Responsive image
博碩士論文 etd-1024107-135247 詳細資訊
Title page for etd-1024107-135247
論文名稱
Title
金屬薄膜於奈米壓痕之數值模擬與實驗研究
Numerical Simulation and Experimental Test of Nanoindentation Analysis on Metal Thin Film
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
128
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-10-17
繳交日期
Date of Submission
2007-10-24
關鍵字
Keywords
材料特性、奈米壓痕、金屬薄膜、有限元素法、分子動力學
Material characteristics, Nanoindentation, Finite element method, Molecular dynamics, Metal thin films
統計
Statistics
本論文已被瀏覽 5703 次,被下載 1613
The thesis/dissertation has been browsed 5703 times, has been downloaded 1613 times.
中文摘要
奈米壓痕檢測技術為目前量測奈米尺度材料之機械性質的最主要方法之一。隨著近年來奈米科技的蓬勃發展,製程技術所能製造出的奈米元件尺寸愈來愈小,以往巨觀的檢測技術已不敷使用,尤其當材料的尺寸到逹原子級的尺度時,其所需之檢測精確度更是巨觀檢測技術所難以達到的,因此奈米壓痕檢測技術乃成為非常重要的微觀檢測技術。本文即利用奈米壓痕之數值及實驗方法對金屬薄膜在探針的壓痕作用下,對其材料特性進行定性及定量之分析。
本文研究方法第一部份先以分子動力學之平行運算對(100)、(110)及(111)三個定向結晶面之鎳薄膜進行奈米壓痕之模擬分析,模擬結果顯示由探針作用所造成材料塑性變形之應變能量乃是利用同質性孕核(Homogeneous Nucleation)的成形來儲存,而利用{111}滑移面的錯位滑移(Dislocation Sliding)來釋放。三個定向結晶面之壓痕曲線從曲線局部最高點到局部最低點的陡峭變化、壓痕表面的堆積隆起(Pile-up)形貌之擴散程度,以及硬度(Hardness)與彈性模數(Elastic Modulus)之材料性質等,均受材料{111}滑移面之滑移角的數目所影響;第二部份則利用分子動力學結合有限元素法與平行運算之多尺度模擬對(100)定向結晶面之鎳薄膜進行奈米壓痕之模擬分析,在與相同模擬條件之全分子動力學的模擬結果比較下,由壓痕曲線及壓痕變形形貌之模擬結果驗証了本文對於分子動力學結合有限元素法所建立之多尺度模型的正確性;第三部份則是利用奈米壓痕儀(Nanoindenter)結合聚焦離子束顯微鏡(FIB)與穿透式電子顯微鏡(TEM)來對氮化鎵(GaN)薄膜因壓痕所引起的局部相變化機制進行實驗分析。對三五族的氮化鎵材料而言,在壓痕負載的過程中,壓痕曲線會有突然跳躍(pop-in)的現象產生,此現象乃為材料的錯位成核(Dislocation Nucleation)之viii變形機制,但在奈米壓痕過程中所導致的相變化機制則不存在於氮化鎵薄膜中。
Abstract
Molecular dynamics (MD) simulations are applied to elucidate the anisotropic characteristics in the material responses for crystallographic nickel substrates with (100), (110) and (111) surface orientations during nanoindentation. The strain energy of the substrate exerted by the tip is stored by the formation of the homogeneous nucleation, and is dissipated by the dislocation sliding of the {111} plane. The steep variations of the indentation curve from the local peak to the local minimums are affected by the numbers of slip angle of {111} sliding plane. The pile-up patterns of the three nickel substrates prove that the crystalline nickel materials demonstrate the pile-up phenomenon from nanoindentation on the nanoscale. The three crystallographic nickel substrates exhibit differing amounts of pile-up dislocation spreading at different crystallographic orientations. The effects of surface orientation in material properties of F.C.C. nickel material on the nanoscale are observable through the slip angle numbers of {111} sliding planes which influence hardness values, as well as the cohesive energy of different crystallographic surfaces that indicate Young’s modulus. Furthermore, the multiscale simulations are performed on the (100) monocrystal nickel substrate by using nanoindentation, compensating for MD limitation of a large specimen simulation without significant increase in the size of the problem. This study examines the accuracy of the coupling method for the multiscale model by means of the indentation curve and the deformation profile.
Nanoindentation-induced mechanical deformation in GaN thin films prepared by metal-organic chemical-vapor deposition (MOCVD) was investigated using the Berkovich diamond tip in combining with the cross-sectional transmission electron microscopy (XTEM). By using the focused ion beam (FIB) milling to accurately position the cross-section of the indented region, the XTEM results demonstrate that the major plastic deformation was taking place through the propagation of dislocations. The present observations are in support of attributing the pop-ins appeared in the load-displacement curves to the massive dislocation activities occurring underneath the indenter during loading cycle. The absence of indentation-induced new phases might have been due to the stress relaxation via substrate and is also consistent with the fact that no discontinuity was found upon unloading.
