Responsive image
博碩士論文 etd-1024116-094919 詳細資訊
Title page for etd-1024116-094919
論文名稱
Title
藉由液相層析質譜儀建立日本虎斑猛水蚤蛋白質分子指標
Establishing the protein molecular markers of Tigriopus japonicus by using LC-MS/MS
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
73
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-06-16
繳交日期
Date of Submission
2016-11-24
關鍵字
Keywords
主成份分析法、蛋白質分子指標、溫度、日本虎斑猛水蚤、電噴灑游離法離子阱串聯質譜儀
principle components analysis, Tigriopus japonicus, ESI-MS/MS, temperature, protein marker
統計
Statistics
本論文已被瀏覽 5646 次,被下載 35
The thesis/dissertation has been browsed 5646 times, has been downloaded 35 times.
中文摘要
潮間帶橈足類是一群生活在溫帶到熱帶潮間帶的橈足類,潮間帶橈足類有四個主要物種: Tigriopus japonicus、Tigriopus carlifornicus、Tigriopus brevicornicus及Tigriopus fulvus。由於這類生物居住在海水會飛濺入的岩洞中,所以它們的居住環境的溫度及鹽度有較大的波動。因為這類生物的棲地太過廣泛,所以它們個體間的基因歧異度較大。根據這項原因,本次研究從日本的Gozilla rock及Jagashima還有台灣的瑞芳採集三株不同的T. japonicus。本次研究使用液相層析電噴灑游離法離子阱串聯質譜儀分析這三株不同的T. japonicus的蛋白質分子指標。進行蛋白質體的研究。本研究藉由主成份分析法對這三株T. japonicus液相層析質譜資料進行分析,進而找出這三株T. japonicus的差異性。分析結果發現這三個採集地的日本虎斑猛水蚤質譜資料可因為第一主成份中的22.5分鐘的743.5 m/z、23.5分鐘的743.5 m/z及23.5分鐘的581.5 m/z歸類成三群。因此再檢視這三個採集地T. japonicus在22分鐘至24分鐘的質譜資料,發現每個採集地T. japonicus質譜資料的22.5分鐘到23.5分鐘的743.5 m/z會和681.7、817.7及908.5 m/z組成一組蛋白質訊號,這組蛋白質訊號經由程式回推原始分子量為8167至8169 m/z。變更主成份分析的分析時間為23至24分鐘,發現這組蛋白質的主要訊號: 681、743及817等訊號被選為第一個主成份,說明這組蛋白質訊號被當作一個重要的歸類依據。本次研究更進一步推測是否環境溫度的改變會不會影響這組蛋白質的表現量,因此將培養的環境溫度變更為適合T. japonicus培養溫度的較低溫: 20℃後,我們看到採集地緯度最高組的蛋白質表現量明顯的增加,其他兩組採集地緯度較低組的蛋白質表現量沒有明顯差異,因此推測這組蛋白質表現量與樣本採集緯度有關。
Abstract
Intertidal copepods are a group of copepod live in the intertidal zone from temperate climate to tropic climate. T. japonicus, T. carlifornicus, T. brevicornis and T. fulvus are four main species of intertidal copepods. Due to these copepods live in rock pool which can be spray in by sea water, the temperature and salinity of their habitat have large fluctuation. Because the range of their habitats are too extensively, they have large genetic diversity. According this reason, this study collected three different strain T. japonicus from Gozilla rock and Jagashima, Japan and Rei-Fang, Taiwan. The study analyzed these three different strains of T. japonicus to do protein biomarker research by using liquid chromatography coupled to electrospray ionization tandem mass spectrometry (LC-ESI-ion trap MS/MS). The study took these mass spectrum data of these three different strains of T. japonicus to do profile components analysis (PCA) to find out the differences between them. The PCA result showed that these mass spectrum data of these three different strains of T. japonicus could be grouped into three types according to 743.5 m/z at 22.5 minutes, 743.5 m/z at 23.5 minutes and 581.5 m/z at 23.5 minutes in first profile component. According to the result, we check these mass spectrum data of these three different strains of T. japonicus at the period of 22 minutes to 24 minutes again. The mass spectrum data displayed that the 743.5 m/z formed a signal of protein with 681.7, 817.7 and 908.5 m/z at the period of 22.5 minutes to 23.5 minutes from every collected sites. The original molecular weights of this protein was 8167 to 8169 m/z by software deconvolute. PCA analytic time changed to 23 minutes and 24 minutes, the major signals of protein, 681, 743, 817, were chosen as first principle component, so the meaning was that the protein signals was an important group standard. According to these results, the study had an advance suggestion that if the environment temperature changed, expression of this protein also changed or not. As this reason, the study changed the cu
ltured temperature to 20℃. After changing the culture temperature, the result of this study was that expression of this protein from the highest latitude was higher than the other two, and expression of protein of the other two was no significant difference. So this protein expression have some relationship with sample collected latitude.
