Responsive image
博碩士論文 etd-1024114-135203 詳細資訊
Title page for etd-1024114-135203
論文名稱
Title
反應參數於應用路徑通量法簡化丁酸甲酯裂解與燃燒化學動力反應機理之影響: 替代燃料化學反應機理之研究
Parametric effects on kinetic mechanism reduction for pyrolysis and oxidation of methyl butanoate using path flux analysis: A study of a biodiesel fuel surrogate
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
177
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-10
繳交日期
Date of Submission
2014-11-24
關鍵字
Keywords
化學動力反應機理、丁酸甲脂、化學反應動態模擬、生質柴油、機理簡化、路徑通量法
chemical kinetic mechanism, mechanism reduction, path flux analysis, methyl butanoate, chemical kinetic modeling, biodiesel fuel
統計
Statistics
本論文已被瀏覽 5717 次,被下載 37
The thesis/dissertation has been browsed 5717 times, has been downloaded 37 times.
中文摘要
生質柴油替代物燃料反應機理之化簡能有效率地將其應用於數值模擬,其為燃燒化學與計算流體力學的ㄧ個挑戰。本研究之宗旨在於提出研究方法,產生丁酸甲脂之簡化機理,其詳細機理包含275個反應物種,以及1549個基元反應,進行簡化時,基於熱裂解及燃燒之初始條件,使用路徑通量法與自定義閾值,移除敏感度較低之反應物種。藉由自定義閾值,可分析閾值對於簡化機理簡化程度之影響。最佳熱裂解簡化機理包含81個反應物種與817個基元反應,於激波管數值模擬中,溫度範圍於1250 K至1700 K皆可適用。最佳燃燒簡化機理包含46個反應物種與207個反應式,以激波管實驗與對沖擴散火焰實驗做驗證,可適用於壓力範圍1 atm至 4 atm,溫度範圍為1250 K 至 1760 K,當量比0.25,1.0與1.5,並於CPU計算時間分析可了解詳細機理與簡化機理於計算時間之差異。此外,於燃燒簡化機理與計算流體力學做耦合,成功驗證出丁酸甲脂協流火焰之模擬,結果與實驗數據相當吻合。最後,反應生成物產率以及反應生成物敏感度分析可分析簡化機理之化工動力特性。本研究所提之簡化機理可以做為生質燃料化學反應動態模擬與計算流體力學耦合模擬之開端。
Abstract
Kinetic modeling for biodiesel fuel surrogates is presently of great interest due to the role as a renewable energy source. Understanding how to generate reduced skeletal model without losing predicting accuracy is a challenge to establish computational dynamic fluid model coupled with reacting flow simulations. The main purpose of this study is to present a strategy to generate reduced skeletal models for methyl butanoate (MB) kinetic modeling. The original MB mechanism composed of 275 species and 1549 reactions has been reduced based on pyrolysis and oxidation conditions using multi-generation path flux analysis (PFA) method. The complexity of the reduced mechanisms is also analyzed. A trade-off reduced mechanism for MB pyrolysis composed of 81 species and 817 reactions is performed over temperatures range from 1250 K to 1700 K in shock tube simulations. For the MB oxidation study, a trade-off reduced mechanism consists of 46 species and 207 reactions has been validated in shock tube and opposed-flow diffusion flame experiment over wide range of temperatures, and equivalence ratios. CPU time analysis also shows one of the strengths in using the generated skeletal mechanisms for computational cost reduction. This thesis also reports for the first time that experimental kinetics from MB co-flow flame have been well validated. The rate of production analysis and sensitivity analysis are also performed to investigate chemical kinetic details for skeletal mechanisms. The reduced MB pyrolysis and oxidation mechanism can be served as a starting point of biodiesel fuel surrogate kinetic modeling with computational fluid dynamics.