目次 Table of Contents
List of Tables………………………………………...……………....………………..…..iv
List of Figures…………………………………………………….…………………….…v
摘要…………………………………………………..……………….…………………vii
Abstract………………………………………...……………….……...…………………ix
Nomenclature……………………………….….……………..…………………………..xi
Chapter 1 Introduction………………………….…….…………………………………1
1.1 Motivation……………………………………………………………………………..1
1.2 Nanoindentation of Crystal Metal Orientation Surfaces………………...…...………..2
1.3 Nanoindentation of Multiscale Crystal Metals…………………...….………………..5
1.4 Nanoindentation of Crystal Metal Semiconductors………...………………..………..9
Chapter 2 Theory……..….……..…………………...……………………….…………12
2.1 Governing Equation of Molecular Dynamics…….…………...……………………..12
2.2 Tight-Binding Potential…………………………………………...…………….……14
2.3 Initial Conditions…….……………...………..…………………………………….. 16
2.4 Periodic Boundary Condition…….……………...…………………………………..16
2.5 Rescaling Method………...…………………...……………………………………..18
2.6 Cell Link List Combined Verlet List………...……………………...………………..19
2.7 Leap-Frog Method……….……….……..……….…………………………………..20
2.8 Atomic Decomposition Algorithm……………..………...…………………………..21
2.9 Governing Equation of Finite Element Method…………….………………………..22
2.10 Element Stiffness Matrix………………………….………….……………………..26
2.11 Numerical Computation..……..……...…...….………….…..…………………….. 26
2.12 Direct Integration of Equations of Motion……….………..………………………..27
2.12.1 Derivation of General Formulas…………..…...……………………………..28
2.12.2 Newmark’s Method………..………...….....……………………………..30
2.12.3 Average Acceleration Method………………………………….……………..32
2.13 Parallel Substructure Method……………………………..………….……………..35
Chapter 3 Simulation and Experiment Set Up of Nanoindentation………...…….…43
3.1 Simulation Set Up of Crystal Ni Metal Orientation Surfaces..............................……43
3.2 Simulation Set Up of Multiscale Crystal Ni Metal……....………......................……47
3.2.1 The Multiscale Model of Nanoindentation……………..……....…………….. 47
3.2.2 MD/FE-HS Region……………..………………….…………………………..49
3.2.3 Molecular Dynamics….……….…………………..……….…………………..51
3.2.4 Finite Element Method.........….……….…………..…………………………..51
3.2.5 Nanoindentation Simulation.........……..……………..………………………..54
3.3 Experiment Set Up of Crystal GaN Metal Semiconductor..................................……55
Chapter 4 Results and Discussions……………………..………......……….…………69
4.1 The Nanoindentation Characteristics of Crystal Ni Metal Orientation Surfaces….…69
4.1.1 Plastic Deformation Characteristic during Nanoindentation……...…....…….. 69
4.1.2 Pile-up Patterns after Nanoindentation…………………...…..………………..74
4.1.3 Extracted Material Properties from Nanoindentation…………..………….…..77
4.2 The Nanoindentation Accuracy of Multiscale Crystal Ni Metal….....…………...…..82
4.3 The Nanoindentation Characteristics of Crystal GaN Metal Semiconductor………..84
Chapter 5 Conclusion……………….…………………………......……….....………100
5.1 Summary…………………..………….………………………..……….…………..100
5.2 Future Prospects……………………………….…………...………………….……101
Reference……………………………….…………………….…......……….…………102
VITA……………………………….………………………....…......……….…………113
參考文獻 References
[1] A. Gouldstone, H. J. Koh, K. Y. Zeng, A. E. Giannakopoulos, S. Suresh. Discrete and continuous deformation during nanoindentation of thin films. Acta Mater., 48, 2277 (2000).
[2] A. A. Voevodin, M. A. Capano, S. J. P. Laube, M. S. Donley, J. S. Zabinski. Design of a Ti/TiC/DLC functionally gradient coating based on studies of structural transitions in Ti-C thin films. Thin Solid Films, 298, 107 (1997).
[3] B. Alder, T. Wainwright. Studies in molecular dynamics: I. General method. J. Chem. Phys., 31, 459 (1959).
[4] B. Alder, T. Wainwright. Studies in molecular dynamics: II. Behavior of a small number of elastic spheres. J. Chem. Phys., 33, 1439 (1960).
[5] W. G. Hoover, A. J. De Groot, C. G. Hoover, I. F. Stowers, T. Kawai, B. L. Holian, T. Boku, S. Ihara, J. Belak. Large scale elastic-plastic indentation simulations via non-equilibrium molecular dynamics. Phys. Rev. A, 42, 5844 (1990).
[6] J. Belak, D. B. Boercker, I. F. Stowers. Simulation of nanometer scale deformation of metallic and ceramic surfaces. MRS Bull., 18, 55 (1993).
[7] U. Landman, W. D. Luedtke, N. A. Burnham, R. J. Colton. Atomistic mechanisms and dynamics of adhesion, nanoindentation, and fracture. Science, 248, 454 (1990).
[8] U. Landman, W. D. Luedtke. Nanomechanics and dynamics of tip-substrate interactions. J. Vac. Sci. Technol., 9, 414 (1991).
[9] U. Landman, W. D. Luedtke, E. M. Ringer. Atomistic mechanisms of adhesive contact formation and interfacial processes. Wear, 153, 3 (1992).
[10] U. Landman, W. D. Luedtke. Atomistic dynamics of interfacial processes: films, junctions, and nanostructure. Appl. Surf. Sci., 92, 237 (1996).
