Responsive image
博碩士論文 etd-1024111-191624 詳細資訊
Title page for etd-1024111-191624
論文名稱
Title
非晶與奈米晶多層膜結構在壓縮測試下之 機械性質與變形行為
Mechanical Properties and Deformation Behaviors in Amorphous/Nanocrystalline Multilayers under Microcompression
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
182
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-10-11
繳交日期
Date of Submission
2011-10-24
關鍵字
Keywords
非晶與奈米晶多層膜、微壓縮測試、金屬玻璃薄膜、介面強度
microcompression, thin film metallic glass, interface strength., Multilayer thin film
統計
Statistics
本論文已被瀏覽 5700 次,被下載 109
The thesis/dissertation has been browsed 5700 times, has been downloaded 109 times.
中文摘要
塊狀金屬玻璃(bulk metallic glass)在工程應用上展現出許多良好的性質,例如高強度、高抗腐蝕能力等等;但是除了良好的機械性質之外,其脆性的缺點限制了金屬玻璃與金屬玻璃薄膜的應用範圍。目前已有許多研究指出,利用複材的概念與結構,可以有效地解決這個問題。例如利用添加強化相在金屬玻璃或金屬玻璃薄膜中或是將其做熱處理之製程,皆可有效改善金屬玻璃之缺點。
在本篇研究論文中,利用單軸向微壓縮測試,研究非晶與奈米晶多層膜微米柱在室溫下之機械性質與變形行為。結晶材料我們選用面心立方(face-centered cubic)、六方最密堆積(hexagonal close-packed)、體心立方(body-centered cubic),探討不同結晶結構對非晶材料變形之影響;結果顯示,在金屬玻璃薄膜中插入結晶鋯層薄膜,此特殊結構可以使得金屬玻璃薄膜之脆性被有效的改善並展現出高度的延性;其塑性形變量在室溫下可達到50%。除此之外,我們也將延性較好但強度較低之結晶銅與金屬玻璃薄膜製作成另一種多層膜結構;利用一系列的研究與對結晶銅層厚度改變的探討,發現最佳的厚度,可以使得金屬玻璃薄膜與結晶銅在壓縮測試下產生類似超塑性變形的行為;因此可以推斷出多層膜的變形行為與結晶銅層厚度有很大的關係;然而,經由理論的計算與觀察變形後試片的微觀組織可以進一步發現,金屬玻璃薄膜與結晶銅層在100奈米的厚度之下,會產生互相容的流變應力(flow stress)與可匹配的塑性區域(plastic zone),最後造成此有趣的多層膜結構在微米尺度的壓縮測試形成均勻且類似超塑性變形的行為;改善了金屬玻璃缺乏延性的缺點之後,將顯著提升次材料的機械性質並且可以被廣泛的應用於微機電元件中。
除此之外,我們也利用有限元素分析法模擬金屬玻璃薄膜在直徑140奈米尺度下之變形行為,試圖找出金屬玻璃材料產生均勻變形之臨界尺度,經由實驗與模擬的結果可以發現,剪切帶的形成會聚集在試片的上半部,並且研究出在140奈米尺度下,金屬玻璃材料依然是以剪切帶的行為來造成試片之破壞。
最後,我們利用理論的計算可以得知我們所研究的金屬玻璃薄膜與結晶層多層膜間的介面強度,此性質將會影響到試片設計與實驗之結果;經由理論計算之結果可以發現,金屬玻璃薄膜與結晶層薄膜之強度與其他金屬與金屬或金屬與陶瓷材料之介面強度相似;因此也提升了此多層膜結構往後可發展的空間。
Abstract
BMGs (bulk metallic glasses) exhibit many exceptional advantages for engineering applications, such as high strength, good corrosion resistance, etc. Despite of having these excellent properties, the brittle nature of metallic glasses in the bulk and thin film forms inevitably imposes limitation and restricts the wide application of BMGs and TFMGs. Composite concept might be another idea to solve this dilemma. In order to manufacture the bulk metallic glass composites (BMGCs), the approaches are classified into two categories: the intrinsic and extrinsic methods. For the intrinsic method, the in situ process and heat treatment process are two kinds of ways in common uses. Adding reinforcements into the BMGs or TFMGs is extensively used to manufacture composites in the extrinsic method.