目次 Table of Contents
目錄
論文審定書 ..................................................................................................................... i
論文公開授權書 ............................................................................................................ ii
誌謝 .............................................................................................................................. iii
中文摘要 ....................................................................................................................... iv
Abstract .......................................................................................................................... v
目錄 .............................................................................................................................. vii
圖目錄 ........................................................................................................................... ix
表目錄 .......................................................................................................................... xii
第一章 緒論 .................................................................................................................. 1
第一節 潮間帶橈足類的重要性 .......................................................................... 1
第二節 傳統的鑑定方式 ...................................................................................... 3
第三節 現代的分析方式 ...................................................................................... 4
第四節 實例 .......................................................................................................... 6
第二章 材料方法 ........................................................................................................ 13
第一節 日本虎斑猛水蚤 Tigriopus japonicus ................................................... 13
第二節 海洋浮游動物日本虎斑猛水蚤之研磨過程 ........................................ 18
第三節 海洋浮游動物日本虎斑猛水蚤之蛋白質分析過程 ............................ 20
第三章 結果 ................................................................................................................ 21
第一節 主成份分析 ............................................................................................ 21
第二節 日本虎斑猛水蚤液相層析質譜資料 .................................................... 32
第四章 討論 ................................................................................................................ 49
第五章 實驗方法與材料 ............................................................................................ 50
第一節 日本虎斑猛水蚤餵養材料 .................................................................... 50
第二節 實驗使用儀器 ........................................................................................ 51
第三節 日本虎斑猛水蚤培養數據 .................................................................... 52
第六章 參考文獻 ........................................................................................................ 57

圖目錄
圖 1-1: 日本虎斑猛水蚤的 12 個生長階段圖片 ........................................................ 4
圖 2-1: 2006 年 Tigriopus 在亞洲西北太平洋沿岸發現地點 ................................... 15
圖 2-2: 2009 年 Tigriopus 在亞洲西北太平洋沿岸發現地點 ................................... 15
圖 2-3: 日本虎斑猛水蚤樣本採集地點 .................................................................... 17
圖 2-4: 三個採集地的日本虎斑猛水蚤照片 ............................................................ 18
圖 2-5: 高效能液相層析儀梯度沖提條件 ................................................................ 20
圖 3-1: 日本虎斑猛水蚤於 25℃下培養六週進行主成分分析結果 ....................... 22
圖 3-2: 日本虎斑猛水蚤於 25℃下培養三週進行主成分分析結果 ....................... 23
圖 3-2: 日本虎斑猛水蚤於 25℃下培養四週進行主成分分析結果 ....................... 24
圖 3-3: 日本虎斑猛水蚤於 25℃下培養五週進行主成分分析結果 ....................... 25
圖 3-5: 日本虎斑猛水蚤於 25℃下培養六週進行主成分分析結果 ....................... 26
圖 3-6: 日本虎斑猛水蚤於平均溫度 25.81℃下培養三週進行主成分分析結果 .. 27
圖 3-7: 日本虎斑猛水蚤於平均溫度 25.81℃下培養四週進行主成分分析結果 .. 28
圖 3-8: 日本虎斑猛水蚤於平均溫度 25.81℃下培養五週進行主成分分析結果 .. 29
