Responsive image
博碩士論文 etd-1022113-101944 詳細資訊
Title page for etd-1022113-101944
論文名稱
Title
無線通訊之微型化LTCC帶通濾波器設計和實現
Design Approaches and Implementation of Miniaturized LTCC Bandpass Filters for Wireless Communications
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
85
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-11-11
繳交日期
Date of Submission
2013-11-22
關鍵字
Keywords
傳輸零點、反射零點、低溫共燒陶瓷濾波器、雙頻帶濾波器、帶通濾波器
transmission zero, reflection zero, low temperature co-fired ceramic (LTCC) filter, dual-band filter, Bandpass filter
統計
Statistics
本論文已被瀏覽 5790 次,被下載 175
The thesis/dissertation has been browsed 5790 times, has been downloaded 175 times.
中文摘要
本論文研究並實現應用於無線系統之微型化帶通濾波器設計。根據所欲實現之設計規格,選擇適當的反射零點和傳輸零點來做為集總濾波器原型的合成目標。所提出的方法可推導出簡潔的方程式組用來合成給定之濾波器規格,包括通帶的插入與折返損耗以及禁帶的衰減量。所提出的帶通濾波器原型擁有兩個迴授路徑,能提供可控制之多個傳輸零點座落於期望的禁帶頻率上,並可用來加強禁帶之寬頻拒絕能力。傳統微帶線帶通濾波器雖然具有高性能但所佔面積過大而不易整合於無線系統當中,本論文提出在低溫共燒陶瓷基板內實現微型化之單頻與多頻集總式帶通濾波器,在每個通頻兩側皆有可控制的傳輸零點來提高濾波器之選擇度,其性能與面積皆可與內埋被動元件基板形式之帶通濾波器相較量。本論文中所實現之各種帶通濾波器設計,其電磁模擬結果與實際量測數據皆有高度吻合。
Abstract
In this dissertation, miniaturized bandpass filters for wireless system applications are analyzed and implemented. The lumped-element filter prototypes are synthesized by selecting the proper reflection and transmission zeros of the bandpass filter. Moreover, the proposed synthetic design approach can be reduced to compact formulas for filters that satisfy the given specifications including passband insertion loss, passband return loss and stopband attenuation. The proposed bandpass filter prototypes have two feedback paths that provide controllable multiple transmission zeros at the desired stopband frequencies and superior wide stopband rejection. Despite their strong performance, most conventional microstrip bandpass filters require a large area, and so are difficult to use in wireless systems. In this dissertation, lumped elements were developed using a low temperature co-fired ceramic (LTCC) substrate to realize miniaturized single- and multi-band bandpass filters. Controllable transmission zeros that are created on both sides of each passband provide an enhanced selectivity for the LTCC filters. The designed electrical performance and size are comparable to those of organic embedded passive substrate (EPS) bandpass filters. The measurement results are consistent with electromagnetic (EM) simulation results for all of the proposed bandpass filter designs.
目次 Table of Contents
1 Introduction 1
1.1 Research Motivation 1
1.2 Overview of Dissertation 3
2 Research of LTCC Technology and Bandpass Filters Design Architecture 5
2.1 LTCC Technology 5
2.1.1 Overview of LTCC Technology 5
2.1.2 LTCC Material System and Processing 9
2.2 Research of LTCC Bandpass Filters Design Architecture 11
3 Fast Synthetic Design Approach to Miniaturized Bandpass Filters 15
3.1 Bandpass Filter Design 15
3.1.1 Bandpass Filter using second-order inductive-coupled resonator 16
3.1.2 Bandpass Filter using second-order capacitive-coupled resonator 24
3.2 Filter Implementation and Measured Results 30
3.2.1 Bandpass Filter using second-order inductive-coupled resonator 30
3.2.2 Bandpass Filter using second-order capacitive-coupled resonator 35
4 Synthesis of Miniaturized Dual-band Bandpass Filter 40
4.1 Second-order Bandpass Filter Synthesis 40
4.2 Bandpass Filter Architecture and Synthesis 45
4.3 Dual-band Bandpass Filter Design 48
4.4 Filter Implementation and Measured Results 54
5 Conclusions 60
Bibliography 62
Vita 72
參考文獻 References
[1] A. Sutono, D. Heo, Y.-J. Chen, and J. Laskar, “High-q LTCC-based passive library for wireless system-on-package (SOP) module development,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 10, pp. 1715–1724, Oct. 2001.