In this study, the deformation behaviors of multilayer (amorphous/nanocrystalline) micropillars are studied by uniaxial microcompression tests at room temperature. The nanocrystalline layer to be coupled with the amorphous layer can be of either face-centered cubic (FCC), hexagonal close-packed (HCP) or body-centered cubic (BCC) in crystal structure. The current study demonstrates that brittle problem of a metallic glass coating can be alleviated by percolating with a nanocrystalline metallic underlayer. The brittle thin film metallic glass can become highly ductile and exhibit a plastic strain over 50% at room temperature. The present study has an important implication for MEMS applications, namely, the life span of a brittle amorphous layer can be significantly improved by using an appropriate metallic underlayer.
The brittle problem of thin film ZrCu metallic glasses was also treated by invoking soft Cu layers with optimum film layer thickness. Such multilayered amorphous/crystalline samples exhibit superplastic-like homogeneous deformation at room temperature. It is found that the deformability of the resultant micropillars depends on the thickness of Cu layers. Microstructural observations and theoretical analysis suggest that the superplastic-like deformation mode is attributed to homogeneous co-deformation of amorphous ZrCu and nanocrystalline Cu layers because the 100 nm-thick Cu layers can provide compatible flow stress and “plastic zone” size well matched with those of ZrCu amorphous layers.
Besides, we also made attempts to investigate the critical sample size below which shear band localization would disappear and the sample can deform homogeneously. In situ TEM compression was conducted on amorphous ZrCu nanopillars to study shear band formation behavior. The nanopillar is 140 nm in diameter and with a taper angle of 3°. Experimental observations and simulations based on a free-volume model both demonstrate that the deformation was localized near the top of the tapered metallic glass pillar.
Eventually, the interface nature of metallic glass amorphous/crystalline was characterized through evaluating its energy and validated by the mechanical response of micropillar with ~45o inclined interface under compression. The calculated results showed that the ZrCu/Zr interface energy resides several joules per meter square, meaning that the Zr/ZrCu interface is inherently strong. The high strong adhesion ability of ZrCu/Zr interface was further confirmed by shear fracture happening rightly within the Zr layers rather than along the interface when compressing the ZrCu/Zr micropillars with 45o inclined interface.
目次 Table of Contents
Content
Content i
List of tables v
List of figures vi
中文摘要 xiv
Abstract xvii
Chapter 1 Introduction 1
1-1 Amorphous alloys 1
1-2 The evolution of amorphous alloys 2
1-3 The development of Zr-based thin film metallic glass (TFMG) 3
1-4 Motivation 5
Chapter 2 Background and literature review 9
2-1 Manufacture methods of amorphous alloys 9
2-1-1 Cooling the gaseous state to the solid state 9