[11] R. Komanduri, N. Chandrasekaran, L. M. Raff. MD simulation of nanometric cutting of single crystal aluminum-effect of crystal orientation and direction of cutting. Wear, 242, 60 (2000).
[12] R. Komanduri, N. Chandrasekaran, L. M. Raff. Effect of tool geometry in nanometric cutting: a molecular dynamics simulation approach. Wear, 219, 84 (1998).
[13] S. Shimada. Molecular dynamics analysis of nanometric cutting process. Int. J. Jpn. Soc. Precis. Eng., 29, 283 (1995).
[14] T. Inamura, H. Suzuki, N. Takezawa. Cutting experiments in a computer using atomic models of copper crystal and diamond tool. Int. J. Jpn. Soc. Precis. Eng., 25, 259 (1991).
[15] K. Maekawa, A. Itoh. Friction and tool wear in nanoscale machining-molecular dynamics approach. Wear, 188, 115 (1995).
[16] N. Chandrasekaran, A. Noori-Khajavi, L. M. Raff, R. Komanduri. A new method for molecular dynamics simulation of nanometric cutting. Philos. Mag., 77, 7 (1998).
[17] R. Komanduri, N. Chandrasekaran, L. M. Raff. Some aspects of machining with negative rake tools simulating grinding: an MD simulation approach. Philos. Mag., 79, 955 (1999).
[18] O. Tomagnini, F. Ercolessi, E. Tosatti. Microscopic interaction between a gold tip and lead surface. Surf. Sci., 287, 1041 (1993).
[19] D. W. Brenner, S. B. Sinnott, J. A. Harrison, O. A. Shenderova. Simulated engineering of nanostructures. Nanotechnology, 7, 161 (1996).
[20] R. Rentsch, I. Inasaki. Indentation simulation on brittle materials by molecular dynamics. SPIE, 2596, 214 (1995).
[21] J. A. Harrison, D. W. Brenner, C. T. White, R. J. Colton. Atomistic mechanisms of adhesion and compression of diamond surfaces. Thin Solid Films, 206, 213 (1991).
[22] W. Yan, K. Komvopoulos. Three-dimensional molecular dynamics analysis of atomic-scale indentation. J. Tribol.-Trans. ASME, 120, 385 (1998).
[23] J. A. Harrison, C. T. White, R. J. Colton, D. W. Brenner. Molecular dynamics simulations of atomic scale friction of diamond surfaces. Phys. Rev. B, 46, 9700 (1992).
[24] A. Buldum, S. Ciraci. Contact, nanoindentation, and sliding friction. Phys. Rev. B, 57, 2468 (1998).
[25] D. E. Kim, N. P. Suh. Molecular dynamics investigation of two dimensional atomic scale friction. J. Tribol.-Trans. ASME, 116, 225 (1994).
[26] M. Hirano, K. Shinjo. Atomistic locking and friction. Phys. Rev. B, 41, 11837 (1990).
[27] R. Komanduri, N. Chandrasekaran, L. M. Raff. Molecular dynamics simulation of atomic-scale friction. Phys. Rev. B, 61, 14007 (2000).
[28] P. Walsh, R. K. Kalia, A. Nakano, P. Vashishta. Amorphization and anisotropic fracture dynamics during nanoindentation of silicon nitride: A multimillion atom molecular dynamics study. Appl. Phys. Lett., 77, 4332 (2000).
[29] P. Walsh, A. Omeltchenko, R. K. Kalia, A. Nakano, P. Vashishta. Nanoindentation of silicon nitride: A multimillion-atom molecular dynamics study. Appl. Phys. Lett., 82, 118 (2003).
[30] J. F. Lin, C. C. Wei, Y. K. Yung, C. F. Ai. The effects of hydrogenated carbon films with different film thickness and nitrogen content on specimen mechanical properties, scratch critical load, adhesion work and tribological behavior. Diam. Relat. Mat., 13, 1895 (2004).
[31] K. -D. Bouzakis, S. Hadjiyiannis, G. Skordaris, I. Mirisidis, N. Michailidis, K. Efstathiou, E. Pavlidou, G. Erkens, R. Cremer, S. Rambadt, I. Wirth. The effect of coating thickness, mechanical strength and hardness properties on the milling performance of PVD coated cemented carbides inserts. Surf. Coat. Technol., 177, 657 (2004).
[32] B. C. Zhang, G. Barth, H. K. Liu, S. Chang. Characterization of nickel phosphorus surface by ToF-SIMS. Appl. Surf. Sci., 231, 868 (2004).
[33] R. Ji, T. Liew, C. H. Seek, T. C. Chong. Corrosive effect of acrylic acid on magnetic head and media of an operating hard disk drive. Tribol. Int., 38, 692 (2005).
[34] D. Son, J. J. Kim, J. Y. Kim, D. Kwon. Tensile properties and fatigue crack growth in LIGA nickel MEMS structures. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 406, 274 (2005).
[35] E. Slavcheva, W. Mokwa, U. Schnakenberg. Electrodeposition and properties of NiW films for MEMS application. Electrochim. Acta, 50, 5573 (2005).