目次 Table of Contents
論文審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES xv
NOMENCLATURE xvii
CHAPTER 1 1
INTRODUCTION 1
1.1. Research background 1
1.2. Kinetic mechanism of methyl butanoate 2
1.3. Mechanism reduction technologies 3
1.4. Objective of this study 4
CHAPTER 2 5
METHODOLOGIES 5
2.1. Numerical details of Path flux analysis 7
2.2. Numerical details of chemical reactors 9
2.2.1. 0-D Shock tube 10
2.2.2. 1-D opposed-flow diffusion flame 14
2.2.3. 2-D co-flow flame 16
CHAPTER 3 19
RESULTS AND DISCUSSTION 19
3.1. MB Pyrolysis study 19
3.1.1. Parameter selections for pyrolysis mechanisms 21
3.1.2. Pyrolysis mechanisms complexity analysis 22
3.1.3. Pyrolysis mechanism validations 29
3.1.4. Shock tube simulations 31
3.1.5. Error analysis of pyrolysis mechanisms 40
3.1.6. Rate of production analysis 50
3.1.7. Sensitivity Analysis and CPU time analysis 59
3.1.8. Mechanisms analysis 66
3.2. MB Oxidation study 68
3.2.1. Parameter selections for oxidation mechanism 70
3.2.2. Oxidation mechanisms complexity analysis 71
3.2.3. Oxidation mechanism validations 84
3.2.4. Shock tube simulations and error analysis 87
3.2.5. Opposed-flow diffusion flame simulations and error analysis 104
3.2.6. CPU time analysis 113
3.2.7. Co-flow flame simulations 114
3.2.8. Rate of production analysis 125
3.2.9. Sensitivity analysis 142
3.2.10. Mechanisms analysis 147
CHAPTER 4 149
CONCLUSIONS 149
Reference 150
參考文獻 References
[1] S. Solomon, Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC, Cambridge University Press, 2007.
[2] M.J. Haas, K.M. Scott, T.L. Alleman, R.L. McCormick, Engine Performance of Biodiesel Fuel Prepared from Soybean Soapstock: A High Quality Renewable Fuel Produced from a Waste Feedstock, Energy & Fuels, 15 (2001) 1207-1212.
[3] A. Demirbas, Importance of biodiesel as transportation fuel, Energy Policy, 35 (2007) 4661-4670.
[4] P.T. Pienkos, A. Darzins, The promise and challenges of microalgal‐derived biofuels, 2009.
[5] K.C. Lin, J.Y. Lai, A. Violi, The role of the methyl ester moiety in biodiesel combustion: A kinetic modeling comparison of methyl butanoate and n-butane, Fuel, 92 (2012) 16-26.
[6] Z. Luo, M. Plomer, T. Lu, S. Som, D.E. Longman, S.M. Sarathy, W.J. Pitz, A reduced mechanism for biodiesel surrogates for compression ignition engine applications, Fuel, 99 (2012) 143-153.
[7] J.Y.W. Lai, K.C. Lin, A. Violi, Biodiesel combustion: Advances in chemical kinetic modeling, Progress in Energy and Combustion Science, 37 (2011) 1-14.
[8] O. Herbinet, W.J. Pitz, C.K. Westbrook, Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate, Combustion and Flame, 154 (2008) 507-528.
[9] K.C. Lin, A. Violi, Carbon dioxide formation from a short-chain biodiesel ester: a kinetic study, in: 7th Asia-Pacific Confeerence on Conbustion, 2009.
[10] W.K. Metcalfe, S. Dooley, H.J. Curran, J.M. Simmie, A.M. El-Nahas, M.V. Navarro, Experimental and modeling study of C5H10O2 ethyl and methyl esters, The Journal of Physical Chemistry A, 111 (2007) 4001-4014.
[11] E. Fisher, W. Pitz, H.J. Curran, C. Westbrook, Detailed chemical kinetic mechanisms for combustion of oxygenated fuels, Proceedings of the combustion institute, 28 (2000) 1579-1586.
[12] S. Gaïl, M.J. Thomson, S.M. Sarathy, S.A. Syed, P. Dagaut, P. Diévart, A.J. Marchese, F.L. Dryer, A wide-ranging kinetic modeling study of methyl butanoate combustion, Proceedings of the Combustion Institute, 31 (2007) 305-311.