[2] R. R. Tummala and V. K. Madisetti, “System on chip or system on package?,” IEEE Des. Test Comput., vol. 16, no. 2, pp. 48-56, Apr. –Jun., 1999.
[3] A. Yatsenko, W. S. Wong, J. Heyen, M. Nalezinski, G. Sevskiy, M. Vossiek, and P. Heide, “System-in-package solutions for WiMAX applications based on LTCC technology,” in Proc. IEEE Radio and Wireless Symp., pp. 470–473, Jun. 2009.
[4] Q.-X. Chu and H. Wang, “A compact open-loop filter with mixed electric and magnetic coupling,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 2, pp. 431–439, Feb. 2008.
[5] Y.-Z. Zhu, Y.-J. Xie, and H. Feng, “Novel microstrip bandpass filters with transmission zeros,” Progress In Electromagnetics Research, vol. 77, pp. 29–41, 2007.
[6] H. Gan, D.-W, Lou, and D.-X. Yang, “Compact microstrip bandpass filter with sharp transition bands,” IEEE Microw. Wireless Compon. Lett., vol. 16, no 3, pp. 107–109, Mar. 2006.
[7] L.-J. Lan, M.-H. Ho, and W.-Q. Xu, “Design of compact suspended stripline bandpass filters with wide stopband,” Microw. Opt. Tech. Lett., vol. 50, no. 4, pp. 865–868, Apr. 2008.
[8] Y.-M. Chen, S.-F. Chang, C.-C. Chang, and T.-J. Hung, “Design of stepped- impedance combline bandpass filters with symmetric insertion-loss response and wide stopband range,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 10, pp. 2191–2199, Oct. 2007.
[9] Y.-M. Chen and S.-F. Chang, “A compact stepped-impedance pseudo-interdigital bandpass filter with controllable transmission zero and wide stopband range,” in Proc. 39th European Microw. Conf., pp. 783–786, Sept. 2009.
[10] J.-T. kuo and E. Shih, “Microstrip stepped impedance resonator bandpass filter with an extended optimal rejection bandwidth,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 5, pp. 1554–1559, May 2003.
[11] J.-K. Xiao, S.-W. Ma, and S.-L. Zhang, “Novel compact split ring stepped- impedance resonator (SIR) bandpass filters with transmission zeros,” Progress In Electromagnetics Research, vol. 21, pp. 329–339, 2007.
[12] A. Djaiz and A. Denidni, “A new compact microstrip two-layer bandpass filter using aperture-coupled SIR-hairpin resonators with transmission zeros,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 5, pp. 1929–1936, May 2006.
[13] W.-W. Choi and K.-W. Tam, “A microstrip SIR dual-mode bandpass filter with simultaneous size reduction and spurious responses suppression,” in IEEE MTT-S Int. Microw. Workshop Series, pp. 116–119, Dec. 2008.
[14] Q.-H. Sheng, Y.-L. Dong, and J.-G. Cao, “Dual-mode bandpass filter using microstrip SIR at ka band,” in Proc. Asia-Pacific Microw. Conf., pp. 1401–1404, Dec. 2009.
[15] S. Karimian and Z. Hu, “Miniaturized composite right/left-handed stepped impedance resonator bandpass filter,” IEEE Microw. Wireless Compon. Lett., vol. 22, no 8, pp. 400–402, Aug. 2012.
[16] H. Chen, Z.-Q. Zhao, H.-S. Zhong, and Y.-X. Zhang, “A compact narrow bandpass filter suing meandered lines shunted with microstrip open-ended stepped impedance resonators,” in Proc. Int. Conf. comm. Cir. system, pp. 702–705, Jul. 2010.
[17] C. P. Chen, Z. Ma, and T. Anada, “Synthesis of UWB bandpass filter by multistage of one-wavelength commensurate SIRs,” in Proc. Int. Microw. Millimeter Wave Tech. Conf., pp. 1247–1250, Apr. 2008.
