Responsive image
博碩士論文 etd-1024105-153129 詳細資訊
Title page for etd-1024105-153129
論文名稱
Title
結合多孔性板層塔及活性污泥池生物洗滌法處理排氣中揮發性有機物之研究
Study on the Biological Treatment of Air-borne VOCs by Sieve-plate Absorption Tower Combined with Activated Sludge Aeration Tank
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
105
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-10-18
繳交日期
Date of Submission
2005-10-24
關鍵字
Keywords
二甲苯、二氯甲烷、活性污泥、甲苯、生物洗滌、異丙醇、揮發性有機物質
isopropyl alcohol (IPA), toluene, p-xylene, dichloromethane (DCM), bio-oxidation, activated sludge, bioscrubber, Volatile organic compounds (VOCs)
統計
Statistics
本論文已被瀏覽 5698 次,被下載 2324
The thesis/dissertation has been browsed 5698 times, has been downloaded 2324 times.
中文摘要
經濟考量為含揮發性有機物(VOCs)排氣處理方法選擇中之最重要者,生物法包括:生物濾床法、生物滴濾塔法、生物洗滌法,生物法適合處理中低濃度廢氣(<1000 mg C m-3),其相對處理費用較其他方法為低,頗值推廣應用。
本研究結合多孔性板層塔及活性污泥池生物洗滌去除揮發性有機物質。
活性污泥池注入法處理含揮發性有機物(甲苯、二甲苯及二氯甲烷)之氣體,反應器為一3.0 m深、0.4 m × 0.4 m斷面積的活性污泥池,其散氣孔孔徑為2 mm。探討此三種VOCs在不同液位高度(Z)、曝氣強度(G/A)、清水中氧氣總質傳係數(KLaO2)、亨利常數(H)及進口濃度(C0),以探討各參數對各VOC去除率的影響,並與文獻模式比較。結果顯示在G/A = 3.75 – 11.25 m3 m-2 hr-1 與 C0 = 1,000 – 6,000 mg m-3條件下,實驗值與模式計算值相符合。實驗中反應器之KLaO2 = 5 – 15 hr-1,當H = 0.24 – 0.25 與Z = 1 m 時,VOCs去除率可達85% ;當H = 0.13且Z =1 m時,去除率可達95%。
多孔性板層塔處理VOCs之試驗,目標污染物為工業常用之甲苯、二甲苯、異丙醇,多孔性板層塔主體為 0.25 m × 0.25 m × 1.62 m H 共6層,分別以每板層液高5公分或8公分進行試驗,附設一活性污泥曝氣槽(0.40 m × 0.40 m × 3.0 m H,總容積480公升)進行處理試驗。研究項目為:(1)微生物馴養,(2)液氣比(L/G)、進氣有機物濃度(C0)、板層數(N)及單一板層不同之液位高(Z)對目標污染物去除率之影響試驗,(3)目標污染物之去除機制及動力學模式。結果顯示:多孔性板層塔之板層數為6、VOC之H < 0.01、L/G H大於2時,VOC之去除效率大於90%;當VOC之H為0.2,需要16個以上之板層數,方可將VOC去除。
Abstract
Bioprocesses for air pollution control can generally be categorized as bioscrubber, biofilter, and biotrickling filter systems. These processes have been proven to be economical and effective for control of volatile organic compounds (VOCs) with concentrations of <1,000 mg C m-3 in gas streams.
First, an activated sludge aeration tank (W x L x H = 40 x 40 x 300 cm) with a set of 2 mm orifice air spargers was utilized to treat gas-borne VOCs (toluene, p-xylene, and dichloromethane) in air streams. The effects of liquid depth (Z), aeration intensity (G/A), the overall mass transfer rate of oxygen in clean water (KLaO2), the Henry’s law constant of the tested VOC (H), and the influent gaseous VOC concentration (C0) on the efficiency of removal of VOCs were examined and compared with a literature-cited model. Results show that the measured VOC removal efficiencies and those predicted by the model were comparable at a G/A of 3.75 – 11.25 m3 m-2 hr-1 and C0 of around 1,000 – 6,000 mg m-3. Experimental data also indicate that the designed gas treatment reactor with KLaO2 = 5 – 15 hr-1, could achieve > 85% removal of VOCs with H = 0.24 – 0.25 at an aerated liquid depth of 1 m, and > 95% removal of dichloromethane with H = 0.13 at a 1 m liquid depth. The model predicts that, for gas treatment in common activated sludge tanks, with KLaO2 = 5 – 10 hr-1, depth = 3 – 4.5 m, G/A = 9 – 18 m3 m-2 hr-1, > 92% VOC removal can be achieved with operating parameters of Z of 3.0 m and KLaVOC/(G/A) of about 0.28 m-1, for VOCs with H < 0.3, such as most oxygen-containing hydrocarbons with low molecular weights, and benzene, toluene, ethylbenzene, and dichloromethane.