2-1-2 Cooling the liquid state to the solid state 10
2-1-3 Transforming the solid state to another solid state 10
2-2 The characters and forming conditions of amorphous alloys 11
2-2-1 Glass forming ability (GFA) 11
2-2-2 Supercooled liquid region (SCLR) 12
2-2-3 The empirical rules for forming amorphous alloys 13
2-3 Principle of physical vapor deposition 15
2-3-1 Introduction of sputtering 15
2-3-2 DC and RF sputtering 16
2-3-3 Nucleation and growth of sputter-deposited films 17
2-3-4 Amorphous film growth 18
2-4 Properties of thin film metallic glasses 19
2-4-1 Thermal properties 19
2-4-2 Mechanical properties 20
2-4-3 Electrical Properties 22
2-4-4 Magnetic properties 23
2-4-5 Chemical properties 23
2-5 Characterization of microscale mechanical properties 24
2-5-1 Introduction to microcompression tests 24
2-5-2 Parameters of microcompression tests 24
2-5-3 Microscale mechanical properties on micropillars 27
2-5-4 Microscale mechanical properties on multilayer structures 31
Chapter 3 Experimental procedures 35
3-1 Raw materials 35
3-2 Sample preparation 35
3-2-1 Pretreatment for substrate 35
3-2-2 Preparation for monolithic thin films and multilayer thin films 36
3-3 Property measurements and analyses 37
3-3-1 X-ray diffraction 37
3-3-2 SEM observations 37
3-3-3 Qualitative and quantitative component analyses 37
3-4 Nanoindentation tests 38
3-5 Microcompression tests 38
3-5-1 Preparation for microcompression samples 38
3-5-2 Microcompression tests using nanoindentation system 39
3-5-2 Preparation for TEM foils of the deformed micropillars 39
3-6 In-situ TEM nanocompression tests 40
3-6-1 Preparation for nanocompression samples 40
3-6-2 In-situ TEM nanocompression tests using Hysitron system 41
Chapter 4 Experimental results 42
4-1 Sample preparations 42
4-2 EDS and XRD analyses 43
4-3 Mechanical property analyses 44
4-4 Microcompression tests 46
4-4-1 Results for ZrCu amorphous, Zr and Cu nanocrystalline micropillars 46
4-4-2 Results for ZrCu/Zr multilayer micropillars 48
4-4-3 Results for ZrCu/Mo and ZrCu/Cu multilayer micropillars 50
4-5 TEM analyses of the microstructures on deformed micropillars 53
4-5-1 TEM analyses for ZrCu/Zr micropillars 53
4-5-2 TEM analyses for ZrCu/Cu micropillars 55
4-6 In-situ TEM compression tests 56
4-7 Interface strength of multilayer pillars 57
Chapter 5 Discussion 59
5-1 Microcompression tests 59
5-1-1 Calculation of Young’s modulus 59
5-1-2 Homogeneous-like and shear-band deformation of multilayer micropillars 61
5-1-3 Interaction of amorphous/crystalline interface 64
5-2 In-situ TEM compression tests 66
5-3 Interface strength of the inclined multilayer pillars 70
Chapter 6 Conclusions 76
Chapter 7 Prospective and future work 79
References 80
Tables 90
Figures 96
參考文獻 References
References
[1] A. C. Lund and C. A. Schuh, J. Appl. Phys., 95, 4815-4822 (2004)
[2] http://www.liquidmetal.com.
[3] W. L. Johnson, MRS Bull., 24, 42-56 (1999)
[4] A. Inoue, B. Shen, H. Koshiba, H. Kato, and A. R. Yavari, Nature Mater., 2, 661-663 (2003)