[36] B. Li, Q. Chen, D. G. Lee, J. Woolman, G. P. Carman. Development of large flow rate, robust, passive micro check valves for compact piezoelectrically actuated pumps. Sens. Actuator A-Phys., 117, 325 (2005).
[37] E. Gomez, E. Pellicer, M. Duch, J. Esteve, E. Valles. Molybdenum alloy electrodeposits for magnetic actuation. Electrochim. Acta, 51, 3214 (2006).
[38] M. Zhao, C. Jiang, S. Li, S. X. Mao. Probing nano-scale mechanical characteristics of individual semi-conducting nanobelts. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 409, 223 (2005).
[39] F. K. Mante, G. R. Baran, B. Lucas. Nanoindentation studies of titanium single crystals. Biomaterials, 20, 1051 (1999).
[40] Y. Wang, D. Raabe, C. Kluber, F. Roters. Orientation dependence of nanoindentation pile-up patterns and of nanoindentation microtextures in copper single crystals. Acta Mater., 52, 2229 (2004).
[41] R. Komanduri, N. Chandrasekaran, L. M. Raff. MD simulation of indentation and scratching of single crystal aluminum. Wear, 240, 113 (2000).
[42] O. Kum. Orientation effects of elastic-plastic deformation at surfaces: nanoindentation of nickel single crystals. Mol. Simul., 31, 115 (2005).
[43] Z. L. Wang, R. P. Gao, P. Poncharal, W. A. de Heer, Z. R. Dai, Z. W. Pan. Mechanical and electrostatic properties of carbon nanotubes and nanowires. Mater. Sci. Eng. C, 16, 3 (2001).
[44] J. W. Kang, H. J. Hwang. Mechanical deformation study of copper nanowire using atomistic simulation. Nanotechnology, 12, 295 (2001).
[45] H. Rafii-Tabar. Modelling the nano-scale phenomena in condensed matter physics via computer-based numerical simulations. Phys. Reports—Rev. Sec. Phys. Lett., 325, 240 (2000).
[46] J. K. Diao, K. Gall, M. L. Dunn. Atomistic simulation of the structure and elastic properties of gold nanowires. J. Mech. Phys. Solids, 52, 1935 (2004).
[47] X. Z. Sun, S. J. Chen, K. Cheng, D. H. Huo, W. J. Chu. Multiscale simulation on nanometric cutting of single crystal copper. Proc. Inst. Mech. Eng. Part B-J. Eng. Manuf., 220, 1217 (2006).
[48] J. H. Argyris, H. P. Mlejnek. Dynamics of structure. Elsevier, Amsterdam (1991).
[49] T. Belytschko, T. J. R. Hughes. Computational Methods for Transient Analysis. Elsevier, Amsterdam (1983).
[50] H. S. Park, W. K. Liu. An introduction and tutorial on multiple-scale analysis in solids. Comput. Methods Appl. Mech. Engrg., 193, 1733 (2004).
[51] F. F. Abraham. Dynamically spanning the length scales from the quantum to the continuum. Int. J. Mod. Phys. C, 11, 1135 (2000).
[52] W. K. Liu, H. S. Park, D. Qian, E. G. Karpov, H. Kadowaki, G. J. Wagner. Bridging scale methods for nanomechanics and materials. Comput. Meth. Appl. Mech. Eng., 195, 1407 (2006).
[53] S. P. Xiao , W. X. Yang. A temperature-related homogenization technique and its implementation in the meshfree particle method for nanoscale simulations. Int. J. Numer. Methods Eng., 69, 2099 (2007).
[54] D. Qian, G. J. Wagner, W. K. Liu. A multiscale projection method for the analysis of carbon nanotubes. Comput. Meth. Appl. Mech. Eng., 193, 1603 (2004).
[55] R. E. Rudd, J. Q. Broughton. Concurrent coupling of length scales in solid state systems. Phys. Status Solidi B-Basic Solid State Phys., 217, 251 (2000).
[56] H. S. Park, E.G. Karpov, P. A. Klein, W. K. Liu. Three-dimensional bridging scale analysis of dynamic fracture. J. Comput. Phys., 207, 588 (2005).
[57] H. S. Park, E. G. Karpov, W. K. Liu, P. A. Klein. The bridging scale for two-dimensional atomistic/continumn coupling. Philos. Mag., 85, 79 (2005).
[58] R. Miller, E. B. Tadmor, R. Phillips, M. Ortiz. Quasicontinuum simulation of fracture at the atomic scale. Model. Simul. Mater. Sci. Eng., 6, 607 (1998).
[59] J. Q. Broughton, F. F. Abraham, N. Bernstein, E. Kaxiras. Concurrent coupling of length scales: Methodology and application. Phys. Rev. B, 60, 2391 (1999).
[60] F. F. Abraham, J. Q. Broughton, N. Bernstein, E. Kaxiras. Spanning the length scales in dynamic simulation. Comput. Phys., 12, 538 (1998).
[61] S. Kohlhoff, P. Gumbsch, H. F. Fischmeister. Crack propagation in b.c.c. crystals studied with a combined finite-element and atomistic model. Philos. Mag., 64, 851 (1991).
[62] Y. Wang, D. Raabe, C. Kluber, F. Roters. Orientation dependence of nanoindentation pile-up patterns and of nanoindentation microtextures in copper single crystals. Acta Mater., 52, 2229 (2004).
