Responsive image
博碩士論文 etd-1024114-102403 詳細資訊
Title page for etd-1024114-102403
論文名稱
Title
以化學汽相沉積法在(100)鋁酸鋰基板上成長氧化鋅奈米結構
Growth of Zinc Oxide Nano-structure on(100)γ-LiAlO2 Substrate by Chemical Vapor Deposition
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
75
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-11-06
繳交日期
Date of Submission
2014-11-24
關鍵字
Keywords
非極性m-plane氧化鋅、鋁酸鋰、化學汽相沉積法、汽-液-固三相成長機制
vapor-liquid-solid growth mechanism, γ-LiAlO2, chemical vapor deposition, Non polar m-plane zinc oxide
統計
Statistics
本論文已被瀏覽 5694 次,被下載 42
The thesis/dissertation has been browsed 5694 times, has been downloaded 42 times.
中文摘要
本實驗以化學汽相沉積法在(100)面γ-相的鋁酸鋰(γ-LiAlO2,LAO)基板上成長非極性m-plane氧化鋅奈米梳。以氧化鋅與石墨的粉末混合物作為反應源前驅物,氬氣與氧氣分別為載送氣體與氣體反應源,在基板上沉積鎳作為汽-液-固三相共存(vapor-liquid-solid,VLS)成長機制的催化劑。目前實驗過程探討了沉積鎳的時間、反應溫度以及反應時間,這三種不同實驗條件對於氧化鋅奈米梳生長的影響。
試片以CVD成長氧化鋅奈米梳後,使用X光繞射儀與掃瞄式電子顯微鏡來分析其生長方向與表面形貌,穿透式電子顯微鏡、光激發光譜儀拉曼光譜來分析奈米結構的結晶特性、試片的發光性質、試片的內應力,並探討氧化鋅奈米梳的成長機制。
第一組改變基板沉積鎳的時間,由結果推測,雖然增長沉積鎳的時間會增加更多的鎳作為催化劑;但若沉積太久,LAO基板遭到醋酸鎳溶液的腐蝕而使基板平坦度變差,進而使成長出的結構變得雜亂。第二組實驗改變成長溫度,發現在940℃時,較930℃、950℃時的氧化鋅材料結構更加接近梳狀結構。第三組實驗則是改變反應時間,發現增加反應時間有利於更多的氧化鋅奈米梳的成長,但要注意若在高溫低壓的環境下太久,LAO基板會產生裂解。
Abstract
In this thesis, we use (100) γ-LiAlO2 (LAO) substrates to grow non polar m-plane zinc oxide nano-combs by chemical vapor deposition (CVD) process. The zinc oxide and graphite powder mixture was adopted as reaction source, argon and oxygen were used as transport gas and reaction gas. A thin layer of Ni was deposite on the substrate as catalyst for vapor-liquid-solid (VLS) growth mechanism.
In this study, we investigate the influence for deposite time of Ni layer reaction temperature and reaction time to the growth of zinc oxide nano-combs. The orientation and surface morphology of the specimen was investigate by X-ray diffractometer (XRD) and scanning electron microscopy (SEM). By using Transmission Electron Microscope (TEM), Photoluminescence Spectroscope (PL), and Raman Spectroscope (Raman), we can obtain the crystallization characteristics, optical properties and inner stress of the specimen, so the growth mechanism of the zinc oxide nano-combs can be investigated.
