Responsive image
博碩士論文 etd-1023116-170751 詳細資訊
Title page for etd-1023116-170751
論文名稱
Title
液滴碰撞之模擬分析與其在造粒系統中之簡化飛行冷卻模式建立
Numerical simulation of droplet collision dynamics and the development of simplified heat transfer analysis for slag particles’ flying in the granulating system
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
65
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-11-22
繳交日期
Date of Submission
2016-11-25
關鍵字
Keywords
高爐爐渣、液滴碰撞、餘熱回收、渣粒降溫、爐渣造粒
CFD, droplet collide, waste heat recovery, rotary cup, granulating system
統計
Statistics
本論文已被瀏覽 5682 次,被下載 0
The thesis/dissertation has been browsed 5682 times, has been downloaded 0 times.
中文摘要
在液滴碰撞模擬分析中,液滴接觸壁面時會產生形變,本研究探討不同參數對顆粒碰撞的接觸直徑以及接觸時間的影響。分析結果指出,顆粒密度和顆粒粒徑越大,接觸時間越久,同時接觸直徑也會上升;顆粒表面張力越大,顆粒接觸直徑以及顆粒接觸時間皆會下降;速度越高顆粒所接觸時間越低,但接觸直徑會提高。由模擬計算可得,建立無因次接觸時間及無因次接觸直徑對於We number之關係式。
本研究建立轉杯造粒系統產出之粒徑,經由: 1.甩出飛行降溫過程、2.碰撞降溫過程、3.自由落體降溫過程,同時考慮系統內強制流場造成的影響,進一步評估渣粒在轉杯造粒系統中的運動路徑及溫降情形。分析結果指出:碰撞冷卻溫降較少。轉速對於渣粒粒徑影響最大;當轉速越快,生成之渣粒直徑越小,冷卻效果越好。此外,造粒系統中的底吹大小對於渣粒的冷卻效果也有非常顯著的影響。
Abstract
The study established developments of the relationship between the rotary cup’s rotational speed and particles’ diameter with slag’s mass flow ratio to determine the particles’ formation conditions. We can get the average diameter of particles, the particles’ flying distance and simplified heat transfer situations by references formulas. The model is divided three steps to analyze particles’ flying and temperature. Step.1:Particlehorizontal flying. Step.2:Particle colliding. Step.3:Particle free falling. The results show that particles flying is the best way to decrease the temperature at relative high speed. Bottom flowing also plays an important role in the granulating system.
In the droplet collision section, when the droplet contacts the wall, contact area and contact time change. Considering some physical operating conditions, we can obtain the effects on its contact area and the maximum contact time. The higher density and bigger diameter the higher contact area and higher maximum time; the higher surface tension, the lower maximum contact time and contact area; the higher droplet’s velocity, the higher contact area but lower maximum contact time.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 vi
表目錄 viii
符號說明 ix
第一章緒論 1
1.1前言 1
1.2文獻回顧 8
1.3研究目的 13
1.4 本文架構 14
第二章研究方法 15
2.1液滴碰撞模型介紹 15
2.2渣粒於轉杯造粒系統冷卻飛行模式之模型 18
第三章結果與討論 27
3.1液滴碰撞過程模擬結果 27
3.2渣粒於轉杯造粒系統之簡化三步驟冷卻飛行模式結果 36
第四章結果與討論 45
4.1結論 45
4.2未來展望 46
第五章參考文獻 47
附錄 50
參考文獻 References
1.李凱,王宏,朱恂,廖強,吳君軍,流體轉杯離心粒化特性研究,重慶大學動力工程及工程熱物理學系,2014。
2.Huiting Shen, E. Forssberg, “An overview of recovery of metals from slags, ” Waste Management, 23, 933-949, 2003.
3.H. Motz, J. Geiseler, “Products of steel slags an opportunity to save naturalresources, ” Waste Management, 21, 285-293, 2001.
4.邱潤强,許征鹏。高爐爐渣微水淬法餘热回收技術發展,山東冶金,36(1),48-53,2014。
5.谷卓奇,贺春平,高爐渣處理方法及發展趨勢,煉鐵,21(10),52-55,2002。
6.王海風,張春霞,齊淵洪,戴曉天,嚴定鎏,高爐渣處理技術的現狀和新的發展趋势,鋼鐵,42(6),83-87,2007。
7.曲余玲,毛艷麗,張東麗,王涿,國內外轉杯法高爐渣粒化工藝研究進展,冶金能源,30(4),19-23,2011。
8. S J Pickering,N Hey, T F Roylance, “New Process for Dry Granulation and Heat Recovery From Molten Blast furnace Slag,” Ironmaking and Steelmaking, 12(1), 41-21, 1985.