[63] J. Knap, M. Ortiz. An analysis of the quasicontinuum method. J. Mech. Phys. Solids, 49, 1899 (2001).
[64] R. C. Picu. Atomistic-continuum simulation of nano-indentation in molybdenum. J. Comput-Aided Mater. Des., 7, 77 (2000).
[65] V. B. Shenoy, R. Phillips, E. B. Tadmor. Nucleation of dislocations beneath a plane strain indenter. J. Mech. Phys. Solids, 48, 649 (2000).
[66] G. S. Smith, E. B. Tadmor, E. Kaxiras. Multiscale simulation of loading and electrical resistance in silicon nanoindentation. Phys. Rev. Lett., 84, 1260 (2000).
[67] G. S. Smith, E. B. Tadmor, N. Bernstein, E. Kaxiras. Multiscale simulations of silicon nanoindentation. Acta Mater., 49, 4089 (2001).
[68] P. Liu, Y. W. Zhang, C. Lu. A three-dimensional concurrent atomistic/continuum analysis of an epitaxially strained island. J. Appl. Phys., 94, 6350 (2003).
[69] E. Lidorikis, M. E. Bachlechner, R. K. Kalia, A. Nakano, P. Vashishta, G. Z. Voyiadjis. Coupling length scales for multiscale atomistics-continuum simulations: Atomistically induced stress distributions in Si/Si3N4 nanopixels. Phys. Rev. Lett., 87, 086104 (2001).
[70] H. S. Park, E. G. Karpov, W. K. Liu. A temperature equation for coupled atomistic/continuum simulations. Comput. Meth. Appl. Mech. Eng., 193, 1713 (2004).
[71] G. J. Wagner, W. K. Liu. Coupling of atomistic and continuum simulations using a bridging scale decomposition. J. Comput. Phys., 190, 249 (2003).
[72] C. Wen, J. Fish. A generalized space-time mathematical homogenization theory for bridging atomistic and continuum scales. Int. J. Numer. Methods Eng., 67, 253 (2006).
[73] S. Q. Tang, T. Y. Hou, W. K. Liu. A mathematical framework of the bridging scale method. Int. J. Numer. Methods Eng., 65, 1688 (2006).
[74] S. Q. Tang , T. Y. Hou, W. K. Liu. A pseudo-spectral multiscale method: Interfacial conditions and coarse grid equations. J. Comput. Phys., 213, 57 (2006).
[75] V. B. Shenoy, R. Miller, E. B. Tadmor, R. Phillips, M. Ortiz. Quasicontinuum models of interfacial structure and deformation. Phys. Rev. Lett., 80, 742 (1998).
[76] E. B. Tadmor, M. Ortiz, R. Phillips. Quasicontinuum analysis of defects in solids. Philos. Mag., 73, 1529 (1996).
[77] R. E. Rudd, J. Q. Broughton. Coarse-grained molecular dynamics and the atomic limit of finite elements. Phys. Rev. B, 58, R5893 (1998).
[78] M. Dewald, W. A. Curtin. Analysis and minimization of dislocation interactions with atomistic/continuum interfaces. Model. Simul. Mater. Sci. Eng., 14, 497 (2006).
[79] B. Q. Luan, S. Hyun, J. F. Molinari. Multiscale modeling of two-dimensional contacts. Phys. Rev. E, 74, 046710 (2006).
[80] W. A. Curtin, R. E. Miller. Atomistic/continuum coupling in computational materials science. Model. Simul. Mater. Sci. Eng., 11, R33 (2003).
[81] S. Izumi, T. Kawakami, S. Sakai. A FEM-MD combination method for silicon. Simulation of Semiconductor Processes and Devices, International Conference on 6-8 Sept., 143, (1999).
[82] S. Izumi, T. Kawakami, S. Sakai. Study of a combined FEM-MD method for silicon. JSME Int. J. Ser. A-Solid Mech. Mat. Eng., 44, 152 (2001).
[83] W. K. Liu, E. G. Karpov, S. Zhang, H. S. Park. An introduction to computational nanomechanics and materials. Comput. Meth. Appl. Mech. Eng., 193, 1529 (2004).
[84] S. Ogata, E. Lidorikis, F. Shimojo, A. Nakano, P. Vashishta, R. K. Kalia. Hybrid finite-element/molecular-dynamics/electronic-density-functional approach to materials simulations on parallel computers. Comput. Phys. Commun., 138, 143 (2001).
[85] H. Morkoc, S. N. Mohammad. High-luminosity blue and blue-green gallium nitride light-emitting-diodes. Science, 267, 51 (1995).
[86] G. Fasol. Room-temperature blue gallium nitride laser diode. Science, 272, 1751 (1996).
[87] G. S. Cheng, A. Kolmakov, Y. X. Zhang, M. Moskovits, R. Munden, M. A. Reed, G. M. Wang, D. Moses, J. P. Zhang. Current rectification in a single GaN nanowire with a well-defined p-n junction. Appl. Phys. Lett., 83, 1578 (2003).
[88] J. E. Bradby, S. O. Kucheyev, J. S. Williams, J. Wong-Leung, M. V. Swain, P. Munroe, G. Li , M. R. Phillips. Indentation-induced damage in GaN epilayers. Appl. Phys. Lett., 80, 383 (2002).