圖 3-9: 日本虎斑猛水蚤於平均溫度 25.81℃下培養六週進行主成分分析結果 .. 30
圖 3-10: 日本虎斑猛水蚤於 20℃下培養三週進行主成分分析結果 ..................... 31
圖 3-11: 以柱狀圖表示表 3-4 日本虎斑猛水蚤在三個不同採集地的樣本在三個
不同的溫度條件下培養三週的質譜訊號強度 .......................................................... 35
圖 3-12: (A)25℃培養三週三個來源日本虎斑猛水蚤 LC 滯留時間為 22.5 至 23.5
分鐘質譜圖 .................................................................................................................. 35
圖 3-12: (B) 25℃培養三週三個來源日本虎斑猛水蚤 DataAnalysis 進行
deconvolute 所挑選峰值 ............................................................................................. 36
圖 3-12: (C) 25℃培養三週三個來源日本虎斑猛水蚤 DataAnalysis 進行
x
deconvolute 後訊號原始分子量 ................................................................................. 36
圖 3-13: (A)25℃培養四週三個來源日本虎斑猛水蚤 LC 滯留時間為 22.5 至 23.5
分鐘質譜圖 .................................................................................................................. 37
圖 3-13: (B) 25℃培養四週三個來源日本虎斑猛水蚤 DataAnalysis 進行
deconvolute 所挑選峰值 ............................................................................................. 37
圖 3-13: (C) 25℃培養四週三個來源日本虎斑猛水蚤 DataAnalysis 進行
deconvolute 後訊號原始分子量 ................................................................................. 38
圖 3-14: (A)25℃培養五週三個來源日本虎斑猛水蚤 LC 滯留時間為 22.5 至 23.5
分鐘質譜圖 .................................................................................................................. 38
圖 3-14: (B) 25℃培養五週三個來源日本虎斑猛水蚤 DataAnalysis 進行
deconvolute 所挑選峰值 ............................................................................................. 39
圖 3-14: (C) 25℃培養五週三個來源日本虎斑猛水蚤 DataAnalysis 進行
deconvolute 後訊號原始分子量 ................................................................................. 39
圖 3-15: (A)25℃培養六週三個來源日本虎斑猛水蚤 LC 滯留時間為 22.5 至 23.5
分鐘質譜圖 .................................................................................................................. 40
圖 3-15: (B) 25℃培養五週三個來源日本虎斑猛水蚤 DataAnalysis 進行
deconvolute 所挑選峰值 ............................................................................................. 40
圖 3-15: (C) 25℃培養五週三個來源日本虎斑猛水蚤 DataAnalysis 進行
deconvolute 後訊號原始分子量 ................................................................................. 41
圖 3-16: (A)平均溫度 25.81℃下培養三週三個來源日本虎斑猛水蚤 LC 滯留時間
為 22.5 至 23.5 分鐘質譜圖 ........................................................................................ 41
圖 3-16: (B)平均溫度 25.81℃下培養三週三個來源日本虎斑猛水蚤 DataAnalysis
進行 deconvolute 所挑選峰值 .................................................................................... 42
圖 3-16: (C)平均溫度 25.81℃下培養三週三個來源日本虎斑猛水蚤 DataAnalysis
進行 deconvolute 後訊號原始分子量 ........................................................................ 42
圖 3-17: (A)平均溫度 25.81℃下培養四週三個來源日本虎斑猛水蚤 LC 滯留時間
為 22.5 至 23.5 分鐘質譜圖 ........................................................................................ 43
圖 3-17: (B)平均溫度 25.81℃下培養四週三個來源日本虎斑猛水蚤 DataAnalysis
進行 deconvolute 所挑選峰值 .................................................................................... 43
圖 3-17: (C)平均溫度 25.81℃下培養四週三個來源日本虎斑猛水蚤 DataAnalysis
進行 deconvolute 後訊號原始分子量 ........................................................................ 44
圖 3-18: (A)平均溫度 25.81℃下培養五週三個來源日本虎斑猛水蚤 LC 滯留時間
為 22.5 至 23.5 分鐘質譜圖 ........................................................................................ 44
圖 3-18: (B)平均溫度 25.81℃下培養五週三個來源日本虎斑猛水蚤 DataAnalysis
進行 deconvolute 所挑選峰值 .................................................................................... 45
圖 3-18: (C)平均溫度 25.81℃下培養五週三個來源日本虎斑猛水蚤 DataAnalysis
進行 deconvolute 後訊號原始分子量 ........................................................................ 45
圖 3-19: (A)平均溫度 25.81℃下培養六週三個來源日本虎斑猛水蚤 LC 滯留時間
為 22.5 至 23.5 分鐘質譜圖 ........................................................................................ 46
圖 3-19: (B)平均溫度 25.81℃下培養六週三個來源日本虎斑猛水蚤 DataAnalysis