[13] S. Gaïl, S.M. Sarathy, M.J. Thomson, P. Diévart, P. Dagaut, Experimental and chemical kinetic modeling study of small methyl esters oxidation: Methyl (E)-2-butenoate and methyl butanoate, Combustion and Flame, 155 (2008) 635-650.
[14] S. Dooley, H.J. Curran, J.M. Simmie, Autoignition measurements and a validated kinetic model for the biodiesel surrogate, methyl butanoate, Combustion and Flame, 153 (2008) 2-32.
[15] L.K. Huynh, K.C. Lin, A. Violi, Kinetic modeling of methyl butanoate in shock tube, The Journal of Physical Chemistry A, 112 (2008) 13470-13480.
[16] A. Farooq, D.F. Davidson, R.K. Hanson, L.K. Huynh, A. Violi, An experimental and computational study of methyl ester decomposition pathways using shock tubes, Proceedings of the Combustion Institute, 32 (2009) 247-253.
[17] B. Akih-Kumgeh, J.M. Bergthorson, Skeletal Chemical Kinetic Mechanisms for Syngas, Methyl Butanoate,n-Heptane, andn-Decane, Energy & Fuels, 27 (2013) 2316-2326.
[18] R. Djouad, B. Sportisse, N. Audiffren, Reduction of multiphase atmospheric chemistry, Journal of Atmospheric Chemistry, 46 (2003) 131-157.
[19] H. Huang, M. Fairweather, J. Griffiths, A. Tomlin, R. Brad, A systematic lumping approach for the reduction of comprehensive kinetic models, Proceedings of the Combustion Institute, 30 (2005) 1309-1316.
[20] M. Bodenstein, Eine theorie der photochemischen reaktionsgeschwindigkeiten, Z. phys. Chem, 85 (1913) 0022-3654.
[21] U. Maas, S.B. Pope, Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space, Combustion and Flame, 88 (1992) 239-264.
[22] X. Gou, W. Sun, Z. Chen, Y. Ju, A dynamic multi-timescale method for combustion modeling with detailed and reduced chemical kinetic mechanisms, Combustion and Flame, 157 (2010) 1111-1121.
[23] W. Sun, Z. Chen, X. Gou, Y. Ju, A path flux analysis method for the reduction of detailed chemical kinetic mechanisms, Combustion and Flame, 157 (2010) 1298-1307.
[24] T. Turányi, Sensitivity analysis of complex kinetic systems. Tools and applications, Journal of Mathematical Chemistry, 5 (1990) 203-248.
[25] A.S. Tomlin, M.J. Pilling, T. Turányi, J.H. Merkin, J. Brindley, Mechanism reduction for the oscillatory oxidation of hydrogen: sensitivity and quasi-steady-state analyses, Combustion and Flame, 91 (1992) 107-130.
[26] S. Vajda, P. Valko, T. Turanyi, Principal component analysis of kinetic models, International Journal of Chemical Kinetics, 17 (1985) 55-81.
[27] S. Vajda, T. Turányi, Principal component analysis for reducing the Edelson-Field-Noyes model of the Belousov-Zhabotinskii reaction, The Journal of Physical Chemistry, 90 (1986) 1664-1670.
[28] M. Valorani, F. Creta, D. Goussis, J. Lee, H. Najm, An automatic procedure for the simplification of chemical kinetic mechanisms based on CSP, Combustion and Flame, 146 (2006) 29-51.
[29] T. Lu, C.K. Law, A directed relation graph method for mechanism reduction, Proceedings of the Combustion Institute, 30 (2005) 1333-1341.
[30] P. Pepiot-Desjardins, H. Pitsch, An efficient error-propagation-based reduction method for large chemical kinetic mechanisms, Combustion and Flame, 154 (2008) 67-81.
[31] T. Lu, C.K. Law, Toward accommodating realistic fuel chemistry in large-scale computations, Progress in Energy and Combustion Science, 35 (2009) 192-215.