Second, an activated sludge aeration tank and a sieve-plate column with six sieve plates were utilized to treat gas-borne VOCs in air streams. The tank was used for the biodegradation of the absorbed VOCs from the column which utilized the activated mixed liquor drawn from the tank as a scrubbing liquor. This research proposed a model for VOC absorption to a down-flow activated sludge liquor in a sieve-plate column. The experimental setup consisted of a pilot-scale activated-sludge tank and a sieve-plate tower, as demonstrated. The sieve-plate tower was constructed from a 25 x 25 x 162 cm (W x L x H) acrylic column with six custom-made sieve plates. Each plate has 382 holes which are 3 mm in diameter arranged on a square pitch. The holes give an open area of 3.82% of the whole plate area for gas flow. Two 25 mm-i.d. down-comer pipes were also equipped to allow for the downflow of the activated sludge liquor. Ports were provided at the column inlet, outlet, and each plate for gas and liquid sampling. Experiments were conducted and the model verified based on the results of tests on the removal efficiencies of isopropyl alcohol (IPA), toluene and p-xylene in the system operated at a range of influent VOC concentrations, air application rates, and liquid/gas flow ratios (L/G). The model developed by a material balance for the gaseous- and liquid-VOC over each plate of the column was developed and experimentally verified in this study. Superficial gas velocity over the column plate (U), number of plates (N), volumetric liquid-phase VOC-transfer coefficient (KLaVOC), aerated liquid depth over the plate (Z), volumetric liquid/gas flow-rate ratio (L/G), dimensionless Henry’s law coefficient of the VOC to be absorbed (H), VOC content of the influent scrubbing liquor (xN+1), and the biodegradation rate constant of the VOC in the activated sludge mixed liquor (k) are among the affecting parameters to the effectiveness of the VOC removal. Model application by the model for effects of affecting parameters on the VOC removal effectiveness indicates that L/G, plate number N, biodegradation rate constant k, Henry’s law constant of VOC H are among the important ones. A L/GH of greater than 2 and N of around 6 are enough for the effective (>90%) removal of the influent VOCs with H < 0.01 if no biodegradation occurred in the column. However, a N of over 16 is required for the influent VOCs with H of around 0.2. Biodegradation with a rate constant of around 100 hr-1 in the column greatly improves the column performance.
目次 Table of Contents
謝誌 I
中文摘要 II
Abstract IV
List of Contents VII
List of Tables X
List of Figures XI
Nomenclature XIV
Chapter I Introduction 1
1.1 Initiation of the study 1
1.2 Objects of Research 2
1.3 Organization of Dissertation 2
Chapter II Literature Survey 4
2.1 Bioscrubbers 4
2.2 Activated sludge 8
Chapter III Bio-oxidation of Airborne Volatile Organic Compounds in an Activated Sludge Aeration Tank 14
3.1 Introduction 14
3.2 Model Development 15
3.3 Materials and Methods 19
3.3.1 Experimental Setup 19
3.3.2 Materials 22
3.3.3 Operation 22
3.3.4 Analytical 28
3.4 Results and Discussion 28
3.4.1 Oxygen transfer coefficient,
參考文獻 References
ASCE. Standards No. 88-000. “ A standard for the measurement of oxygen transfer in clean water, ” ASCE, New York, 1984.
American Public Health Association. Standard methods for the examination of water and waste water. 17th ed., 1989.
&AElig;s&oslash;y, A.; Storfjell, M.; Mellgren, L.; Helness, H.; Thorvldsen, G.; &Oslash;degaard, H. and Bentzen, G., 1997, “ A Comparison of Biofilm Growth and Water Quality Changes in Sewers with Anoxic and Anaerobic (SEPTIC) Conditions, ” Wat. Sci. Tech., Vol. 36, No. 1, pp. 303-310.
&AElig;s&oslash;y, A.; &Oslash;degaard, H. and Bentzen, G., 1998, “ The Effect of Sulphide and Organic Matter on the Nitrification Activity in a Biofilm Process, ” Wat. Sci. Tech., Vol. 37, No. 1, pp. 115-122.
Burgess, J. E.; Parsons, S. A. and Stuetz, R. M., 2001, “ Developments in Odour Control and Waste Gas Treatment Biotechnology: A Review, ” Biotechology Advances, Vol. 19, pp. 35-63.