[5] N. H. Pryds, Mater. Sci. Eng. A, 186-193 (2002)
[6] A. Inoue, Acta Mater., 48, 279-306 (2000)
[7] W. Klement, R. H. Willens, and P. Duwez, Nature, 187, 869-870 (1960)
[8] 吳學陞, 工業材料, 149, 154-165 (1999)
[9] H. S. Chen and D. Turnbull, J. Chem. Phys., 48, 2560-2571 (1968)
[10] H. S. Chen and D. T. Turnbull, Acta Metall., 17, 1021-1031 (1969)
[11] H. S. Chen and C. E. Miller, Rev. Sci. Intrum, 41, 1237-1238 (1970)
[12] H. S. Chen, Acta Metall., 22, 1505-1511 (1974)
[13] A. J. Drehman, A. L. Greer, and D. Turnbull, Appl. Phys. Lett., 41, 716-717 (1982)
[14] H. W. Kui, A. L. Greer, and D. Turnbull, Appl. Phys. Lett., 45, 615-616 (1984)
[15] A. Inoue, T. Zhang, and T. Masumoto, Mater. Trans. JIM, 31, 425-428 (1990)
[16] A. Inoue, T. Nakamura, and N. Nishiyama, Mater. Trans. JIM, 33, 937-945 (1992)
[17] A. Inoue, T. Zhang, N. Nishiyama, K. Ohba, and T. Masumoto, Mater. Trans. JIM, 34, 1234-1237 (1993)
[18] A. Peker and W. L. Johnson, Appl. Phys. Lett., 63, 2342-2344 (1993)
[19] A. Inoue, N. Nishiyama, and H. Kimura, Mater. Trans. JIM, 38, 179-183 (1997)
[20] H. Ma, L. L. Shi, J. Xua, Y. Li, and E. Ma, Appl. Phys. Lett., 87, 181915 (2005)
[21] W. H. Wang, C. Dong, and C. H. Shek, Mater. Sci. Eng. R, 44, 45-89 (2004)
[22] J. F. Loffler, Intermetallics, 11, 529-540 (2003)
[23] T. Masumoto and R. Maddin, Mater. Sci. Eng., 19, 1-24 (1975)
[24] R. B. Schwarz, Mater. Sci. Eng., 97, 71-78 (1988)
[25] G. Minnigerode, A. Regenbrecht, and K. Samwer, Z. Phys. Chem. Neue Folge, Bd., 157, 197-201 (1988)
[26] A. Regenbrecht, G. Minnigerode, and K. Samwer, Z. Phys. B: Condensed Matter., 79, 25-31 (1990)
[27] S. Eickert, H. Hecht, and G. Minnigerode, Z. Phys. B: Condensed Matter., 88, 35-38 (1992)
[28] J. Dudonis and R. Brueas, Proc. Conf. Physics and Technology of Plasma, 269-272 (1994)
[29] Y. Liu, S. Hata, K.Wada, and A. Shimokohbe, Jpn. J. Appl. Phys., 40, 5382-5388 (2001)
[30] P. Sharma, W. Zhang, K. Amiya, H. Kimura, and A. Inoue, J. Nanosci. Nanotechnol., 5, 416-420 (2005)
[31] T. Fukushige, S. Hata, and A. Shimokohbe, J. Microelectromech. Syst., 14, 243-253 (2005)
[32] J. Dudonis, R. Brucas, and A. Miniotas, Thin Solid Films, 275, 164-167 (1996)
[33] C. J. Chen, J.C. Huanga, H.S. Chou, Y.H. Lai, L.W. Chang, X.H. Du, J.P. Chu, and T. G. Nieh., J. Alloys Compd., (2008)
[34] S. Hata, K. Sato, and A. Shimokohbe, Proc. SPIE, 97-108 (1999)
[35] S. Hata, Y. Liu, T. Kato, and A. Shimokohbe, 10th ICPE, 37 (2001)
[36] Y. Liu, S. Hata, K.Wada, and A. Shimokohbe., MEMS, 18th IEEE International Conference, (2001)
[37] A. Inoue, H. Yamaguchi, T. Zhang, and T. Masumoto, Mater. Trans., JIM, 31, 104 (1990)
[38] H. M. Chen, Y. C. Chang, T. H. Hung, X. H. Du, J. C. Huang, J. S. C. Jang, and P. K. Liaw, Mater. Trans., 48, 1802-1805 (2007)
[39] C. P. Chou and F. Spaepen, Acta Metall., 23, 609-613 (1975)
[40] G. Y. Yuan and A. Inoue, J. Alloys Compd., 387, 134-138 (2005)
[41] Z. G. Li, X. Hui, C. M. Zhang, and G. L. Chen, J. Alloys Compd., 454, 168-173 (2008)
[42] G. Y. Yuan, K. Amiya, and A. Inoue, J. Non-Cryst. Solids, 351, 729-735 (2005)