[18] H. Kuan, Y.-L. Lin, R.-Y. Yang, and Y.-C. Chang, “A multilayered parallel coupled microstrip bandpass filter with embedded SIR cells to have a broad upper rejection band,” IEEE Microw. Wireless Compon. Lett., vol. 20, no 1, pp. 25–27, Jan. 2010.
[19] H.-U. Moon, S.-U. Choi, Y.-H. Cho, and S.-W. Yun, “Size-reduced tunable hairpin bandpass filter using aperture coupling with enhanced selectivity and constant bandwidth,” in IEEE MTT-S Int. Microw. Symp. Dig., pp. 747–750, Jun. 2008.
[20] K. Srisathit, J. Tangjit, and W. Surakampontorn, “Miniaturized microwave bandpass filter based on modified hairpin topology,” in Proc. Int. Electron devices solid-state cir. Conf., pp. 1–4, Dec. 2010.
[21] M. Dousti, P. Taheri, S. Sadi, and M. Zamani, “A novel miniaturized narrow band bandpass filter utilizing microtrip open-loop ring resonators for narrow-band applications,” Progress In Electromagnetics Research Symp. Proceeding, KL, MALAYSIA, pp. 27–30, Mar. 2012.
[22] K. Srisathit, A. Worapishet, and W. Surakampontorn, “Design of tri-mode ring resonator for wideband microtsrip bandpass filters,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 11, pp.2867–2876, Nov. 2010.
[23] A. K. Keskin and H. P. Partal, “An UWB high-q bandpass filter with wide rejection band using defected ground structures,” in Proc. Int. Conf. Ultra wideband, pp. 99–102, Sept. 2012.
[24] A. Adbei-Rahman, A.-R. Ali, S. Amari, and A.-S Omar, “Compact bandpass filters using defected ground structure (DGS) coupled resonators,” in IEEE MTT-S Int. Microw. Symp. Dig., pp. 12–17, Jun. 2005.
[25] S.-C. Lin, C.-H. Wang, and C.-H. Chen, “Novel patch-via-spiral resonators for the development of miniaturized bandpass filters with transmission zeros,” IEEE Trans. Micro. Theory Tech., vol. 55, no. 1, pp.137–146, Jan. 2007.
[26] C.-F. Chen, T.-Y. Huang, and R.-B. Wu, “Novel compact net-type resonators and their applications to microstrip bandpass filters’, IEEE Trans. Microw. Theory Tech., vol. 54, no. 2, pp.755–762, Feb. 2006.
[27] M.-J. Bao, X.-G. Wang, Y.-H. Cho, S.-W. Yun, and D.-C. Park, “Design of a four-pole wide stopband bandpass filter using combined quarter-wavelength resonators and stub-loaded SIR,” in Proc. Asia-Pacific Microw. Conf., pp. 115–117, Dec. 2012.
[28] M. Lingqin, R. Long, and H. Jingsong, “Design of a SIR bandpass filter with spurious passband suppression using defected ground structure and spurline,” in IEEE MTT-S Int. Microw. Workshop Series, pp. 1–4, Sept. 2012.
[29] X. Y. Zhang and Q. Xue, “Novel dual-mode dual-band filters using coplanar-waveguide-fed ring resonators,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 10, pp. 2183–2190, Oct. 2007.
[30] E. E. Djoumessi and K. Wu, “Multilayer dual-mode dual-bandpass filter,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 1, pp. 21–23, Jan. 2009.
[31] X. Luo, H. Qian, J.-G. Ma, K. Ma, and K. S. Yeo, “Compact dual-band bandpass filters using novel embedded spiral resonator (ESR),” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 8, pp. 435–437, Aug. 2010.
[32] P. K. Singh, S. Basu, and Y.-H. Wang, “Miniature dual-band filter using quarter wavelength stepped impedance resonators,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 2, pp. 88–90, Feb. 2008.
[33] Y.-C. Chang, C.-H. Kao, M.-H. Weng, and R.-Y. Yang, “Design of the compact dual-band bandpass filter with high isolation for GPS/WLAN applications,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 12, pp. 780–782, Dec. 2009.
[34] C.-H. Tseng and H.-Y. Shao, “A new dual-band microstrip bandpass filter using net-type resonators,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 4, pp. 196–198, Apr. 2010.
[35] C.-W. Tang, and P. H. Wu, “Design of a planar dual-band bandpass filter,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 7, pp. 362–364, Jul. 2011.