目次 Table of Contents
論文審定書............................................................I
致謝.................................................................II
摘要...............................................................III
Abstract.............................................................IV
目錄.................................................................V
圖目錄.............................................................VII
表目錄...............................................................X
第一章 序論........................................................1
第二章 文獻回顧與理論基礎..........................................2
2.1 氧化鋅的結構與性質................................................2
2.2鋁酸鋰的結構與性質................................................5
2.3 Vapor-Liquid-Solid 成長機制.........................................6
2.4化學汽相沉積法....................................................9
2.5 研究動機.........................................................11
第三章 實驗內容...................................................12
3.1實驗流程.........................................................12
3.2實驗裝置.........................................................12
3.3實驗步驟.........................................................13
3.4分析原理.........................................................15
第四章 實驗結果....................................................18
4.1 改變沉積鎳時間的影響.............................................18
4.1.1 表面形貌分析...............................................18
4.1.2 結晶方向分析...............................................23
4.2 改變反應溫度的影響...............................................26
4.2.1表面形貌分析................................................26
4.2.2結晶方向分析................................................30
4.3改變反應時間的影響...............................................32
4.3.1表面形貌分析................................................32
4.3.2結晶方向分析................................................36
4.4 改變金屬催化劑的影響.............................................38
4.4.1 表面形貌分析................................................38
4.4.2 結晶方向分析. ..............................................43
4.5 PL光譜(Photoluminescence spectrum)分析...........................45
4.6 拉曼光譜(Raman spectrum)分析....................................47
4.7穿透式電子顯微鏡(Transmission Electron Microscope)結果分析結果分析. . . . . 49
第五章 ZnO奈米梳結構成長機制.......................................54
第六章 結論........................................................57
第七章 參考文獻....................................................58

圖目錄
圖2-1 ZnO結構示意圖...............................................2
圖2-2 ZnO的三個重要結晶面.........................................4
圖2-3 LiAlO2之相圖.................................................5
圖2-4 Ni-Zn合金相圖................................................8
圖2-5 Au-Zn合金相圖................................................8
圖2-6 化學汽相沉積法(Chemical Vapor Deposition)磊晶機制示意圖.........10
圖2-7 梳狀ZnO氣體感測機制示意圖..................................11
圖3-1 化學汽相沉積法裝置示意圖....................................14
圖3-2 實驗溫度變化曲線圖..........................................14
圖4-1 試片A1的SEM影像 (X1500)...................................19
圖4-2 試片A2的SEM影像 (X6000)...................................20
圖4-3 試片A2的SEM影像 (X15000)..................................20
圖4-4 試片A3的SEM影像 (X1000)...................................21
圖4-5 試片A3的SEM影像 (X10000)..................................21
圖4-6 試片A4的SEM影像 (X3500)...................................22
圖4-7 試片A4的SEM影像 (X20000)..................................22
圖4-8 試片A1(3min)之ω-2θ X-ray繞射圖............................24
圖4-9 試片A2(20min)之ω-2θ X-ray繞射圖...........................24
圖4-10 試片A3(30min)之ω-2θ X-ray繞射圖...........................25
圖4-11 試片A4(60min)之ω-2θ X-ray繞射圖...........................25
圖4-12 試片B1的SEM影像 (X1000)...................................27
圖4-13 試片B1的SEM影像 (X2300)...................................27
圖4-14 試片B2的SEM影像 (X1000)...................................28
圖4-15 試片B2的SEM影像 (X5000)...................................28
圖4-16 試片B3的SEM影像 (X5000)...................................29
圖4-17 試片B3的SEM影像 (X15000)..................................29
圖4-18 試片B1(930℃)之ω-2θ X-ray繞射圖.............................30
圖4-19 試片B2(940℃)之ω-2θ X-ray繞射圖...........................31
圖4-20 試片B3(950℃)之ω-2θ X-ray繞射圖...........................31
圖4-21 試片C1的SEM影像 (X3000)...................................33