[43] C. Fan, P. K. Liaw, T. W. Wilson, H. Choo, Y. F. Gao, C. T. Liu, T. Proffen, and J. W. Richardson, Appl. Phys. Lett., 89, 231920 (2006)
[44] G. He, W. Loser, J. Eckert, and L. Schultz, Mater. Sci. Eng. A, 352, 179-185 (2003)
[45] S. W. Lee, M. Y. Huh, E. Fleury, and J. C. Lee, Acta Mater., 54, 349-355 (2006)
[46] T. Mukai, T. G. Nieh, Y. Kawamura, A. Inoue, and K. Higashi, Intermetallics, 10, 1071-1077 (2002)
[47] W. J. Wright, R. B. Schwarz, and W. D. Nix, Mater. Sci. Eng. A, 319-321, 229-232 (2000)
[48] D. M. Xing, T. H. Zhang, W. H. Li, and B. C. Wei, J. Alloys Compd., 433, 318-323 (2007)
[49] J. Schroers and W. L. Johnson., Phys. Rev. Lett., 93, 255506 (2004)
[50] Y. H. Liu, G. Wang, R. J. Wang, D. Q. Zhao, M. X. Pan, and W. H. Wang, Science, 315, 1385-1388 (2007)
[51] X. H. Du, J. C. Huang, K. C. Hsieh, Y. H. Lai, H. M. Chen, J. S. C. Jang, and P. K. Liaw, Appl. Phys. Lett., 91, 131901 (2007)
[52] D. W. Kum, T. Oyama, J. Wadsworth, and D. Sherby, J. Mech. Phys., 31, 173-186 (1983)
[53] C. K. Yoon and I. W. Chen, J. Am. Ceram. Soc., 73, 1555-1565 (1990)
[54] B. C. Snyder, J. Wadsworth, and O. D. Sherby, Acta Metall., 32, 919-932 (1984)
[55] T. G. Nieh, T. W. Barbee, and J. Wadsworth, Scripta Mater., 41, 929-935 (1999)
[56] A. Donohue, F. Spaepen, R. G. Hoagland, and A. Misra, Appl. Phys. Lett., 91, 3 (2007)
[57] C. C. Hays, C. P. Kim, and W. L. Johnson, Phys. Rev. Lett., 84, 2901-2904 (2000)
[58] G. He, J. Eckert, W. Loser, and L. Schultz, Nature Mater., 2, 33-37 (2003)
[59] D. H. Hofmann, D. C., J. Y. Suh, A. Wiest, M. L. Lind, M. D. Demetriou, and W. L. Johnson, Proc. Natl. Acad. Sci. U.S.A, 105, 20136-20140 (2008)
[60] D. C. Hofmann, J. Y. Suh, A. Wiest, G. Duan, M. L. Lind, M. D. Demetriou, and W. L. Johnson, Nature, 451, 1085-U3 (2008)
[61] Y. M. Wang, J. Li, A. V. Hamza, and J. T. W. Barbee, Proc. Natl. Acad. Sci. U.S.A, 104, 11155-11160 (2007)
[62] D. Pan, S. Kuwano, T. Fujita, and M. W. Chen, Nano Lett., 7, 2108-2111 (2007)
[63] K. F. Yao, F. Ruan, Y. Q. Yang, and N. Chen, Appl. Phys. Lett., 88, (2006)
[64] K. L. Chopra, ed. Thin Film Phenomena. 1985, McGraw-Hill, New York, USA.
[65] P. J. Hsieh, PhD Thesis, Nanocrystallization and Amorphization of Zr Base Alloys during Accumulative Roll Bonding, National Sun Yat-Sen University, Kaohsiung, Taiwan., (2004)
[66] W. Buckel, Z. Phys., 138, 136 (1954)
[67] E. J. Cotts, W. J. Meng, and W. L. Johnson, Phys. Rev. Lett., 57, 2295-2298 (1986)
[68] P. S. Grant, Prog. in Mater. Sci., 39, 497-545 (1995)
[69] B. Li, N. Nordstrom, and E. J. Lavernia, Mater. Sci. Eng. A, 237, 207-215 (1997)
[70] R. S. Liu, J. Y. Li, K. J. Dong, C. X. Zheng, and H. R. Liu, Mater. Sci. Eng. B, 94, 141-148 (2002)
[71] C. R. M. Afonso, C. Bolfarini, C. S. Kiminami, N. D. Bassim, M. J. Kaufman, M. F. Amateau, T. J. Eden, and J. M. Galbraith, J. Non-Crystalline Solids, 284, 134-138 (2001)
[72] M. S. El-Eskandarany and A. Inoue, Metall. Mater. Trans. A, 33, 135-143 (2002)
[73] C. C. Koch, O. B. Kavin, C. G. Mckamey, and J. O. Scarbrough, Appl. Phys. Lett., 43, 1017-1019 (1983)