進行 deconvolute 所挑選峰值 .................................................................................... 46
圖 3-19: (C)平均溫度 25.81℃下培養六週三個來源日本虎斑猛水蚤 DataAnalysis
進行 deconvolute 後訊號原始分子量 ........................................................................ 47
圖 3-20: (A)20℃下培養三週三個來源日本虎斑猛水蚤 LC 滯留時間為 22.5 至
23.5 分鐘質譜圖 .......................................................................................................... 47
圖 3-20: (B)20℃下培養三週三個來源日本虎斑猛水蚤 DataAnalysis 進行
deconvolute 所挑選峰值 ............................................................................................. 48
圖 3-20: (C)20℃下培養三週三個來源日本虎斑猛水蚤 DataAnalysis 進行
deconvolute 後訊號原始分子量 ................................................................................. 48
圖 5-1: 2016.02.23 培養之日本虎斑猛水蚤單位重量中有多少蛋白質 .................. 53
圖 5-2: 2016.03.24 培養之日本虎斑猛水蚤單位重量中有多少蛋白質 .................. 55

表目錄
表 1-1: Christoph Effertz 等學者們使用分離條件 .................................................... 10
表 1-2: 浮游動物蛋白質體研究種類及實驗方法 .................................................... 11
表 2-1: Tigriopus japonicus 地位分類 ....................................................................... 13
表 2-2: 虎斑猛水蚤品種 ............................................................................................ 14
表 2-2: 潮間帶橈足類日本虎斑猛水蚤採集點座標軸及實驗代號 ........................ 17
表 2-3: 培養溫度對照表 ............................................................................................ 17
表 2-4: 日本虎斑猛水蚤的實驗流程 ........................................................................ 19
表 2-5: 高效能液相層析儀梯度沖提條件 ................................................................ 20
表 3-1: 日本虎斑猛水蚤在日本 Gozilla rock 採集的樣本在不同的溫度條件下培
養三週的質譜訊號和訊號強度比較 .......................................................................... 33
表 3-2: 日本虎斑猛水蚤在日本 Jagashima 採集的樣本在不同的溫度條件下培養
三週的質譜訊號和訊號強度比較 .............................................................................. 33
表 3-3: 日本虎斑猛水蚤在台灣瑞濱採集的樣本在不同的溫度條件下培養三週的
質譜訊號和訊號強度比較 .......................................................................................... 34
表 3-4: 日本虎斑猛水蚤在三個不同採集地的樣本在不同的溫度條件下培養三週
的質譜訊號強度比較 .................................................................................................. 34
表 5-1: 若元錠每錠中含有的成份: ........................................................................ 50
表 5-2: 2016.02.23 培養之日本虎斑猛水蚤基本培養資料。 .................................. 52
表 5-3: 2016.03.24 培養之日本虎斑猛水蚤基本培養資料。 .................................. 54
表 5-4: 2016.04.25 培養之日本虎斑猛水蚤基本培養資料。 .................................. 56
參考文獻 References
1. Raisuddin, S.; Kwok, K. W. H.; Leung, K. M. Y.; Schlenk, D.; Lee, J.-S., The copepod Tigriopus: A promising marine model organism for ecotoxicology and environmental genomics. Aquat. Toxicol. 2007, 83, 161-173.
2. Jung, S.-O.; Lee, Y.-M.; Park, T.-J.; Park, H. G.; Hagiwara, A.; Leung, K. M. Y.; Dahms, H.-U.; Lee, W.; Lee, J.-S., The complete mitochondrial genome of the intertidal copepod Tigriopus sp. (Copepoda, Harpactidae) from Korea and phylogenetic considerations. J. Exp. Mar. Biol. Ecol. 2006, 333, 251-262.
3. Jeong, C. B.; Kim, B. M.; Choi, H. J.; Baek, I.; Souissi, S.; Park, H. G.; Lee, J. S.; Rhee, J. S., Genome-wide identification and transcript profile of the whole cathepsin superfamily in the intertidal copepod Tigriopus japonicus. Dev Comp Immunol 2015, 53, 1-12.
4. Boxshall, G. A.; Halsey, S. H., An introduction to copepod diversity. Ray Society: 2004.
5. ITÔ, T., The Biology of a Harpacticoid Copepod, Tigriopus japonicus Mori (With 12 Text-figures, 1 Table and 2 Plates). 北海道大學理學部紀要= JOURNAL OF THE FACULTY OF SCIENCE HOKKAIDO UNIVERSITY Series ⅤⅠ. ZOOLOGY 1970, 17, 474-500.
6. Ki, J.-S.; Lee, K.-W.; Park, H. G.; Chullasorn, S.; Dahms, H.-U.; Lee, J.-S., Phylogeography of the copepod Tigriopus japonicus along the Northwest Pacific rim. J. Plankton Res. 2009, 31, 209-221.