Bielefeldt, A. R. and Stensel, H. D., 1998, “ Btex-Contaminated Gas Treatment in a Shallow, Sparged, Suspended-Growth Bioreactor, ” Bioremediation Journal, 1(3), pp. 241-254.
Bielefeldt, A. R. and Stensel, H. D., 1999, “ Treating VOC-contaminated gases in activated sludge: mechanistic model to evaluate design and performance, ” Environ. Sci. Technol., Vol. 33, pp. 3234-3240.
Bielefeldt, A. R. Ph.D. Dissertation, University of Washington. Seattle, WA, 1996.
Bowker RPG. 2000, “ Biological odor control by diffusion into activated sludge basin, ” Water Sci. Technol., Vol. 41(6), pp. 127-132.
Buisman, CJN; Geroats, BG; Ijspeert, P. and Lettinga, G. 1990, “ Optimization of sulphur production in a biotechnological sulphide removing reactor., ” Biotechnol. Bioeng., Vol. 35, pp. 50-56.
Croonenberghs, J.; Varani, F. and le Fevre, P., 1994, “ Use of Bioscrubbing to Control Ethanol Emissions, ” in Proceedings of the 87th Annual Meeting & Exhibition of Air & Waste Manage. Assoc. Cincinnati, Ohio, June pp. 19-24.
Chou, M. S. and Chang, H. Y., 2005, “ Bio-Oxidation of Airborne Volatile Organic Compounds in an Activated Sludge Aeration Tank, ” Air & Waste Manage. Assoc. Vol. 55, pp. 604-611.
Davison, B. H.; Barton, J. W.; Klasson, K. T. and Francisco, A. B. “ Effect of biomass on the measured solubility of sparingly soluble organics in aqueous bioremediation systems, ” Proceedings of the 2000 USC-TRG Conference on Biofiltration, October 19-20, Los Angeles, CA.
Don, J. A. and Feenstra, L., Odour abatement through biofiltration; Symposium on Characterization and Control of Odoriferous Pollutants in Process Industries, Louvain-La Neuve , Belgium, April, 1984.
DeHollander, G. R.; Overcamp, T. J. and Grady, C. P. L. Jr., 1998, “ Performance of a Suspended-Growth Bioscrubber for the Control of Methanol, ” J. Air & Waste Manage. Assoc., Vol. 48, pp. 872-876.
Edwards, F. G. and Nirmalakhandan, N., 1996, “ Biological Treatment of Airstreams Contaminated with VOCs: An Overview, ” Wat. Sci. Tech., Vol. 34, No. 3-4, pp. 565-571.
Eastem Research Group. Final report: Preferred and alternative methods for estimating air emissions from wastewater collection and treatment, EIIP vol. II, Ch 5, Eastem Research Group, Morrisville, North Carolina, USA, 1997.
Granstr&ouml;m, T.; Lindberg, P.; Nummela, J.; Jokela, J. and Leisola, M. 2002 “ Biodegradation of VOCs from printing press air by an on-site pilot plant bioscrubber and laboratory scale continuous yeast cultures, ” Biodegradation, Vol. 13, pp. 155-162.
Hsieh, C.; Babcock, R. W. and Stenstrom, M. K. 1993 “ Estimating emissions of 20 VOCs.II: diffused aeration, ” J. Environ. Eng., ASCE, Vol. 119, pp. 1099-1118.
Hammervold, R. E.; Overcamp, T. J.; Grady, C. P. L. Jr. and Smets, B. F., 2000, “ A sorptive slurry bioscrubber for the control of acetone, ” J. Air & Waste Manage. Assoc., Vol. 50, pp. 954-960.
Hammervold, R. E.; Overcamp, T. J.; Smets, B. F. and , Grady, C. P. L. Jr., 1995, “Experimental study of the sorptive slurry bioscrubber for acetone emissions, in Proceedings of the 88th Annual Meeting & Exhibition of Air & Waste Manage. Assoc. San, Antonio, June pp. 18-23.
Hsieh, C., 2000 “ Removal mechanisms of VOCs in an activated sludge process, ” J. Hazard. Mat., B79, pp. 173-187.
Humeau, P.; Baleo, J. N.; Reynaud, F.; Bourcier, J. and Le Cloirec, P. 2000 “ Flow characterization in a gas-liquid column : application to a bioscrubber for the deodorization of waste gases, ” Water Sci. Technol., Vol. 41, pp. 191-198.
Koe, L. C. C. and Yang, F. 2000 “ A bioscrubber for hydrogen sulfide removal, ” Water Sci. Technol., Vol. 41, pp. 141-145.