[74] Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, Acta Mater., 47, 579-583 (1999)
[75] Z. P. Xing, S. B. Kang, and H. W. Kim, Metall. Mater. Trans. A, 33A, 1521-1530 (2002)
[76] J. Lee, F. Zhou, K. H. Chung, N. J. Kim, and E. J. Lavernia, Metall. Mater. Trans. A, 32, 3109-3115 (2001)
[77] A. Sagel, H. Sieber, H. J. Fecht, and J. H. Perepezko, Acta Mater., 46, 4233-4241 (1998)
[78] D. Turnbull, Contemp. Phys., 10, 473-488 (1969)
[79] M. Sasd and M. Poulain, Mater. Sci. Forum, 19-20, 11-18 (1987)
[80] I. W. Donald and H. A. Davies, J. Non-Crystalline Solids, 30, 77-85 (1978)
[81] O. N. Senkov and D. B. Miracle, Mater. Res. Bull., 36, 2183-2198 (2001)
[82] Z. J. Yan, J. F. Li, S. R. He, and Y. H. Zhou, Mater. Res. Bull., 38, 681-689 (2003)
[83] T. H. Hung, J. C. Huang, J. S. C. Jang, and S. C. Lu, Mater. Trans., 48, 239-243 (2007)
[84] W. Chen, Y. Wang, J. Qiang, and C. Dong, Acta Mater., 51, 1899-1907 (2003)
[85] Q. Wang, Y. M. Wang, J. B. Qiang, X. F. Zhang, C. H. Shek, and C. Dong, Intermetallics, 12, 1229-1232 (2004)
[86] Y. M. Wang, W. P. Xu, J. B. Qiang, C. H. Wong, C. H. Shek, and C. Dong, Mater. Sci. Eng. A, 375-377, 411-416 (2004)
[87] M. Iqbal, W. S. Sun, H. F. Zhang, J. I. Akhter, and Z. Q. Hu, Mater. Sci. Eng. A, 447, 167-173 (2007)
[88] Y. T. Cheng, MS Thesis, Amorphization and Nanocrystallization Behavior in Mg-Cu-Y Alloy by Adding Boron, National Sun Yat-Sen University, Kaohsiung, Taiwan., (2005)
[89] A. Inoue, Mater. Trans. JIM, 36, 866-875 (1995)
[90] A. Inoue, A. Takeuchi, and T. Zhang, Metall. Mater. Trans. A, 29, 1779-1793 (1998)
[91] A. Inoue and K. Hashimoto, Amorphous and Nanocrystalline Materials: Preparation, Properties, and Applications, Springer-Verlag, Berlin and Heidelberg., (2001)
[92] A. Takeuchi and A. Inoue, Mater. Trans., 41, 1372-1378 (2000)
[93] D. M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing, (1998)
[94] M. Ohring, Materials Science of Thin Film, Academic press., (1992)
[95] K. Wasa and S. Hayakawa, Handbook of Sputter Deposition Technology, (1992)
[96] S. Veprek and M. Heintz, Plas. Chem. Plas. Proc., 10, 3-26 (1990)
[97] S. Veprek and M. G. J. Veprek-Heijman, Appl. Phys. Lett., 56, 1766-1768 (1990)
[98] Y. Liu, S. Hata, K. Wada, and A. Shimokohbe, 14th IEEE International Conference on Micro Electro Mechanical Systems, Interlaken, Switzerland, 102-105 (2001)
[99] F. Spaepen, Acta Matall., 25, 407-415 (1977)
[100] A. S. Argon, Acta Matall., 27, 47-58 (1979)
[101] L. H. Dai, M. Yan, L. F. Liu, and Y. L. Bai, Appl. Phys. Lett., 87, 141916 (2005)
[102] G. P. Zhang, Y. D. Liu, and B. Zhang, Adv. Eng. Mater., 7, 606-609 (2005)
[103] C. Suryanarayana, A. Inoue, and T. Masumoto, J. Mater. Sci., 15, 1993-2000 (1980)
[104] T. G. Park, S. Yi, and D. H. Kim, Scripta Mater., 43, 109-114 (2000)
[105] S. Pang, T. Zhang, K. Asami, and A. Inoue, Mater. Trans., 42, 376 (2001)
[106] M. D. Uchic, D. M. Dimiduk, J. N. Florando, and W. D. Nix, Science, 305, 986-989 (2004)
[107] H. Zhang, B.E. Schuster, Q. Wei, and K. T. Ramesh, Scripta Mater., 54, 181-186 (2006)