7. Marcial, H. S.; Hagiwara, A.; Snell, T. W., Estrogenic compounds affect development of harpacticoid copepod Tigriopus japonicus. Environ. Toxicol. Chem. 2003, 22, 3025-3030.
8. Bao, V. W. W.; Koutsaftis, A.; Leung, K. M. Y., Temperature-dependent toxicities of chlorothalonil and copper pyrithione to the marine copepod Tigriopus japonicus and dinoflagellate Pyrocystis lunula. Australas. J. Ecotoxicol. 2008, 14, 45-54.
9. Li, A. J.; Leung, P. T. Y.; Bao, V. W. W.; Yi, A. X. L.; Leung, K. M. Y., Temperature-dependent toxicities of four common chemical pollutants to the marine medaka fish, copepod and rotifer. Ecotoxicology 2014, 23, 1564-1573.
10. Kwok, K. W. H.; Leung, K. M. Y., Toxicity of antifouling biocides to the intertidal harpacticoid copepod Tigriopus japonicus (Crustacea, Copepoda): Effects of temperature and salinity. Mar. Pollut. Bull. 2005, 51, 830-837.
11. Park, G. S.; Yoon, S.-M.; Park, K.-S., Impact of desalination byproducts on marine organisms- a case study at Chuja Island desalination plant in Korea. Desalin. Water Treat. 2011, 33, 267-272.
12. Kwok, K. W. H.; Leung, K. M. Y.; Bao, V. W. W.; Lee, J.-S., Copper toxicity in the marine copepod Tigropus japonicus: Low variability and high reproducibility of repeated acute and life-cycle tests. Mar. Pollut. Bull. 2008, 57, 632-636.
13. Rhodes, J. R.; Grist, E. P. M.; Kwok, K. W. H.; Leung, K. M. Y., A Bayesian mixture model for estimating intergeneration chronic toxicity. Environ Sci Technol 2008, 42, 8108-14.
14. Kwok, K. W. H.; Grist, E. P. M.; Leung, K. M. Y., Acclimation effect and fitness cost of copper resistance in the marine copepod Tigriopus japonicus. Ecotoxicol. Environ. Saf. 2009, 72, 358-364.
15. Yan, Z. G.; Yang, N. Y.; Wang, X. N.; Wang, W. H.; Meng, S. S.; Liu, Z. T., Preliminary analysis of species sensitivity distribution based on gene expression effect. Sci. China: Earth Sci. 2012, 55, 907-913.
16. Bao, V. W. W.; Leung, K. M. Y.; Lui, G. C. S.; Lam, M. H. W., Acute and chronic toxicities of Irgarol alone and in combination with copper to the marine copepod Tigriopus japonicus. Chemosphere 2013, 90, 1140-1148.
17. Sun, P. Y.; Foley, H. B.; Bao, V. W. W.; Leung, K. M. Y.; Edmands, S., Variation in tolerance to common marine pollutants among different populations in two species of the marine copepod Tigriopus. Environ. Sci. Pollut. Res. 2015, Ahead of Print.
18. Chung, E.-Y.; Shin, Y. K.; Yih, W., Effects of suspended solid and cadmium on the shallow-sea ecosystem II. Acute and chronic toxicity of cadmium to a herbivorous copepod, Tigriopus japonicus. Han'guk Susan Hakhoechi 1996, 29, 124-133.
19. Wang, M.-H.; Wang, G.-Z., Biochemical response of the copepod Tigriopus japonicus Mori experimentally exposed to cadmium. Arch Environ Contam Toxicol 2009, 57, 707-17.
20. Li, H.; Shi, L.; Wang, D.; Wang, M., Impacts of mercury exposure on life history traits of Tigriopus japonicus: Multigeneration effects and recovery from pollution. Aquat. Toxicol. 2015, 166, 42-49.
21. Mohammed, E. H.; Wang, G.; Jiang, J., The effects of nickel on the reproductive ability of three different marine copepods. Ecotoxicology 2010, 19, 911-916.
22. Wang, M.-H.; Wang, G.-Z., Biochemical response of the copepod Tigriopus japonicus mori experimentally exposed to cadmium. [Erratum to document cited in CA152:052348]. Arch. Environ. Contam. Toxicol. 2010, 58, 247.