[89] P. Puech, F. Demangeot, J. Frandon, C. Pinquier, M. Kuball, V. Domnich, Y. Gogotsi. GaN nanoindentation: A micro-Raman spectroscopy study of local strain fields. J. Appl. Phys., 96, 2853 (2004).
[90] E. Le Bourhis, G. Patriarche. Solid-solution strengthening in ordered InxGa1-xP alloys. Philos. Mag. Lett., 84, 373 (2004).
[91] J. Li, K. J. Van Vliet, T. Zhu, S. Yip, S. Suresh. Atomistic mechanisms governing elastic limit and incipient plasticity in crystals. Nature, 418, 307 (2002).
[92] D. E. Kim, S. I. Oh. Atomistic simulation of structural phase transformations in monocrystalline silicon induced by nanoindentation. Nanotechnology, 17, 2259 (2006).
[93] S. R. Jian, T. H. Fang, D. S. Chuu, L. W. Ji. Atomistic modeling of dislocation activity in nanoindented GaAs. Appl. Surf. Sci., 253, 833 (2006).
[94] X. D. Li, L. M. Zhang, H. S. Gao. Micro/nanomechanical characterization of a single decagonal AlCoNi quasicrystal. J. Phys. D-Appl. Phys., 37, 753 (2004).
[95] M. Campo, A. Urena, J. Rams. Effect of silica coatings on interfacial mechanical properties in aluminium - SiC composites characterized by nanoindentation. Scr. Mater., 52, 977 (2005).
[96] S. R. Jian, T. H. Fang, D. S. Chuu. Nanomechanical characterizations of InGaN thin films. Appl. Surf. Sci., 252, 3033 (2006).
[97] J. E. Lennard-Jones. The determination of molecular fields. I. from the variation of the viscosity of gas with temperature. Proc. Roy. Soc., 106, 441 (1924).
[98] F. Cleri, V. Rosato. Tight-binding potentials for transition metals and alloys. Phys. Rev. B, 48, 22 (1993).
[99] S. Plimpton. Computational limits of classical molecular dynamics simulations. J. Comput. Phys., 117, 1 (1995).
[100] B. M. Boghosian. Computational physics on the connection machine. Comp. in Phys., Jan/Feb (1990).
[101] G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, K. J. Salmon, D. W. Walker. Solving Problems on Concurrent Processors: Volume 1, NJ (1988).
[102] G. S. Karypi, K. Schloegel, V. Kumar. University of Minnesota, Department of Computer Science (1998).
[103] G. Sines. Elasticity and Strength. Allyn and Bacon, Boston (1969).
[104] S. Timoshenko, J. N. Goodier. Theory of Elasticity, 2nd (1951).
[105] D. T. Greenwood. Principles of Dynamics, 1st (1965).
[106] C. I. Bajer. Triangular and tetrahedral space-time finite elements in vibration analysis. Int. J. Numer. Methods Eng. 23, 2031 (1986).
[107] C. I. Bajer. Notes on the stability of non-rectangular space-time finite elements. Int. J. Numer. Methods Eng. 24, 1721 (1986).
[108] R. W. Clough. Comparison of Three dimensional Finite Elements in Proceedings of the Symposium on Application of Finite Element Methods in Civil Engineering. Vanderbilt University, 1 (1969).
[109] R. W. Hamming. Numerical Methods for Scientists and Engineers. McGraw-Hill Book Co. Inc., 1st (1962).
[110] A. K. Noor. Parallel Processing in Finite Element Structural Analysis. Eng. Comput., 3, 225 (1988).
[111] C. Farhat, E. Wilson. Concurrent iterative solution of large finite element systems. Commun. Appl. Numer. Meth., 3, 319 (1987).
[112] S. W. Bostic, R. E. Fulton. Implementation of the lanczos method for structural vibration analysis on a parallel computer. Comput. Struct., 25, 395 (1987).
[113] L. Adams. Reordering computations for parallel execution. Commun. Appl. Numer. Meth., 2, 263 (1986).
[114] M. Ortiz, B. Nour-Omid. Unconditionally stable concurrent procedures for transient finite element analysis. Comput. Meth. Appl. Mech. Eng., 58, 151 (1986).
[115] J. S. Przemieniecki. Matrix structural analysis of substructures. AAIA Journal, 1, 138 (1963).
[116] C. Farhat, F. X. Roux. A method of finite element tearing and interconnecting and its parallel solution algorithm. Int. J. Numer. Methods Eng., 32, 1205 (1991).
[117] B. Smith, P. Bjorstad, W. Gropp. Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University, USA (1996).
[118] H. M. Chen, G. C. Archer. New domain decomposition algorithm for nonlinear substructures. J. Comput. Civil. Eng., 19, 148 (2005).
[119] P. Geng, J. T. Oden, R. A. ven de Geijn. Parallel multifrontal algorithm and its implementation. Comput. Meth. Appl. Mech. Eng., 149, 289 (1997).
[120] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing Company, UWA (1996).
[121] M. Papadrakakis, Y. Tsompanakis. Domain decomposition methods for parallel solution of shape sensitivity analysis problems. Int. J. Numer. Methods Eng., 44, 281 (1999).