[108] J. R. Greer, W. C. Oliver, and W. D. Nix, Acta Mater., 53, 1821-1830 (2005)
[109] E. M. Savitskii and A. Prince, E. M. Savitskii and A. Prince. Handbook of precious metals. Hemisphere publications, New York, (1969). (1969)
[110] C. A. Volkert and E. T. Lilleodden, Philos. Mag., 86, 5567-5579 (2006)
[111] M. D. Uchic, D. M. Dimiduk, R. Wheeler, P. A. Shade, and H. L. Fraser, Scripta Mater., 54, 759-764 (2006)
[112] B. E. Schuster, Q. Wei, H. Zhang, and K. T. Ramesh, Appl. Phys. Lett., 88, 103112 (2006)
[113] H. Bei, S. Shim, E. P. George, M. K. Miller, E. G. Herbert, and G. M. Pharr, Scripta Mater., 57, 397-400 (2007)
[114] B. E. Schuster, Q. Wei, M. H. Ervin, S. O. Hruszkewycz, M. K. Miller, T. C. Hufnagel, and K. T. Ramesh, Scripta Mater., 57, 517-520 (2007)
[115] C. J. Lee, J. C. Huang, and T. G. Nieh, Appl. Phys. Lett., 91, 161913 (2007)
[116] Y. H. Lai, C. J. Lee, Y. T. Cheng, H. S. Chou, H. M. Chen, X. H. Du, C. I. Chang, J. C. Huang, S. R. Jian, J. S. C. Jang, and T. G. Nieh, Scripta Mater., 58, 890-893 (2008)
[117] W. L. Johnson and K. Samwer, Phys. Rev. Lett., 95, (2005)
[118] M. Zink, K. Samwer, W. L. Johnson, and S. G. Mayr, Phys. Rev. B, 73, (2006)
[119] T. G. Nieh and J. Wadsworth, Scripta Mater., 54, 387-392 (2006)
[120] H. M. Chen, J. C. Huang, S. X. Song, T. G. Nieh, and J. S. C. Jang, Appl. Phys. Lett., 94, (2009)
[121] D. C. Jang, C. T. Gross, and J. R. Greer, Int. J. Plast., 27, 858-867 (2011)
[122] F. Shimizu, S. Ogata, and J. Li, Acta Mater., 54, 4293-4298 (2006)
[123] C. A. Volkert, A. Donohue, and F. Spaepen, J. Appl. Phys., 103, (2008)
[124] C. Q. Chen, Y. T. Pei, and J. T. M. De Hosson, Acta Mater., 58, 189-200 (2010)
[125] C. Q. Chen, Y. T. Pei, O. Kuzmin, Z. F. Zhang, E. Ma, and J. T. M. De Hosson, Phys. Rev. B, 83, (2011)
[126] B. E. Schuster, Q. Wei, T. C. Hufnagel, and K. T. Ramesh, Acta Mater., 56, 5091-5100 (2008)
[127] A. Dubach, R. Raghavan, J. F. Loffler, J. Michler, and U. Ramamurty, Scripta Mater., 60, 567-570 (2009)
[128] X. L. Wu, Y. Z. Guo, Q. Wei, and W. H. Wang, Acta Mater., 57, 3562-3571 (2009)
[129] X. Chu and S. A. Barnett, J. Appl. Phys., 77, 4403-4411 (1995)
[130] D. Tench and J. White, Metall. Trans. , 15, 2039 (1984)
[131] A. Donohue, F. Spaepen, R. G. Hoagland, and A. Misra, Appl. Phys. Lett., 91, 241905 (2007)
[132] P. Sharma, K. Yubuta, H. Kimura, and A. Inoue, Phys. Rev. B, 80, (2009)
[133] S. Y. Kuan, H. S. Chou, M. C. Liu, X. H. Du, and J. C. Huang, Intermetallics, 18, 2453-2457 (2010)
[134] M. E. Launey, D. C. Hofmann, W. L. Johnson, and R. O. Ritchie, Proc. Natl. Acad. Sci. USA, 106, 4986-4991 (2009)
[135] M. Y. He and J. W. Hutchinson, J. Appl. Mech.-Trans. of the Asme, 56, 270-278 (1989)
[136] A. C. Fischer-Cripps, Vacuum, 58, 569-585 (2000)
[137] E. C. G. Kirk, D. A. Williams, and H. Ahmed, Inst. Phys. Conf. Ser., 100, 501-506 (1989)
[138] M. H. F. Overwijk, F. C. van den Heuvel, and C. W. T. Bulle-Lieuwma, J. Vac. Sci. Technol., B11, 2021-2024 (1993)
[139] R. M. Langford and A. K. Petford-Long, J. Vac. Sci. Technol., A19, 2186-2193 (2001)
[140] http://www.omniprobe.com/.