23. Kim, B.-M.; Choi, B.-S.; Lee, K.-W.; Ki, J.-S.; Kim, I.-C.; Choi, I.-Y.; Rhee, J.-S.; Lee, J.-S., Expression profile analysis of antioxidative stress and developmental pathway genes in the manganese-exposed intertidal copepod Tigriopus japonicus with 6K oligochip. Chemosphere 2013, 92, 1214-1223.
24. Ohman, M. D.; Powell, J. R.; Picheral, M.; Jensen, D. W., Mesozooplankton and particulate matter responses to a deep-water frontal system in the southern California Current System. Journal of Plankton Research 2012, 34, 815-827.
25. Yi, A. X.; Han, J.; Lee, J.-S.; Leung, K. M. Y., Ecotoxicity of triphenyltin on the marine copepod Tigriopus japonicus at various biological organisations: from molecular to population-level effects. Ecotoxicology 2014, 23, 1314-1325.
26. Bao, V. W. W.; Leung, K. M. Y.; Qiu, J.-W.; Lam, M. H. W., Acute toxicities of five commonly used antifouling booster biocides to selected subtropical and cosmopolitan marine species. Mar. Pollut. Bull. 2011, 62, 1147-1151.
27. Umezawa, T.; Oguri, Y.; Matsuura, H.; Yamazaki, S.; Suzuki, M.; Yoshimura, E.; Furuta, T.; Nogata, Y.; Serisawa, Y.; Matsuyama-Serisawa, K.; Abe, T.; Matsuda, F.; Suzuki, M.; Okino, T., Omaezallene from Red Alga Laurencia sp.: Structure Elucidation, Total Synthesis, and Antifouling Activity. Angew. Chem., Int. Ed. 2014, 53, 3909-3912.
28. 鄭重; 生物學; 李少菁; 許振祖, 海洋浮游生物學. 水產: 1996.
29. Liebler, D., Introduction to proteomics: tools for the new biology. Springer Science & Business Media: 2001.
30. Riccardi, N.; Lucini, L.; Benagli, C.; Welker, M.; Wicht, B.; Tonolla, M., Potential of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the identification of freshwater zooplankton: a pilot study with three Eudiaptomus (Copepoda: Diaptomidae) species. J. Plankton Res. 2012, 34, 484-492.
31. Laakmann, S.; Gerdts, G.; Erler, R.; Knebelsberger, T.; Martinez, A. P.; Raupach, M. J., Comparison of molecular species identification for North Sea calanoid copepods (Crustacea) using proteome fingerprints and DNA sequences. Mol Ecol Resour 2013, 13, 862-76.
32. Cech, N. B.; Enke, C. G., Practical implications of some recent studies in electrospray ionization fundamentals. Mass Spectrometry Reviews 2001, 20, 362-387.
33. Jean, N.; Dumont, E.; Durrieu, G.; Balliau, T.; Jamet, J.-L.; Personnic, S.; Garnier, C., Protein expression from zooplankton communities in a metal contaminated NW mediterranean coastal ecosystem. Mar Environ Res 2012, 80, 12-26.
34. Jubeaux, G.; Audouard-Combe, F.; Simon, R.; Tutundjian, R.; Salvador, A.; Geffard, O.; Chaumot, A., Vitellogenin-like Proteins among Invertebrate Species Diversity: Potential of Proteomic Mass Spectrometry for Biomarker Development. Environ. Sci. Technol. 2012, 46, 6315-6323.
35. Wiacek, M.; Uddin, N.; Kim, H.-J.; Zubrzycki, I. Z., Proteome changes in response to ecologically viable environmental variation in Calanus sinicus. Protein Pept. Lett. 2013, 20, 78-87.
36. Otte, K. A.; Fröhlich, T.; Arnold, G. J.; Laforsch, C., Proteomic analysis of Daphnia magna hints at molecular pathways involved in defensive plastic responses. BMC Genomics 2014, 15, 1-17.
37. Effertz, C.; Müller, S.; Elert, E. v., Differential peptide labeling (iTRAQ) in LC–MS/MS based proteomics in Daphnia reveal mechanisms of an antipredator response. Journal of proteome research 2014, 14, 888-896.
38. Li, W.; Han, G.; Dong, Y.; Ishimatsu, A.; Russell, B. D.; Gao, K., Combined effects of short-term ocean acidification and heat shock in a benthic copepod Tigriopus japonicus Mori. Mar. Biol. (Heidelberg, Ger.) 2015, 162, 1901-1912.
39. Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry 1976, 72, 248-254.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code