圖4-22 試片C1的SEM影像 (X10000)..................................33
圖4-23 試片C2的SEM影像 (X1000)...................................34
圖4-24 試片C2的SEM影像 (X10000)..................................34
圖4-25 試片C3的SEM影像 (X1000) ..................................35
圖4-26 試片C3的SEM影像 (X5000) ..................................35
圖4-27 試片C1(2 min)之ω-2θ X-ray繞射圖............................36
圖4-28 試片C2(10 min)之ω-2θ X-ray繞射圖...........................37
圖4-29 試片C1(2 min)之ω-2θ X-ray繞射圖...........................37
圖4-30 鍍金時間與厚度關係對照.......................................38
圖4-31 試片D1的SEM影像 (X1000) ..................................40
圖4-32 試片D1的SEM影像 (X5000) ..................................40
圖4-33 試片D2的SEM影像 (X2000) ..................................41
圖4-34 試片D2的SEM影像 (X9500) ..................................41
圖4-35 試片D3的SEM影像 (X1000) ..................................42
圖4-36 試片D3的SEM影像 (X5000) ..................................42
圖4-37 試片D1(鍍金5秒)之ω-2θ X-ray繞射圖...........................43
圖4-38 試片D2(鍍金10秒)之ω-2θ X-ray繞射圖..........................44
圖4-39 試片D3(鍍金30秒)之ω-2θ X-ray繞射圖..........................44
圖4-40 試片B1之PL光譜............................................45
圖4-41 試片B2之PL光譜.............................................46
圖4-42 試片B3之PL光譜.............................................46
圖4-43 試片B1之拉曼光譜............................................47
圖4-44 試片B2之拉曼光譜............................................48
圖4-45 試片B3之拉曼光譜............................................48
圖4-46 ZnO奈米梳之TEM影像........................................50
圖4-47 ZnO奈米梳柱狀部分之選區繞射圖...............................51
圖4-48 ZnO奈米梳側向部分之選區繞射圖...............................51
圖4-49 ZnO奈米梳之g=[1-100] 暗視野影像.............................52
圖4-50 ZnO奈米梳之g=[0002] 暗視野影像..............................52
圖4-51 ZnO奈米梳側向部分頂端HRTEM影像...........................53
圖4-52 ZnO奈米梳側向部分邊緣HRTEM影像...........................53
圖5-1 梳狀ZnO奈米結構生長過程示意圖...............................56

表目錄
表2-1 ZnO性質.....................................................3
表2-2 碳與氧化鋅發生碳熱還原反應之反應及其自由能...................7
表2-3 缺乏氧氣環境下碳與氧化鋅發生碳熱還原之三項反應式.............7
表4-1 改變基板沉積鎳時間的成長參數................................19
表4-2 鋁酸鋰的JCPDS card..........................................23
表4-3 氧化鋅的JCPDS card..........................................23
表4-4 改變反應溫度的成長參數......................................26
表4-5 改變反應時間的成長參數......................................32
表4-6 改變鍍金時間的成長參數......................................39
參考文獻 References
1. X. M. Fang, J. S. Liang, L. Zhao, and Y. h. Liu, Appl. Sur. Sci. , 15 (2005) 420.
2. P.Zu, Z.K.Tang, G. K. L. Wang, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, Solid State Commun. 103 (1997) 459.
3. A. Tsukazaki, A. Ohtomo, T, Ohnuma, M. Ohtani, T. Makino, M. Sumiya, K.Ohtani, S.F. Chichibu, S. Fuke, Y.Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, Nat. Mater. 4 (2005) 42.
4. M. W. Ahn, K. S. Park, J. H. Heo, D. W. Kim, K. J. Choi, and J. G. Park, Sens. Actuators B: Chem, 138 (2009) 168.
5. T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura, T. Yasuda, and H. Koinuma, Appl. Phys. Lett. 78 (2001) 1237.
6. A.Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, Appl. Phys. Lett. 72 (1998) 2466.
7. Z. Zhang, J. Huang, H. He, S. Lin, H. Tang, and H. Lu, Z. Ye, Solid-State Electronics, 53 (2009) 578.
8. I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu, and N. Sawaki, J. Cryst. Growth, 98 (1989) 209.
9. J. S. Park, S. K. Homg, and T. Minegishi, Appl. Sur. Sci, 254 (2008) 7786.
10. P. Fons, K. Iwata, A. Yamada, K. Matsubara, S. Niki, K. Nakahara, T. Tanabe and H. Takasu, Appl. Phys. Lett. 77 (2000) 1801.
11. B. Wang, M. J. Callahan, C. Xu, L. O. Bouthillette, N. C. Giles, and D. F. Bliss, J. Cryst. Growth, 304 (2007) 73.
12. J. Zhao, L. Hu, Z. Wang, H. Zhang, Y. Zhao, and X. Liang, J. Cryst. Growth, 280 (2005) 455.

13. M. M. C. Chou, L. W. Chang, H. Y. Chung, T. H. Huang, J. J. Wu, and C. W. Chen, J. Cryst. Growth, 308 (2007) 412.
14. S. Liu, S. Zhou, Y. Wang, and X. Zhang, J. Cryst. Growth, 292 (2006) 125.
15. T. Makino, K. Tamura, C. H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo, and H. Koinuma, J. Appl. Phys, 92 (2002) 7157.
16. M. J. Ying, X. L. Du, Y. Z. Liu, Z. T. Zhou, Z. Q. Zheng, Z. X. Mei, J. F. Jia, H. Chen, and Q. K. Xue, Appl. Phys. Lett, 87 (2005) 202107.
