-exchange chromatography of proteins: linear gradient separations. J. Chromatogr. A, 1996, 725, 295-314.
[5] G. Saccani, E. Tanzi, P. Pastore, S. Cavalli, M. Rey. Determination of biogenic amines in fresh and processed meat by suppressed ion chromatography-mass spectrometry using a cation-exchange column. J. Chromatogr. A, 2005, 1082, 43–50.
[6] M. Rey,; C. Pohl. Novel cation-exchange column for the separation of hydrophobic and/or polyvalent amines. J. Chromatogr. A, 2003, 997, 199–206.
[7] B. M. De Borba, J. S. Rohrer. Determination of biogenic amines in alcoholic beverages by ion chromatography with suppressed conductivity detection and integrated pulsed amperometric detection. J. Chromatogr. A, 2007, 1155, 22–30.
[8] A. J. Krynitsky, R. A. Niemann, D. A. Nortrup. Determination of Perchlorate Anion in Foods by Ion Chromatography-Tandem Mass Spectrometry. Anal. Chem. 2004, 76, 5518-5522.
[9] A. J. Alpert, K. Petritis, L. Kangas, R. D. Smith, K. Mechtler, G. Mitulovic´, S. Mohammed, A. J. R. Heck. Peptide Orientation Affects Selectivity in Ion-Exchange Chromatography. Anal. Chem. 2010, 82, 5253–5259.
[10] H. Liu, H. Wang, V. B. Sunderland. An isocratic ion exchange HPLC method for the simultaneous determination of flucloxacillin and amoxicillin in a pharmaceutical formulation for injection. J. Pharm. Biomed. Anal. 2005, 37, 395–398.
[11] Z. Chen, M. M. Rahman, R. Naidu. Speciation of vanadium by anion-exchange chromatography with inductively coupled plasma mass spectrometry and confirmation of vanadium complex formation using electrospray mass spectrometry. J. Anal. At. Spectrom. 2007, 22, 811–816.
[12] K. Burgess, D. Creek, P. Dewsbury, K. Cook, M. P. Barrett. Semi-targeted analysis of metabolites using capillary-flow ion chromatography coupled to high-resolution mass spectrometry. Rapid Commun. Mass Spectrom. 2011, 25, 3447–3452.
[13] G. A. Harris, A. S. Galhena, F. M. Fernández. Ambient Sampling/Ionization Mass Spectrometry: Applications and Current Trends. Anal. Chem. 2011, 83, 4508.
[14] R. D. Ifa, C. Wu, Z. Ouyang, R. G. Cooks. Desorption electrospray ionization and other ambient ionization methods: current progress and preview. Analyst, 2010, 135, 669.
[15] R. G. Cooks, Z. Ouyang, Z. Takáts, J. M. Wiseman. Ambient Mass Spectrometry. Science, 2006, 311, 1566.
[16] M. Z. Huang, C. H. Yuan, S. C. Cheng, Y. T. Cho, J. Shiea. Ambient Ionization Mass Spectrometry. Annu. Rev. Anal. Chem. 2010, 3, 43.
[17] Z. Takáts, J. M. Wiseman, B. Gologari, R. G. Cooks. Mass Spectrometry Sampling Under Ambient Conditions with Desorption Electrospray Ionization. Science, 2004, 306, 471.
[18] M. Z. Huang, Y. T. Cho, S. C. Cheng, J. Shiea. Ambient Ionization Mass Spectrometry - A Tutorial. Anal. Chim. Acta. 2011, 702, 1-15.
[19] A. U. Jackson, N. Talaty, R. G. Cooks, G. J. Van Berkel. Salt Tolerance of Desorption Electrospray Ionization (DESI). J Am Soc Mass Spectrom. 2007, 18, 2218–2225.
[20] H, Chen, A. Venter, R. G. Cooks. Extractive electrospray ionization for direct analysis of undiluted urine, milk and other complex mixtures without sample preparation Chem. Commun., 2006, 2042–2044.
[21] T. T. Lo, T. Y. Chen, Y. C. Chen. Study of salt effects in ultrasonication-assisted spray ionization mass spectrometry. J. Mass Spectrom. 2012, 47, 480-483.
[22] J. Shiea, D. Y. Chang, C. H. Lin,;S. J. Jiang, Generating Multiply Charged Protein Ions by Ultrasonic Nebulization / Multiple Channel-Electrospray Ionization Mass Spectrometry. Anal. Chem. 2001, 73, 4983-4987.
[23] D. Y. Chang, C. C. Lee, J. Shiea. Detecting Large Biomolecules fromHigh-salt Solutions by Fused-Droplet Electrospray Ionization Mass Spectrometry. Anal. Chem. 2002, 74, 2465-2469.
[24] C. C. Lee, D. Y. Chang, J. Y. Jeng, J. Shiea. Generating Multiply Charged Protein Ions via Two-Step Electrospray Ionization Mass Spectrometry. J. Mass Spectrom. 2002, 37, 115-117.
[25] I. F. Shieh, C. Y. Lee, J. Shiea. Eliminating the interferences from TRIS buffer and SDS in protein analysis by fused-droplet electrospray ionization mass spectrometry. J. Proteome Res. 2005, 4, 606-612.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.191.147.190
論文開放下載的時間是 校外不公開

Your IP address is 18.191.147.190
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code