[122] Y. R. Jeng, P. C. Tsai, T. H. Fang. Molecular dynamics studies of atomic-scale friction for roller-on-slab systems with different rolling-sliding conditions. Nanotechnology, 16, 1941 (2005).
[123] D. Frenkel, B. Smit. Understanding Molecular Simulation. 2nd ed. (2002).
[124] F. Cleri, V. Rosato. Tight-binding potentials for transition metals and alloys. Phys. Rev. B, 48, 22 (1993).
[125] Y. Lee, J. Y. Park, S. Y. Kim, S. Jun, S. Im. Atomistic simulations of incipient plasticity under Al (111) nanoindentation. Mech. Mater., 37, 1035 (2005).
[126] C. Zhu, W. Guo, T. X. Yu, C. H. Woo. Radial compression of carbon nanotubes: deformation and damage, super-elasticity and super-hardness. Nanotechnology, 16, 1035 (2005).
[127] H. Y. Liang, C. H. Woo, H. Huang, A. H. W. Ngan, T. X. Yu. Dislocation nucleation in the initial stage during nanoindentation. Philos. Mag., 83, 3609 (2003).
[128] V. Yamakov, D. Wolf, S. R. Phillpot, A. K. Mukherjee, H. Gleiter. Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation. Nature, 1, 1 (2002).
[129] T. H. Fang, S. R. Jian, D. S. Chuu. Molecular dynamics analysis of effects of velocity and loading on the nanoindentation. Jpn. J. Appl. Phys., 41, L1328 (2002).
[130] J. L. Humar. Dynamics of Structures. 2nd ed. (2002).
[131] W. C. Oliver, G. M. Pharr. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res., 19, 3 (2004).
[132] S. R. Jian, T. H. Fang, D. S. Chuu. Analysis of physical properties of III-nitride thin films by nanoindentation. J. Electron. Mater., 32, 496 (2003).
[133] X. D. Li, B. Bhushan. A review of nanoindentation continuous stiffness measurement technique and its applications. Mater. Charact., 48, 11 (2002).
[134] W. C. Oliver, G. M. Pharr. An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res., 7, 1564 (1992).
[135] M. D. Drory, J. W. Ager, T. Suski, I. Grzegory, S. Porowski. Hardness and fracture toughness of bulk single crystal gallium nitride. Appl. Phys. Lett., 69, 4044 (1996).
[136] R. Nowak, M. Pessa, M. Suganuma, M. Leszczynski, I. Grzegory, S. Porowski, F. Yoshida. Elastic and plastic properties of GaN determined by nano-indentation of bulk crystal. Appl. Phys. Lett., 75, 2070 (1999).
[137] S. O. Kucheyev, J. E. Bradby, J. S. Williams, C. Jagadish, M. V. Swain, G. Li. Deformation behavior of ion-beam-modified GaN. Appl. Phys. Lett., 78, 156 (2001).
[138] P. Kavouras, P. Konminou, T. Karakostas. Effects of ion implantation on the mechanical behavior of GaN films. Thin Solid Films, 515, 3011 (2007).
[139] D. William, JR Callister. Materials Science and Engineering. 6th ed. (2003).
[140] N. Miyazaki, Y. Shiozaki. Calculation of mechanical properties of solids using molecular dynamics. JSME Int. J. Ser. A-Solid Mech. Mat. Eng., 39, 606 (1996).
[141] D. Srolovitz, K. Maeda, V. Vitek, T. Egami. Structural Defects in Amorphous Solids: Statistical Analysis of a Computer Model. Philos. Mag., 44, 847 (1981).
[142] D. Saraev, R. E. Miller. Atomic-scale simulations of nanoindentation-induced plasticity in copper crystals with nanometer-sized nickel coatings. Acta Mater., 54, 33 (2006).
[143] T. Zhu, J. Li, K. J. Van Vliet, S. Ogata, S. Yip, S. Suresh. Predictive modeling of nanoindentation-induced homogeneous dislocation nucleation in copper. J. Mech. Phys. Solids, 52, 691 (2004).
[144] K. J. Van Vliet, J. Li, T. Zhu, S. Yip, S. Suresh. Quantifying the early stages of plasticity through nanoscale experiments and simulations. Phys. Rev. B, 67, 104105 (2003).
[145] C. L. Kelchner, S. J. Plimpton, J. C. Hamilton. Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B, 58, 11085 (1998).
[146] D. Hull, D. J. Bacon. Introduction to Dislocations. 4th ed. (2001).
[147] W. M. Huang, J. F. Su, M. H. Hong, B. Yang. Pile-up and sink-in in micro-indentation of a NiTi shape-memory alloy. Scr. Mater., 53, 1055 (2005).
[148] H. C. Barshilia, K. S. Rajam. Characterization of Cu/Ni multilayer coatings by nanoindentation and atomic force microscopy. Surf. Coat. Technol., 155, 195 (2002).
[149] W. C. Oliver, G. M. Pharr. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res., 7, 1564 (1992).
[150] H. Ni, X. Li, H. Gao, T. P. Nguyen. Nanoscale structural and mechanical characterization of bamboo-like polymer/silicon nanocomposite films. Nanotechnology, 16, 1746 (2005).