9. Toshio MIZUOCHI, Tomohiro AKIYAMA, Taihei SHIMADA, Eiki KASAI, Jun-ichiro YAGI, “Feasibility of Rotary Cup Atomizer for Slag Granulation,”ISIJ International, 41(12), 1423-1428, 2011. Science, 73, 44-50, 2012.
10.Yuhun Pan Peter J, Witt Dongsheng XIE, “CFD Simulation of Free Surface Flow And Heat Transfer of Liquid Slag on A Spinning Disc For A Novel Dry Slag Granulation Process,” Seventh International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia, 9-11, 2009.
11.Junxiang Liu, Qingbo Yu, Qin Qin, “System for recovering waste heat from high temperature molten blast furnace slag,” Energy Technology 2011: Carbon Dioxide and Other Greenhouse Gas Reduction Metallurgy and Waste Heat Recovery, Willey, 85-93, 2011.
12. Dongxiang Wang, Hao Peng, Xiang Ling, “Ligament Mode Disintegration of Liquid Film at the Rotary Disk Rim in Waste Heat Recovery Process of Molten Slag, ”Energy Procedia, 61, 1824-1829, 2014.
13.ToshioMizuochi,Tomohiro Akiyama,Taihei Shimada,Eiki Kasai,Jun-ichiro YagI, “Feasibility of Rotary Cup Atomizer for Slag Granulation,”ISIJ International, 12, 1423-1428, 2001.
14.Junxiang Liu, Qingbo Yu, Peng Li, Wenya Du, “Cold experiments on ligament formation for blast furnace slag granulation,”Applied Thermal Engineering, 40 , 351-357, 2012.
15.Junxiang Liu, Qing Yu, “Experimental investigation of liquid disintegration by rotary cups,” Chemical Engineering Science, 73, 44–50, 2012.
16.Huimin Liu, “Science and Engineering of Droplets,” William Andrew Publishing, Norwich, NY, USA, 2000.
17.Tamotsu Kamiya, “An analysis of the ligament-type disintegration of thin liquid film at the edge of a rotating disk,” Journal of Chemical Engineering of Japan, 5, 391-396, 1972.
18.Junxiang Liu, Qing Yu, WenjunDuan,Qin Qin, “Experimental investigation on ligament formation for molten slag granulation,” Applied Thermal Engineering, 73, 888-893, 2014.
19. James C. Bird, Rajeev Dhiman, Hyuk-Min Kwon, Kripa K. Varanasi, “Reducing the contact time of a bouncing drop, ”Nature, 503, 385-388, 2014.
20. Y. Shen, J. Tao, H. Tao, S. Chen, L. Pan, T. Wang, “Approaching the theoretical contact time of a bouncing droplet on the rational macrostructured superhydrophobic surfaces, ” Applied Physics Letters, 107, 111604, 2015.
21.Visakh Vaikuntanathan,“Comment on Approaching the theoretical contact time of a bouncing droplet on the rational macrostructured superhydrophobic surfaces, ” Applied Physics Letters, 108, 016101, 2016.
22. M. Pasandideh-Fard, S. Chandra, J. Mostaghimi, “A three-dimensional model of droplet impact and solidificationm, ” International Journal of Heat and Mass Transfer, 45, 2229-2242, 2002.
23. Stanley Osher, Ronald P. Fedkiw, “Level Set Methods: An Overview and Some Recent Results, ”Journal of Computational Physics, 169(2), 463-502, 2001.
24.J.U.Brackbill, D.B.Kothe, C.Zemach, “A continuum method for modeling surface tension, ” Journal of Computational Physics, 100(2), 335-354, 1992.
25. Denis Gueyffier, Jie Li, Ali Nadim, Ruben Scardovelli, St´ephane Zaleski, ” Volume-of-Fluid Interface Tracking with Smoothed Surface Stress Methods for Three-Dimensional Flows, ” Journal of Computational Physics, 152, 423-456, 1999.
26. G.K.Batchelor, “An Introduction to Fluid Dynamics., ” Cambridge University, 1967.
27. Ranz, Marshall, “Evaporation from drops,” Chemical Engineering Progress journal, 48(3), 141-146 (Part I); 48(4), 173-l 80 {Part II).
28.C.W Hirt., B.D, Nichols, “Volume of fluid (VOF) method for the dynamics of free boundaries,”Journal of Computational Physics, 39, 201-225, 1981
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.222.69.152
論文開放下載的時間是 校外不公開

Your IP address is 18.222.69.152
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code