17. Pearson’s Handbook of Crystallographic Data, 4795.
18. H. Krazel, Phys. Rev. B53, (1996) 11425.
19. D. P. Norton, Y. W. Heo, M. P. Ivill, K. Ip, S. J. Pearton, M. F. Chisholm, and T. Steiner, Materials Today, 7 (2004) 34.
20. K. Maeda, M. Sato, I. Niikura and T. Fukuda, Semicond. Sci. Technol. 20 (2005) S49
21. K. P. Bhuvana, J. Elanchezhiyan, N. Gopalakrishnan, and B. C. Shin, J. Alloys Compd. 478 (2009) 54.
22. D. P. Norton, Y. W. Heo, M.P. Ivill, K. Ip, S.J. Pearton, M.F. Chisholm, and T. Steiner, Mater. Today, 7(6) (2004) 34.
23. F. Claeyssens, C.L. Freeman, N.L. Allan, Y. Sun, M.N.R. Ashfold, and J.H. Harding, J. Mater. Chem., 15 (2005) 139.
24. L. Lei, D. He, Y. Zou, W. Zhang, Z. Wang, M. Jiang, and M. Du, Journal of Solid State Chemistry, 181 (2008) 1810.
25. R. Dronskowski, Inorg. Chem., 32 (1993) 1.
26. A.P. de Kroon, G.W. Schäfer, and F. A., J. Alloy. Comp., 314 (2001) 147.
27. 黃惠君,“鋁酸鋰晶體微結構缺陷分析之研究”,國立中山大學材料科學研究所博士論文(2008)。

28. M.M.C. Chou, H.C. Huang, D. Gan, and C.W.C. Hsu, Journal of Crystal Growth, 291 (2006) 485.
29. B. Cockayne and B. Lent, Journal of Crystal Growth, 54 (1981) 546.
30. R.S. Wagner, W. C. Ellis, Appl. Phys. Lett., 4 (1964) 89.
31. Woo-Sik Jung, Hyeong Uk Joo, Cryst. Growth, 285 (2005) 566.
32. W. F. Li, X. L. Ma, W. S. Zhang, W. Zhang, Y. Li, Z. D. Zhang, Phys. Status. Solidi. A, 203 (2006) 294.
33. T. J. Kuo, M. H. Huang, J. Phys. Chem. B, 110 (2006) 13717.
34. J. R. Morber, Y. Ding, M. S. Haluska, Y. Li, P. Liu, Z. L. Wang, J. Phys. Chem. B, 110 (2006) 21672.
35. K. A. Dick, K. Deppert, L. S. Karlsson, L. R. Wallenberg, L. Samuelson, W. Seifert, Adv. Func. Mater., 15 (2005) 1603.
36. J. Johansson, B. A. Wacaser, K. A. Dick, W. Seifert, Nanotechnology 17 (2006) S355.
37. V. G. Dubrovskii, N. V. Sibirev, G. E. Cirlin, J. C. Harmand, V. M. Harmand, Phys. Rev. E, 73 (2006) 21603.
38. A. I. Persson, M. W. Larsson, S. Stenstrom, B. J. Ohlsson, L. Samuelson, L. R. Wallenberg, Nature Mater, 3 (2004) 677.
39. J. C. Harmand, G. Patriarche, P. –L. N., M. –C. M. –N., L. Travers, F. Glas, Appl. Phys. Lett. 87 (2005) 203101.
40. D. Tham, C. Y. Nam, K. Byon, J. Kim, J. E. Fischer, Appl. Phys. A 85 (2006) 227.
41. C. B. Jiang, B. Wu, Z. Q. Zhang, L. Lu, S. X. Li, S. X. Mao, Appl. Phys. Lett., 88 (2006) 93103.
42. F. D. Wang, A. G. Dong, J.W. Sun, R. Tang, H. Yu, W. E. Buhro, Inorg. Chem., 45 (2006) 7511.

43. H. J. Fan, P. Werner, M. Zacharias, Small 2 (2006) 700.
44. B. Wang, Y. H. Yang, G. W. Yang, Nanotechnology, 17 (2006) 4682.
45. W. Lu, C. M. Lieber, J. Phys. D: Appl. Phys. 39 (2006) R387.
46. J. K. P. De, J. W. Geus, Catal. Rev. 42 (2000) 481.
47. H. Morkoc and Ü. Özgür, “Zinc Oxide: Fundamentals, Materials and Device Technology”, (Wiley-VCH, 2009).
48. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science, 292 (2001) 1897.