[32] Z. Luo, T. Lu, J. Liu, A reduced mechanism for ethylene/methane mixtures with excessive NO enrichment, Combustion and Flame, 158 (2011) 1245-1254.
[33] Z. Luo, M. Plomer, T. Lu, S. Som, D.E. Longman, A reduced mechanism for biodiesel surrogates for low temperature chemistry, in: 7th US National Combustion Meeting, Atlanta, GA, 2011.
[34] R.J.K. A.E. Lutz, J.A. Miller, SENKIN: A FORTRAN Program for Predicting
Homogeneous Gas Phase Chemical Kinetics with Sensitivity Analysis, 1997.
[35] H.W. Liepmann, A. Roshko, Elements of gasdynamics, Courier Dover Publications, 1957.
[36] T.v. Kármán, Über laminare und turbulente Reibung, ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 1 (1921) 233-252.
[37] ANSYS, Gambit, Release 2.3. 16, in.
[38] ANSYS, FLUENT Theory Guide, Release 14.0 ANSYS Inc. Canonsburg, PA, USA, (2011).
[39] R. Kee, F. Rupley, J. Miller, CHEMKIN-II: A FORTRAN chemical kinetics package for the analysis of gas phase chemical kinetics, 1989, Sandia National Laboratories, SAND89-8009B, Albuquerque NM, Livermore CA.
[40] A. Farooq, W. Ren, K.Y. Lam, D.F. Davidson, R.K. Hanson, C.K. Westbrook, Shock tube studies of methyl butanoate pyrolysis with relevance to biodiesel, Combustion and Flame, (2012).
[41] L.K. Huynh, A. Violi, Thermal decomposition of methyl butanoate: Ab initio study of a biodiesel fuel surrogate, The Journal of organic chemistry, 73 (2008) 94-101.
[42] M.A. Oehlschlaeger, H.-P.S. Shen, A. Frassoldati, S. Pierucci, E. Ranzi, Experimental and kinetic modeling study of the pyrolysis and oxidation of decalin, Energy Fuels, 23 (2009) 1464-1472.
[43] R. Fournet, V. Warth, P. Glaude, F. Battin‐Leclerc, G. Scacchi, G. Come, Automatic reduction of detailed mechanisms of combustion of alkanes by chemical lumping, International journal of chemical kinetics, 32 (2000) 36-51.
[44] A.E. Lutz, R.J. Kee, J.A. Miller, SENKIN: A FORTRAN program for predicting homogeneous gas phase chemical kinetics with sensitivity analysis, Sandia National Laboratories Report SAND87-8248, (1988).
[45] W.R. Schwartz, C.S. McEnally, L.D. Pfefferle, Decomposition and hydrocarbon growth processes for esters in non-premixed flames, The Journal of Physical Chemistry A, 110 (2006) 6643-6648.
[46] C.S. McEnally, L.D. Pfefferle, Fuel decomposition and hydrocarbon growth processes for oxygenated hydrocarbons: butyl alcohols, Proceedings of the Combustion Institute, 30 (2005) 1363-1370.
[47] D. Davidson, J. Herbon, D. Horning, R. Hanson, OH concentration time histories in n‐alkane oxidation, International Journal of Chemical Kinetics, 33 (2001) 775-783.
[48] J.M. Smith, J.M. Simmie, H.J. Curran, Autoignition of heptanes; experiments and modeling, International journal of chemical kinetics, 37 (2005) 728-736.
[49] A. Sinha, M. Thomson, The chemical structures of opposed flow diffusion flames of C3 oxygenated hydrocarbons (isopropanol, dimethoxy methane, and dimethyl carbonate) and their mixtures, Combustion and flame, 136 (2004) 548-556.
[50] C.S. McEnally, D.M. Ciuparu, L.D. Pfefferle, Experimental study of fuel decomposition and hydrocarbon growth processes for practical fuel components: heptanes, Combustion and Flame, 134 (2003) 339-353.
[51] R. Santoro, H. Semerjian, R. Dobbins, Soot particle measurements in diffusion flames, Combustion and Flame, 51 (1983) 203-218.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code