Responsive image
博碩士論文 etd-1023108-100645 詳細資訊
Title page for etd-1023108-100645
論文名稱
Title
錫球柵格陣列技術於主動式平板接合高度控制
Using BGA technique in plane-to-plane active height control
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
57
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-10-09
繳交日期
Date of Submission
2008-10-23
關鍵字
Keywords
錫球柵格陣列、高度控制、表面粘著技術
BGA, SMT, height control
統計
Statistics
本論文已被瀏覽 5665 次,被下載 0
The thesis/dissertation has been browsed 5665 times, has been downloaded 0 times.
中文摘要
由於高速傳輸的需求與日遽增,在通訊系統中光纖陣列已成為一個不可或缺且無可取代的地位,然而隨著傳播距離變長,光功率損失將成為一個重要的問題。為了增加光纖陣列模組的傳輸量與耦合率,將製造高精度的二維光纖陣列來達到此目標。
現今製作一維光纖陣列技術已相當成熟,文中使用錫球柵格陣列接合技術,銲接數個一維光纖陣列成為二維光纖陣列。錫球柵格陣列接合技術本身具有自我對位之優點,在水平方向上可提供良好的接合精度,但在垂直方向卻無此特性,所以我們使用主動式構裝的方式,在接合光纖陣列時額外施加外力來控制接合高度。首先經由模擬軟體選擇最佳構裝參數來製作試片,並進行接合實驗,量測實際結果與模擬來進行比較分析。
Abstract
For the requirements of high-speed signal transmission has been increasing, the fiber array in the communication system has a lot of advantages which can not be replaced. But the loss of coupling efficiency is a difficult problem as the distance of communication is getting longer and longer. In order to increase the transmission and the coupling efficiency, we produce the two with high precision to reach the goal.

The technique producing one dimension fiber array is very adept now. This paper chooses mounting several one dimension fiber array to produce the two dimension fiber array. Because BGA has self-alignment character, the fiber array can get nice mounting accuracy in horizontal but can’t get in vertical. We use active packing to manufacture two dimension fiber. In this process we exert external force to control the mounting height. In the first, use approximate software to get the best manufacturing parameter. Then complete the experiment and compare the result with the approximation.
目次 Table of Contents
中文摘要.........................................................2
英文摘要.........................................................3
謝誌.................................................................4
目錄.................................................................5
圖目錄.............................................................8
表目錄...........................................................10
第一章 緒論 .........................................11
1-1前言.........................................................11
1-2二維光纖陣列製作方式.........................12
1-3錫球陣列接合技術.................................14
1-4研究動機與目的.....................................17
第二章 文獻回顧..................................18
2-1錫球接合應用於光電元件上….............18
2-2改良接合高度精度方法.........................19
2-2-1特殊機構設計..................................19
2-2-2以外力改變接合高度......................20
2-2-3幾何結構最佳化設計......................20
2-3銲墊與銲錫材料選擇..............................22
2-4潛變效應..................................................26
第三章 研究方法...................................29
3-1模擬規劃..................................................29
3-1-1單顆模擬..............................................32
3-1-2陣列模擬...........................................33
3-1-3分佈模擬之探討...............................35
3-1-4最佳化之實際模型模擬...................35
3-2 模擬環境設定.........................................36
3-2-1 模擬假設..........................................36
3-2-2 初始條件..........................................37
3-2-3 邊界條件..........................................37
3-2-4 潛變設定..........................................38
3-2-5 溫度循環..........................................39
第四章 模擬結果分析與討論..............42
4-1單顆模擬.................................................42
4-1-1銲墊直徑最佳化模擬結果.................42
4-1-2 銲錫體積最佳化模擬結果................44
4-2陣列模擬.................................................45
4-2-1銲墊間距最佳化模擬結果.................45
4-2-2試片重量.............................................48
4-2-3錫球分佈模擬.....................................48
4-3 完整模型比較........................................50
第五章 結論與未來發展......................52
5-1結論.........................................................52
5-2未來工作.................................................52
參考文獻.......................................................54
參考文獻 References
[1] Daqing Max Shi, Kathy McKeen, and Bill Jenson, “Advances in Flip Chip Underfill Material Cure Rates and Reliability,” International Symposium on Advanced Packaging Material, 1998, pp. 29-32.