49. Y. K. Rao, “Stoichiometry and Thermodynamics of Matallurgical Processes”, Cambridge University Press, New York (1985).
50. Y. Wei, Y. Ding, C. Li, S. Xu,; J.H. Ryo, R. Dupuis, A.K. Sood, D.L. Polla, and Z.L. Wang, J. Phys. Chem. C, 112 (2008) 18935.
51. C. E. Morosanu, “Thin Films by Chemical Vapor Deposition”, (1990) pp.102-107.
52. MTDATA software, ver. 5.10 ( Phase Diagram Software from the National Physical Laboratory, 2010).
53. H. O. Pierson, “Handbook of Chemical Vapor Deposition”, Second Edition, (1999) pp. 12-31.
54. Michael Breedon, Mohammad Bagher Rahmani, Sayyed-Hossein Keshmiri, Wojtek Wlodarski, Kourosh Kalantar-zadeh, Materials Letters 64 (2010) 291.
55. Jinbo Xue, Qianqian Shen, Jingxia Zheng, Wei Liang, Xuguang Liu, Materials Letters 125 (2014) 99.
56. RaadS. Sabry, Osama AbdulAzeez, Manufacturing Letters 2 (2014) 69.
57. Debabrata Pradhan, Zhengding Su, Shrey Sindhwani, John F. Honek, Kam Tong Leung, J. Phys. Chem. C 115 (2011) 18149
58. Y.H. Leung, A.B. Djurisic, J. Gao, M.H. Xie, Z.F. Wei, S.J. Xu, W.K. Chan, Chemical Physics Letters 394 (2004) 452.
59. Chang Shi Lao, Pu Xian Gao, Ru Sen Yang, Yue Zhang, Ying Dai, Zhong L. Wang, Chemical Physics Letters 417 (2005) 359.
60. Y.H. Zhang, J. Liu, T. Liu, L.P. You, X.G. Li, Journal of Crystal Growth 285 (2005) 541.
61. Yunhua Huang, Yue Zhang, Jian He, Ying Dai, Yousong Gu, Zhen Ji, Cheng Zhou, Ceramics International 32 (2006) 561.
62. Wei Bai, Ke Yu, Qiuxiang Zhang, Feng Xu, Deyan Peng, Ziqiang Zhu, Applied Surface Science 253 (2007) 6835.
63. L.W. Yang, H.L. Han, Y.Y. Zhang, J.X. Zhong, Optical Materials 31 (2009) 1640.
64. Haoquan Yan, Rongrui He, Justin Johnson, Matthew Law, Richard J. Saykally, and Peidong Yang, J. AM. CHEM. SOC., 125 (2003) 4728
65. Hong-Di Zhang, Yun-Ze Long, Zhao-Jian Li, Bin Sun, Vacuum 101 (2014) 113
66. 蘭彥廷,“以化學汽相沉積法在(100)鋁酸鋰基板上成長氧化鋅奈米材料”,國立中山大學材料科學研究所碩士論文(2012)。
67. PCPDFWIN, ver. 1.30 (JCPDS-International Centre for Diffraction Data, 1997).
68. P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H.J. Choi, Adv. Funct. Mater., 12 (2002) 323.
69. Aurangzed Khan, J. Pak. Mater. Soc. 4 (2010) 5.
70. 王太伸,”以光調制光譜、光激發螢光光譜、拉曼光譜、穿透光譜、反射光譜研究 GaAsSb/GaAs、ZnO、AlGaN/GaN、Oxide-GaAs材料的光學特性”,國立成功大學物理研究所博士論文(2008)。
71. Hyo-Won Suh, Gil-Young Kim, Yeon-Sik Jung, and Won-Kook Choi, J. Appl. Phys. 97 (2005) 044305.
72. Khun A. Alim, Vladimir A. Fonoberov, Manu Shamsa, and Alexander A. Balandin, J. Appl. Phys. 97 (2005) 124313.
73. T.Y. Kim, J.Y. Kim, S.H. Lee, H.W. Shim, S.H. Lee, E.K. Suh, K.S. Nahm, Synthetic Metals 144 (2004) 61.
74. Haoying Tang, Yong Ding, Peng Jiang, Haiqing Zhou, Chuan Fei Guo, Lianfeng Sun, Aifang Yu and Zhong Lin Wang, Cryst. Eng. Comm 13 (2011) 5052.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code