[36] C.-I. G. Hsu, C.-H. Lee, and Y.-H. Hsieh, “Tri-band bandpass filter with sharp passband skirts designed using tri-section SIRs,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 1, pp. 19–21, Jan. 2008.
[37] Q.-X. Chu and X.-M. Lin, “Advanced triple-band bandpass filter using tri- section SIR,” Electron. Lett., vol. 44, no. 4, pp. 295–296, Feb., 2008.
[38] X.-M. Lin and Q.-X. Chu, “Design of triple-band bandpass filter using tri-section stepped-impedance resonators,” in Proc. Int. Microw. Millimeter Wave Tech. Conf., pp. 1–3, Apr. 2007.
[39] H.-W. Wu and R.-Y. Yang, “A new quad-band bandpass filter using asymmetric stepped impedance resonators,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 4, pp. 203–205, Apr. 2011.
[40] C.-F. Chen, “Design of a compact microstrip quint-band filter base on the tri-mode stub-loaded stepped impedance resonators,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 7, pp. 357–359, Jul. 2012.
[41] P. Mondal and M. K. Mandal, “Design of dual-band bandpass filters using stub-loaded open-loop resonators,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 1, pp. 150–155, Jan. 2008.
[42] Z. Zhang, Y.-C. Jiao, X.-M. Wang, and S.-F. Cao, “Design of a compact dual- band bandpass filter using opposite hook-shaped resonator,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 7, pp. 359–361, Jul. 2011.
[43] Q.-X. Chu, F.-C. Chen, Z.-H. Tu, and H. Wang, “A novel crossed resonator and its applications to bandpass filters,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 7, pp. 1753–1759, Jul. 2009.
[44] Y. Sung, “Dual-mode dual-band filter with band notch structures,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 2, pp. 73–75, Feb. 2010.
[45] S. Luo, L. Zhu, and S. Sun, “A dual-band ring-resonator bandpass filter based on two pairs of degenerate modes,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 12, pp. 3427–3432, Dec. 2010.
[46] S. Luo, L. Zhu, and S. Sun, “Compact dual-mode triple-band bandpass filters using three pairs of degenerate modes in a ring resonator,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 5, pp. 1222–1229, May 2011.
[47] C. Zhu, L. Yao, and J. Zhou, “Novel microstrip diplexer base on a dual-band bandpass filter for WLAN system,” in Proc. Asia-Pacific Microw. Conf., pp. 1102–1105, Dec. 2010.
[48] X. Y. Zhang, Q. Xue, and B. J. Hu, “Planar tri-band bandpass filter with compact size,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 5, pp. 262–264, May 2010.
[49] X. Lai, C.-H. Liang, H. Di, and B. Wu, “Design of tri-band filter based on stub loaded resonator and DGS resonator,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 5, pp. 265–267, May 2010.
[50] M. Zhou, X. Tang, and F. Xiao, “Compact dual band transversal bandpass filter with multiple transmission zeros and controllable bandwidths,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 6, pp. 347–349, Jun. 2009.
[51] B.-J. Chen, T.-M. Shen, and R.-B. Wu, “Design of tri-band filters with improved band allocation,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 7, pp. 1790–1797, Jul. 2009.
[52] C.-W. Tang, Y. C. Lin, and C. Y. Chang, “Realization of transmission zeros in combline filters using an auxiliary inductively coupled ground plane,” IEEE Trans. Microw. Theory Tech., vol. 51, pp. 2112–2118, Oct. 2003.
[53] C.-W. Tang, S. F. You, and I. C. Liu, “Design of a dual-band bandpass filter with low temperature co-fired ceramic technology,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 8, pp. 3327–3332, Aug. 2006.
[54] G.-S. Huang, C.-H. Wu, and C. H. Chen, “LTCC balun bandpass filters using dual-response resonators,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 9, pp. 483–485, Sept. 2011.
[55] C.-H. Wu and C. H. Chen, “Compact LTCC bandpass 180° hybrid using lumped single-to-differential and single-to-common bandpass filters,” in IEEE MTT-S Int. Microw. Symp. Dig., pp. 1473–1476, Jun. 2009.
[56] C.-W. Tang and H.-C. Hsu, “Development of multilayered bandpass filters with multiple transmission zeros using open-stub/short-stub/serial semilumped resonators,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 3, pp. 624–634, Mar. 2010.