Kennes, C. and Thalasso, F. 1998 “ Waste gas biotreatment technology, ” J. Chem. Technol. Biotechnol., Vol. 72, pp. 303-319.
Libra, J. A., 1993 “ Stripping of organic compounds in an aerated stirred tank reactor, ” Fortschr.-Ber. VDI Riehe 15 Nr. 102; VDI-Verlag: Dusseldorf.
Metcalf & Eddy. Wastewater Engineering: Treatment, Disposal, and Reuse, 3 rd ed., McGraw-Hill, Inc., New York, USA., 1991.
Mikkelsen, L. H.; Gotfredsen, A. K.; Agerbaek, M. L.; Nielsen, P. H. and Keiding, K., 1996, “ Effects of Colloidal Stability on Clarification and Dewatering of Activated Sludge, ” Wat. Sci. Tech., Vol. 34, No. 3-4, pp. 449-457.
Nielsen, P. H. and Keiding, K., 1998, “ Disintegration of Activated Sludge Flocs in Presence of Sulfide, ” Wat. Sci. Tech., Vol. 32, No. 2, pp. 313-320.
Neal, A. B. and Loehr, R. C., 2000, “ Use of Biofilters and Suspended-Growth Reactors to Treat VOCs, ” Waste Management, Vol. 20, pp. 59-68.
Nishimura, S. and Yoda, M., 1997, “ Removal of Hydrogen Sulfide from an Anaerobic Biogas Using a Bio-Scrubber, ” Wat. Sci. Tech., Vol. 36, No. 6-7, pp. 349-356.
Ockeloen, H. F.; Overcamp, T. J. and Grady, C. P. L. Jr. 1996 “ Engineering model for fixed-film bioscrubbers, ” J. Environ. Eng., ASCE, Vol. 122, pp. 191-197.
Overcamp, T. J.; Grady, C. P. L. Jr. and Smets, B. F., 2000, “ A Sorptive Bioscrubber for the Control of Acetone, ” J. Air & Waste Manage. Assoc., Vol. 50, pp. 954-960.
Overcamp, T. J.; Chang, H. C. and Grady, C. P. L. Jr., 1993, “ An Integrated Theory for Suspended-Growth Bioscrubbers, ” J. Air & Waste Manage. Assoc., Vol. 43, pp. 753-759.
Ostojic, N.; Les, A. P. and Forbes, R., 1992, “ Activated Sludge Treatment for Odor Control, ” BioCycle, 33, 4; ABI/INFORM Global pp. 74-78.
Ottengraf, S. P. P., Exhaust gas purification; Biotechnology, Vol. 8, Chapter 12; Rehn H. J. and Reed, G., Eds.; VCH Verlagsgesellschaft: Weinham, Germany, 1986, pp. 425-452.
Perry, R. H.; Green, D.; Maloney, J. O. Perry’s Chemical Engineers’ Handbook, 7th ed., McGraw-Hill, Inc., 1994, New York, USA, 14-23 - 14-47.

Smet, E. and Langenhove, H. V., 1998, “ Abatement of Volatile Organic Sulfur Compounds in Odorous Emissions from the Bio-industry, ” Biodegradation, 9: pp. 273-284.
Sublette, K. L.; Kolhatkar, R. and Raterman, K., 1998, “ Technological Aspects of the Microbial Treatment of Sulfide-rich Wastewaters: A Case Study, ” Biodegradation, 9: pp.259-271.
Shareefdeen, Z. and Singh, A., 2005, Biotechnology for Odor and Air Pollution Control, ISBN 3-540-23312-1 Springer Berlin Heidelberg New York.
WEF/ASCE., 1995, Odor controlin wastewater treatment plants. Water Environment Federation (WEF) manual of practice no. 22, American Socoety of Civil Engineers (ASCE) manuals and reports on engineering practice no. 82. WEF/ASCE, pp. 203-216.
W&uuml;bker, S. M.; Laurenzis, A.; Werner, U. and Friedrich, C., 1997, “ Controlled Biomass Formation and Kinetics of Toluene Degradation in a Bioscrubber and in a Reactor with a Periodically Moved Trickle-Bed, ” Biotechnology and Bioengineering, Vol. 55, No. 4, August 20, pp. 686-692.
W&uuml;bker, S. M. and Friedrich, CG., 1996, “ Reduction of Biomass in a Bioscrubber for Waste Gas Treatment by Limited Supply of Phosphaten and Potassium Ions, ” Appl Microbiol. Biotechnlo., Vol 46, pp.475-480.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code