[141] C. J. Chen, Master Thesis, Preparation and Characterization of Sputtered Zr-Ti and Zr-Cu Thin Film Metallic Glasses. 2007, National Sun Yat-Sen University, Kaohsiung, Taiwan.
[142] W. C. Oliver and G. M. Pharr, J. Mater. Res., 7, 1564-1583 (1992)
[143] D. Pan, S. Kuwano, T. Fujita, and M. W. Chen, Nano Lett., 7, 2108-2111 (2007)
[144] Y.F. Shen, L. Lu, Q. H. Lu, Z. H. Jin, and K. Lu, Scripta Mater., 52, 989-994 (2005)
[145] I. C. Lin, Master Thesis, Deformation Mechanism and Shear Banding Behavior in Amorphous/Nanocrystalline Multilayer System. 2010, National Sun Yat-Sen University, Kaohsiung, Taiwan.
[146] Y. P. Li, J. Tan, and G. P. Zhang, Scripta Mater., 59, 1226-1229 (2008)
[147] M. C. Liu, J. C. Huang, H. S. Chou, Y. H. Lai, C. J. Lee, and T. G. Nieh, Scripta Mater., 61, 840-843 (2009)
[148] R. D. Conner, W. L. Johnson, N. E. Paton, and W. D. Nix, J. Appl. Phys., 94, 904-911 (2003)
[149] R. D. Conner, Y. Li, W. D. Nix, and W. L. Johnson, Acta Mater., 52, 2429-2434 (2004)
[150] M. A. Meyers and K. K. Chawla, Mechanical Metallurgy: Principles and Applications. 1984, New Jersey: Prentice-Hall, Englewood. .
[151] H. C. Cao and A. G. Evans, Acta Metall., 39, 2997-3005 (1991)
[152] A. Misra, M. J. Demkowicz, J. Wang, and R. G. Hoagland, Jom-Us, 60, 39-42 (2008)
[153] X. Z. Liao, F. Zhou, E. J. Lavernia, D. W. He, and Y. T. Zhu, Appl. Phys. Lett., 83, 5062-5064 (2003)
[154] R. E. Reed-Hill, R. Abbaschian, Physical Metallurgy Principles. 3rd ed., PWS publications, Boston, (1994),
[155] M. W. Chen, A. Inoue, W. Zhang, and T. Sakurai, Phys. Rev. Lett., 96, (2006)
[156] S. X. Song, X. L. Wang, and T. G. Nieh, Scripta Mater., 62, 847-850 (2010)
[157] Y. F. Gao, Modell. Simul. Mater. Sci. Eng., 14, 1329 (2006)
[158] T. S. Oh, R. M. Cannon, and R. O. Ritchie, J. Am. Ceram. Soc., 70, C352-C355 (1987)
[159] D. M. Lipkin, D. R. Clarke, and A. G. Evans, Acta Mater., 46, 4835-4850 (1998)
[160] M. R. Turner and A. G. Evans, Acta Mater., 44, 863-871 (1996)
[161] A. G. Evans, J. W. Hutchinson, and Y. Wei, Acta Mater., 47, 4093-4113 (1999)
[162] L. H. Liang, X. M. You, H. S. Ma, and Y. G. Wei, J. Appl. Phys., 108, (2010)
[163] Q. Jiang, D. S. Zhao, and M. Zhao, Acta Mater., 49, 3143-3147 (2001)
[164] Q. Jiang, L. H. Liang, and D. S. Zhao, J. Phys. Chem. B, 105, 6275-6277 (2001)
[165] C. Suryanarayana and A. Inoue, Bulk Metallic Glasses, CRC Press, Taylor & Francis Group. 2011, New York.
[166] K. T. Ramesh, D. Jia, and E. Ma, Acta Mater., 51, 3495-3509 (2003)
[167] Q. Wei, D. Jia, K. T. Ramesh, and E. Ma, Appl. Phys. Lett., 81, 1240-1242 (2002)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code