[57] M. M. Fahmi, J. A. Ruiz-Cruz, R. R. Mansour, and K. A. Zaki, “Recent results on compact broad-band and multi-band low-temperature co-fired ceramic components for radio frequency front-ends,” IET Microw. Ant. Propag., vol. 5, no. 8, pp. 870–876, Jun. 2011.
[58] S. B. Yeap, Z. N. Chen, and X. Qing, “Gain-enhanced 60-GHz LTCC antenna array with open air cavities,” IEEE Trans. Ant. Propag., vol. 59, no. 9, pp. 3470–3473, Sept. 2011.
[59] S.-H. Wi, Y. P. Zhang, H. Kim, I.-Y. Qh, and J.-G. Yook, “Integration of antenna and feeding network for compact UWB transceiver package,” IEEE Trans. Compon. Packag. Manuf. Tech., vol. 1, no. 1, pp. 111–118, Jan. 2011.
[60] M.-C. Wu and S.-J. Chung, “A small SiP module using LTCC 3D circuitry for dual band WLAN 802.11 abg front-end solution,” Silicon Monolithic Integrated Cir. RF Syst., pp. 18–20, Jan. 2006.
[61] C. W. Byeon, J. J. Lee, H. Y. Kim, I. S. Song, S. J. Cho, K. C. Eun, I. Y. Oh, and C. S. Park, “A 60-GHz transceiver system with low-power CMOS OOK modulator and demodulator,” in IEEE MTT-S Int. Microw. Workshop Series, pp. 24–25, Aug. 2011.
[62] S. Sakhnenko, D. Orlenko, B. Vorotnikov, O. Aleksieiev, P. Komakha, P. Heide, and M. Vossiek, “Ultra-low-profile small-size LTCC front-end module (FEM) for WLAN applications based on a novel diplexer design approach,” in IEEE MTT-S Int. Microw. Symp. Dig., pp. 609–612, Jun. 2009.
[63] M. F. Karim, Y.-X. Guo, M. Sun, J. Brinkhoff, L. C. Ong, K. Kang, and F. Lin, “Integration of SiP-based 60-GHz 4 × 4 antenna array with CMOS OOK transmitter and LNA,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 7, pp. 1869–1878, Jul. 2011.
[64] Y.-S. Dai, S.-L. Xiao, S.-B. Chen, B.-Q. Dai, L.-J. Wang, L. Xu, C. Zhou, Q.-S. Yu, H. Zhang, J. Yang, X. Chen, “Design on antenna switch module for dual band phone GSM_UMTS using LTCC technology,” in Proc. Int. Symp. Signals Systems Electron., pp. 1–4, Sept., 2010.
[65] R. E. Hayes, J. W. Gipprich and M. G. Hershfeld, “A stripline re-entrant coupler network for cofired multilayer microwave circuits,” in IEEE MTT-S Int. Microw. Symp. Dig., pp. 801–804, Jun. 1996.
[66] A. Yatsenko, J. Heyen, S. Sakhnenko, B. Vorotnikov, and P. Heide, “Highly-integrated dual-band front-end module for WLAN and WiMAX applications based on LTCC technology,” in IEEE MTT-S Int. Microw. Symp. Dig., pp. 13–16, Jun. 2008.
[67] P. Q, J. Hu, and B. Yan, “A compact high-selective stripline SIR bandpass filter embed in LTCC,” in Proc. Asia-Pacific Microw. Conf., pp. 1–4, Dec. 2008.
[68] U. Naeem, S. Bila, S. Verdeyme, M. Thevenot, and T. Monediere, “A compact dual band filter-antenna subsystem for 802.11 Wi-Fi applications,” in Proc. 3rd European Wireless Tech. Conf., pp. 181–184, Sept. 2010.
[69] K.-S. Chin, J.-L. Hung, C.-W. Huang, J. S. Fu, B.-G. Chen, and T.-J. Chen, “LTCC dual-band stepped-impedance-stub filter constructed with vertically folded structure,” Electron. Lett., vol. 46, no. 23, pp. 1554–1556, Nov. 2010.