[151] R. A. Mirshams, R. M. Pothapragada. Correlation of nanoindentation measurements of nickel made using geometrically different indenter tips. Acta Mater., 54, 1123 (2006).
[152] L. Riester, P. J. Blau, E. Lara-Curzio, K. Breder. Nanoindentation with a Knoop indenter. Thin Solid Films, 377, 635 (2000).
[153] J. L. Bucaille, S. Stauss, P. Schwaller, J. Michler. A new technique to determine the elastoplastic properties of thin metallic films using sharp indenters. Thin Solid Films, 447, 239 (2004).
[154] R. Schwaiger, B. Moser, M. Dao, N. Chollacoop, S. Suresh. Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater., 51, 5159 (2003).
[155] J. A. D. Jensen, P. O. A. Persson, K. Pantleon, M. Oden, L. Hultman. Electrochemically deposited nickel membranes; process—microstructure—property relationships. Surf. Coat. Technol., 172, 79 (2003).
[156] R. Mitra, R. A. Hoffman, A. Madan, J. R. Weertman. Effect of process variables on the structure, residual stress and hardness of sputtered nanocrystalline nickel films. J. Mater. Res., 16, 1010 (2001).
[157] R. A. Mirshams, P. Padama. Nanoindentation of nanocrystalline Ni with geometrically different indenters. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 372, 252 (2004).
[158] M. Kopycinska-Muller, R. H. Geiss, J. Muller, D. C. Hurley. Elastic-property measurements of ultrathin films using atomic force acoustic microscopy. Nanotechnology, 16, 703 (2005).
[159] D. Mulliah, S. D. Kenny, E. McGee, R. Smith, A. Richter, B. Wolf. Atomistic modelling of ploughing friction in silver, iron and silicon. Nanotechnology, 17, 1807 (2006).
[160] R. Smith, D. Christopher, S. D. Kenny. Defect generation and pileup of atoms during nanoindentation of Fe single crystals. Phys. Rev. B, 67, 245405 (2003).
[161] P. Walsh, A. Omeltchenko, R. K. Kalia, A. Nakano, P. Vashishta. Nanoindentation of silicon nitride: A multimillion-atom molecular dynamics study. Appl. Phys. Lett., 82, 118 (2003).
[162] R. Astala, M. Kaukonen, R. M. Nieminen. Nanoindentation of silicon surfaces: Molecular-dynamics simulations of atomic force microscopy. Phys. Rev. B, 61, 2973 (2000).
[163] T. H. Fang, W. J. Chang, C. I. Weng. Nanoindentation and nanomachining characteristics of gold and platinum thin films. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 430, 332 (2006).
[164] A. Noreyan, J. G. Amar, I. Marinescu. Molecular dynamics simulations of nanoindentation of beta-SiC with diamond indenter. Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 117, 235 (2005).
[165] T. H. Fang, C. I. Weng, J. G. Chang. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 357, 7 (2003).
[166] J. Y. Hsieh, S. P. Ju, S. H. Li, C. C. Hwang. Temperature dependence in nanoindentation of a metal substrate by a diamondlike tip. Phys. Rev. B, 70, 195424 (2004).
[167] S. R. Jian, T. H. Fang, D. S. Chuu, L. W. Ji. Atomistic modeling of dislocation activity in nanoindented GaAs. Appl. Surf. Sci., 253, 833 (2006).
[168] A. Richter, R. Ries, R. Smith, M. Henkel, B. Wolf. Nanoindentation of diamond, graphite and fullerene films. Diam. Relat. Mat., 9, 170 (2000).
[169] S. O. Kucheyev, J. E. Bradby, J. S. Williams, C. Jagadish, M. Toth, M. R. Phillips, M. V. Swain. Nanoindentation of epitaxial GaN films. Appl. Phys. Lett., 77, 3373 (2000).
[170] L. W. Ma, J. M. Cairney, M. J. Hoffman, P. R. Munroe. Characterization of TiN thin films subjected to nanoindentation using focused ion beam milling. Appl. Surf. Sci., 237, 631 (2004).
[171] J. E. Bradby, J. S. Williams, M. V. Swain. Pop-in events induced by spherical indentation in compound semiconductors. J. Mater. Res., 19, 380 (2004).
[172] D. H. Mosca, N. Mattoso, C. M. Lepienski, W. Veiga, I. Mazzaro, V. H. Etgens, M. Eddrief. Mechanical properties of layered InSe and GaSe single crystals. J. Appl. Phys., 91, 140 (2002).
[173] J. L. Weyher, M. Albrecht, T. Wosinski, G. Nowak, H. P. Strunk, S. Porowski. Study of individual grown-in and indentation-induced dislocations in GaN by defect-selective etching and transmission electron microscopy. Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 80, 318 (2001).
[174] J. E. Bradby, J. S. Williams, J. Wong-Leung, M. V. Swain, P. Munroe. Transmission electron microscopy observation of deformation microstructure under spherical indentation in silicon. Appl. Phys. Lett., 77, 3749 (2000).
[175] S. J. Bull. Nano-indentation of coatings. J. Phys. D-Appl. Phys., 38, R393 (2005).
[176] Y. Gaillard, C. Tromas, J. Woirgard. Pop-in phenomenon in MgO and LiF: observation of dislocation structures. Philos. Mag. Lett., 83, 553 (2003).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code