[2] Zhang Liji, Wang Li, Xie Xiaoming, and Wolfgan Kemps, “An Investigation on Thermal Reliability of Underfill PBGA solder Joints,” Electronics Packaging Manufacturing, IEEE Transactions on vol. 25, Oct. 2002, pp. 284-288.

[3] James Pyland, Raghuram V.Pucha, and Suresh K. Sitaraman, “Thermomechanical Reliability of Underfilled BGA Packages,” Electronics Packaging Manufacturing, IEEE Transactions on vol. 25, April 2002, pp. 100-106.

[4] Lei L. Mercado, Vijay Sarihan, Yifan Guo, and Andrew Mawer, “Impact of Solder Pad Size on Solder Joint Reliability in Flip Chip PBGA Packages.” IEEE Trans. Adv. Packag., vol. 23, Aug. 2000, pp. 415-419.

[5] Chang-Ming Liu and Kuo-Ning Chiang, “Solder shape design and thermal stress strain analysis of flip chip packaging using hybrid method,” IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 15, NO. 11, NOVEMBER 2003.

[6] Li L., Yeung and B.H., “Wafer level and flip chip design through solder prediction models and validation,” Components and Packaging Technologies, IEEE Transactions on vol.24, Issue 4, Dec. 2001 Page(s):650 - 654.

[7] J. Sasaki, Y. Kaneyama, H. Honmou, M. Itoh, and T. Uji, “Self-aligned Assembly Technology For Optical Devices Using AuSn Solder Bumps Flip-chip Bonding,” Lasers and Electro-Optics Society Annual Meeting, 1992. LEOS '92, Conference Proceedings 16-19 Nov. 1992 Page(s):260 – 261.


[8] J. Sasaki, H. Honmou, M. Itoh, A. Uda, and T. Torikai, “Self-aligned Assembly Technology For Optical Devices Using AuSn Solder Bumps Flip-chip Bonding,” Lasers and Electro-Optics Society Annual Meeting, 1995. 8th Annual Meeting Conference Proceedings, Volume 1, IEEE Volume 1, 30-31 Oct. 1995 Page(s):234 – 235.

[9] Chang-Ming Liu and Kuo-Ning Chiang, “Solder bumps layout design and reliability enhancement of wafer level packaging,” Electronic Packaging Technology Proceedings, 2003. ICEPT 2003. Fifth International Conference on 28-30 Oct. 2003 Page(s):56 - 64.

[10] H. Tsunetsugu, K. Katsura, T. Hayashi, F. Ishitsuka, and S. Hata, “A new packaging technology using micro-solder bumps for high-speed photoreceivers.” Components, Hybrids, and Manufacturing Technology, IEEE Transactions on Volume 15, Issue 4, Aug. 1992 Page(s):578 - 582.

[11] J. Sasaki, H. Honmou, M.Itoh, A. Uda, and T. Torikai, “Self-aligned assembly technology for laser diode modules using stripe-type AuSn solder bump flip-chip bonding.” Lasers and Electro-Optics Society Annual Meeting, 1995. 8th Annual Meeting Conference Proceedings, Volume 1., IEEE Volume 1, 30-31 Oct. 1995 Page(s):234 - 235.

[12] 謝承翰, “利用覆晶技術製作陣列雷射模組”, 中山大學碩士論文, 2001.

[13] J. Sasaki, M. Itoh, T. Tamanuki, H. Hatakeyama, S. Kitamura, T. Shimoda, and T.Kato, “Multiple-Chip Precise Self-Aligned Assembly for Hybrid Integrated Optical Modules Using Au–Sn Solder Bumps”, Advanced Packaging, IEEE Transactions on Volume 24, Issue 4, Nov. 2001 Page(s):569 – 575.