[70] K. S. Chin, J. L. Hung, C. W. Huang, J. S. Fu, B. G. Chen, and T. J. Chen, “LTCC dual-band stepped-impedance-stub filter constructed with vertically folded structure,” Electron. Lett., vol. 46, pp. 1554–1556, Nov. 2010.
[71] Y. Li, L. Hu, J. Chen, and Y. Fei, “A Ku-band hairpin filter based on LTCC technology,” China-Japan Joint Microw. Conf., pp. 478–480, Sept. 2008.
[72] T. Yang, R. Xu, and L. Xiao, “Compact combline bandpass filter using LTCC technology,” Int. Conf. Microw. Millimeter Wave Tech., pp. 1–4, Apr. 2007.
[73] J. H. Park, S. J. Cheon, J. Y. Park, and J. T. Lim, “Compact WLAN dual-band filter using independent band stop resonators combined with diplexer,” in IEEE MTT-S Int. Microw. Workshop Series, pp. 1–2, Aug. 2011.
[74] K. Huang, T. Chiu, and H.-B. Wu, “Compact LTCC tri-band filter design,” in Proc. Asia-Pacific Microw. Conf., pp. 1–4, Dec. 2007.
[75] V. Turgaliev, D. Kholodnyak, I. Vendik, D. Stopel, S. Humbla, J. Muller, and M. A. Hein, “LTCC highly loaded cavities for the design of single- and dual-band low-loss miniature filters,” in Proc. 39th European Microw. Conf., pp. 180–183, Sept. 2010.
[76] K. Nishikawa, T. Seki, I. Toyoda, and S. Kubota, “Compact 60-GHz LTCC stripline parallel-coupled bandpass filter with parasitic elements for millimeter -wave system-on-package,” in IEEE MTT-S Int. Microw. Symp. Dig., pp. 1649–1652, Jun. 2007.
[77] G. Wang, M. V, F. Barlow, and A. Elshabini, “An interdigital bandpass filter embedded in LTCC for 5-GHz wireless LAN applications,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 5, pp. 357–359, May 2005.
[78] T. Zhang, M. Zhan, R. Xu, and Y. Yao, “An LTCC laminated combing filter with layer interconnection structure,” Int. Conf. Microw. Millimeter Wave Tech., vol. 4, pp. 1–3, May 2012.
[79] H.-Y. Chien, T.-M. Shen, T.-Y. Huang, W.-H. Wang, R.-B. Wu, “Miniaturized bandpass filters with double-folded substrate integrated waveguide resonators in LTCC,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 7, pp. 1774–1782, Jul. 2007.
[80] B.-J. Chen, T.-M. Shen, and R.-B. Wu, “Dual-band vertically stacked laminated waveguide filter design in LTCC technology,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 6, pp. 1554–1562, Jun. 2009.
[81] W. Shen, W.-Y. Yin, and X.-W. Sun, “Miniaturized dual-band substrate integrated waveguide filter with controllable bandwidths,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 8, pp. 418–420, Aug. 2011.
[82] Z. Xiangjun, “Two kind of structure configurations small size LTCC filters,” Int. Conf. Microw. Millimeter Wave Tech., vol. 1, pp. 294–296, Apr. 2008.
[83] L. K. Yeung and K. L. Wu, “A compact second-order LTCC bandpass filter with two finite transmission zeros,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 337–341, Feb. 2003.
[84] V. Piatnitsa, E. Jakku, and S. Leppaevuori, “Design of a 2-pole LTCC filter for wireless communications,” IEEE Trans. Wireless Comm., vol. 3, no. 2, pp. 379–381, March 2004.
[85] C.-F. Chang, and S.-J. Chung, “Bandpass filter of serial configuration with two finite transmission zeros using LTCC technology,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 7, pp. 2383–2388, Jul. 2005.
[86] T. Yang, B. Yan, S. Wang, and J. Zhang, “A compact bandpass filter with two finite transmission zeros using LTCC technology,” IEEE Int. Symp. Microw. Ant., Propag. EMC Tech. Wireless Comm., pp. 293–296, Aug. 2007.
[87] Y.-S. Dai, H.-S. Zhang, G.-P. Qi, D.-L. Lu, Z.-L. Tao, G..-X. Qian, and H. Wang, “LTCC bandpass filter for bluetooth application with dual transmission zeros,” Int. Conf. Microw. Millimeter Wave Tech., pp. 284–286, Apr. 2008.
[88] S. Yang, Y. Qin, Z. Wu, and S. Zhuang, “Design of compact LTCC bandpass filter with high process tolerance using meander line coupled inductor,” in Proc. IEEE Int. Conf. on Ultra-Wideband, pp. 1–4, Sept. 2010.
[89] T. Yang, M. Tamura, and T. Itoh, “Super compact low-temperature co-fired ceramic bandpass filters using the hybrid resonator,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 11, pp. 2896–2907, Nov. 2010.
[90] K.-C. Lin, C.-F. Chang, M.-C. Wu, and S.-J. Chung, “Dual-bandpass filters with serial configuration using LTCC technology,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 6, pp. 2321–2328, Jun. 2006.
[91] C.-W. Tang, C.-W. Shen, and P.-J. Hsieh, “Design of low-temperature co-fired ceramic bandpass filters with modified coupled inductors,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 1, pp. 172–179, Jan. 2009.
[92] G. Brzezina, L. Roy, and L. MacEachern, “Design enhancement of miniature lumped-element LTCC bandpass filters,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 4, pp.815–823, Apr. 2009.
[93] Y.-S. Dai, B.-S. Lai, Z.-H. Ye, D.-L. Lu, F. Wang, Z.-D. Song, and S.-B, Chen, “A miniaturized LTCC bandpass filter with low insertion loss and high image rejection within 6.5 to 7.1GHz frequency range,” in Proc. Asia-Pacific Microw. Conf., pp. 1307–1309, Dec. 2009.
[94] H. Joshi, and W. J. Chappell, “Dual-band lumped-element bandpass filter,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, pp. 4169–4177, Dec. 2006.
[95] S. J. Cheon, J. H. Park, S. P. Lim, J. Y. Park, and Y. G. Cho, “Compact dual-band LTCC UWB bandpass filter using independent transmission zeros technology,” in Proc. 60th Electron. Compon. Tech. Conf., pp. 1581–1586, Jun. 2010.
[96] J. H. Park, S. J. Cheon, J. Y. Park, and J. T. Lim, “Ultra-compact dual-band WLAN filter using independent band stop resonators,” in Proc. 61th Electron. Compon. Tech. Conf., pp. 2096–2100, Jun. 2011.
[97] K. W. Qian and X. H. Tang, “Compact dual-band semi-lumped bandpass filter with LTCC technology,” Electron. Lett., vol. 47, no. 13, pp. 755–757, Jun. 2011.
[98] S. Oshima, K. Wada, R. Murata, and Y. Shimakata, “Multilayer dual-band bandpass filter in low-temperature co-fired ceramic substrate for ultra-wideband applications,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 3, pp.614–623, Mar. 2010.
[99] M. Höft and T. Shimamura, “Design of symmetric trisection filters for compact low-temperature co-fired ceramic realization,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 1, pp. 165–175, Jan. 2010.
[100] H. Miyaka, S. Kitazawa, T. Ishizaki, T. Yamada, and Y. Nagatom, “A miniaturized monolithic dual band filter using ceramic lamination technique for dual mode portable telephones,” in IEEE MTT-S Int. Microw. Symp. Dig., pp. 789–792, Jun. 1997.
[101] Y. X. Guo, L. C. Ong, M. Y. W. Chia, and B. Luo, “Dual-band band pass filter in LTCC,” in IEEE MTT-S Int. Microw. Symp. Dig., pp. 2219–2222, Jun. 2005.
[102] C.-W. Tang, “Synthesis of the low-temperature co-fired ceramic bandpass filters and diplexer with transmission zeros,” IET Microw. Ant. Propag., vol. 2, no. 1, pp. 102–108, Feb. 2008.
[103] C.-W. Tang and S. F. You, “Design methodologies of LTCC bandpass filters, diplexer and triplexer with transmission zeros,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 2, pp. 717–723, Feb. 2006.
[104] D. Oelenko, G. Sevskiy, T. Kerssenbrock, and P. Heide, “LTCC triplexer for WIMAX applications,” in Proc. 35th European Microw. Conf., pp. 325–328, Oct. 2005.
[105] C. Bowick, RF Circuit Design, Newton, MA: Newnes, 1982.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code