[14] J. Sasaki, H. Honmou, M. Itoh, A. Uda, and T. Torikai, “Self-aligned assembly technology for laser diode modules using stripe-type AuSn solder bump flip-chip bonding”, Lasers and Electro-Optics Society Annual Meeting, 1995. 8th Annual Meeting Conference Proceedings, Volume 1, Oct. 1995 Page(s):234 – 235.

[15] Yi-Hsin Pao, S. Badgley, Edward Jih, R. Govila, and J. Browning, 1993 ,“Constitutive Behavior and Low Cycle Thermal Fatigue of 97Sn-3Cu Solder Joints”, Journal of Electronic Packaging, Vol. 115 pp.147-152.

[16] Chmg-Ming Liu, Chang-Chun Lee , and Kuo-Ning Chiang, “Solder Joints Layout Design and Reliability Enhancement of Wafer Level Packaging,” EuroSimE 2005. Proceedings of the 6th International Conference on 18-20, April 2005 Page(s):234 – 241.

[17] A. Yeo, C. Lee, J.H.L. Pang, ” Electronics Packaging Technology Conference, 2002. 4th 10-12 Dec. 2002 Page(s):107 – 114.

[18] 嚴千智,“無鉛銲錫知識庫之建立與Sn-8.5Zn-0.5Ag-0.1Al-0.5Ga 合金抽線性及機械性質之研究”, 成功大學碩士論文, 2004.

[19] Michale Wale and Martin Goodwin, “Flip-Chip Bonding Optimizes Opto-ICs,” Circuits and Devices Magazine, IEEE Volume 8, Issue 6, Nov. 1992 Page(s):25 - 31.

[20] Joo, SA. Gahr, J.J. Liu, and H.N. Nguyen, “Flip Chip Repair Process”, Proc. 41’‘ Electronic Components and Technology Conference, May.1991, pp. 779-782.

[21] Kuo-Ning Chiang and Chang-An Yuan, “An Overview Of Solder Bump Shape Prediction Algorithms With Validations”, IEEE Trans. on Advanced Packaging, Vol. 24, Sssue 2 (2001), pp. 158 ~ 162.

[22] 李洋憲, “Sn-Ag-xNi 複合銲料與銅基板間銲點的機械性能及微結構之研究”, 成功大學博士論文, 2005.

[23] H. Yang, P. Deane, P. Magill and K. L. Murty, “Creep Deformation of96.5Sn3.5Ag Solder Joint In A Flip Chip Package,” Electronic Components and Technology Conference, 1996.
[24] H. G. Song, J. W. Morris Jr. and F. Hua, “Anomalous Creep in Sn-Rich Solder Joints,” Material Transaction, Vol. 43, No. 8, pp. 1847-1853, 2000.

[25] A. Schubert, H. Walter, R. Dudek and B. Michel, “Thermo-Mechanical Properties and Creep Deformation of Lead-containing and Lead-free Solders,” International Symposium on Advanced Packaging Materials, 2001.

[26] C. H. Raeder, G. D. Schmeelk, D. Mitlin, T. Barbieri, W. Yang, L. F. Felton, R.W. Messler, D. B. Knorr and D. Lee, “Isothermal Creep of Eutectic SnBi and SnAg Solder and Solder Joints,” IEEE/CPMT Int’l Electronics Manufacturing Technology Symposium, 1994.

[27] S. Wiese, A. Schubert, H. Walter, R. Dudek, F. Feustel, E. Meusel, B. Michel, “Constitutive Behaviour of Lead-free Solders vs. Lead-containing Solders Experiments on Bulk Specimens and Flip-Chip Joints,” Electronic Components and Technology Conference, 2001.

[28] J. H. L. Pang, B. S. Xiong. C. C. Neo, X. R. Zhang, T. H. Low, “Bulk Solder and Solder Joint Properties for Lead Free 95.5Sn-3.8Ag-0.7Cu Solder Alloy,” Electronic Components and Technology Conference, 2003.

[29] R. Darveaux and K. Banerji, “Constitutive Relations for Tin-Based-Solder Joints,” Electronic Components and Technology Conference, 1992.


電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.186.173
論文開放下載的時間是 校外不公開

Your IP address is 3.145.186.173
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code