Responsive image
博碩士論文 etd-1026110-134420 詳細資訊
Title page for etd-1026110-134420
論文名稱
Title
銅線微接點及內排線接點(ILB)顯微組織與劣化機制探討
Microstructure analysis and failure mechanism of Cu wire bond and Inner Lead Bond
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
115
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-10-18
繳交日期
Date of Submission
2010-10-26
關鍵字
Keywords
內排線接點、捲帶式自動接合技術、銅焊線
ILB, TCP, Cu Wire bond
統計
Statistics
本論文已被瀏覽 5650 次,被下載 0
The thesis/dissertation has been browsed 5650 times, has been downloaded 0 times.
中文摘要
本論文研究範圍主要涵蓋兩部份,第一部分主要探討捲帶式自動接合技術(Tape Carry Package, TCP)於內排線接點 (Inner Lead Bonding, ILB) 製程所產生的失效機制;第二部份則著重於焊線製程中銅焊線顯微組織分析與破壞機制可靠度研究與分析。
由於擁有價格低、製造過程簡單、與體積小等優勢,TCP 被廣泛應用於消費電子產品,ILB 製程對於生產高品質的捲帶式自動接合技術封裝與組件尤其重要。ILB 製程是相當動態的,因為接合時間只有 0.2 秒左右來完成熱壓焊接。
焊接液池的組成會隨著焊接溫度和壓力而變化,而且是形成不同結構的關鍵。一種罕見的焊接失效是發生在製程參數最佳化時,當ILB接合處的微觀結構由電子微探分析儀 (EPMA) 進行詳細的相位分析,正常與失效接合的相位組成序列可由金錫銅三元相位圖和金鍚二元的熱化學數據來解釋。第一部分研究顯示,亞共晶組成 (錫比重小於30%) 液池可維持正常ILB 接合,而過共晶組成 (錫比重大於30%) 有潛在的風險形成這種罕見的焊接失效。
第二部分研究中,銅線焊接的樣本被放在溫度205°C的空氣中老化 (Age) 二千小時,結果顯示,銅焊線和鋁焊墊之間的接合處形成了Cu9Al4, CuAl, CuAl2等介金屬化合物,並在熱音波線焊 (Thermosonic Wire Bonding) 中因超音波擠壓效應而開始形成裂縫,此裂縫隨著老化時間 (Aging Time) 會逐漸向焊球中心擴大,且氯離子慢慢經此裂縫擴散到焊球中心,這樣的擴散效應造成了氯離子和銅鋁介金屬相之間的腐蝕效應,進而造成銅線焊接的損壞。
Abstract
In this paper, there are two major investments consisted of “Failure Mechanism of Inner Lead Au-Sn Bonds in Tape Automated Bonding (TCP) Packages” and “Cu Wire bond microstructure analysis and failure mechanism”.
In view of the advantages of low cost, simple manufacturing process and significant miniaturization in size, TCP technology is widely applied in consumer electronic products. Inner lead bonding (ILB) process is especially crucial for the production of high quality TCP packages and components. The ILB process is extremely dynamic since the bonding time is around 0.2 second to complete the thermo-compress and soldering processes. The composition of liquid pool varied with the bond temperature and pressure and is crucial to exhibit different structure. One type of unusual failure bond happened during the process parameters optimization. ILB joints microstructure was examined by electron microprobe (EPMA) for detail phase analysis. The phase formation sequence of normal and failure bonds can be explained from the Au-Sn-Cu ternary phase diagram and thermo-chemistry data of Au-Sn binary. According to Part I study, the hypo-eutectic composition (<30 at% Sn) liquid pool could maintain the normal ILB bonds. And the hyper-eutectic composition (>30 at% Sn) has the potential risk to form this unusual failure bond.
In the Part II study, copper wire bonding samples were aged at 205°C in air from 0 h to 2000 h. It was found that the bonding of a Cu wire and an Al pad formed Cu9Al4, CuAl, and CuAl2 intermetallic compounds, and an initial crack was formed by the ultrasonic squeeze effect during thermosonic wire bonding. The cracks grew towards the ball bond center with an increase in the aging time, and the Cl ions diffused through the crack into the ball center. This diffusion caused a corrosion reaction between the Cl ions and the Cu-Al intermetallic phases, which in turn caused copper wire bonding damage.
目次 Table of Contents
目錄
壹、緒論 1
1-1 研究動機與背景: 捲帶式自動接合技術(TCP)中內排線接點(ILB)製程所產生的失效機制 1
1-1-1內排線接點(ILB) 1
1-1-2外引腳接合(OLB) 2
1-1-3 TCP技術的材料介紹 2
1-2 研究動機與背景: 焊線製程中銅焊線顯微組織分析與破壞機制可靠度研究與分析 5
1-2-1 晶圓切割(Wafer Sawing) 6
1-2-2 晶片黏結(Die Bond) 7
1-2-3 聯線技術(Interconnection) 7
1-2-4 封膠( Molding ) 11
1-2-5 剪切/成型(Trim/Forming) 12
1-2-6 印字(Marking) 12
貳、文獻回顧 13
2-1 TCP 技術文獻回顧 13
2-1-1 捲帶自動接合(TCP) 13
2-1-2 覆晶接合(Flip Chip,FC) 18
2-1-3 TCP接合可靠度 18
2-2 銅焊線製程技術文獻回顧 20
2-2-1 銅線與金線之特點比較 21
2-2-2 銅鋁介金屬化合物(Cu-Al I Intermetallic Compounds, IMC) 25
2-2-3 銅線基本介紹 26
2-2-4 銅線信賴性評估 27
2-2-5 焊點的缺陷 28
&#21442;、TCP技術中ILB製程所產生的失效機制 31
3-1 實驗流程: 31
3-2 實驗參數與治具設計 32
3-3 實驗ILB SEM圖 33
3-4 結果與討論 33
3-4-1 觀察到的ILB接合微觀結構 33
3-4-2 相位分析 36
3-4-3 熱化學分析 37
肆、焊線製程中銅焊線顯微組織分析與破壞機制可靠度研究與分析 39
4-1 實驗流程: 39
4-2 銅銲接使用材料 40
4-3 銅銲接製程方法 40
4-4 銅銲線製程重點 40
4-4-1 銅球形成討論 40
4-4-2 銲線性能討論 42
4-5 結果與討論:焊線製程中銅焊線顯微組織分析與破壞機制可靠度研究與分析 44
4-5-1 焊球介金屬化合物的形成 44
4-5-2 電子微探分析儀下的微觀結構分析 45
4-5-3 空洞的形成與失效機制 45
伍、結論 47
陸、參考文獻 49
柒、圖目錄 54
表目錄
表1.1 TCP的三種卷帶結構比較 3
表1.2 TCP的卷帶應用分類 3
表1.3 打線接合(Wire Bonding)、卷帶接合(TCP)及覆晶接合(Flip Chip )之比較 8
表2.1比較不同ILB方法 15
表2.2性質不同的線路類型焊線的特性比較 24
表2.3銅線的特性 25
表2.4 銅線尺寸之物理特性比較表 27
表2.5銲線的例子從田中焊線範例 (來源:Tanaka) 28
表3.1ILB參數表 33
表3.2使用EPMA 去做相分析的結果,這些資料對照圖 3.4(b)和3.4(c). 34
表3.3使用EPMA 去做相分析的結果,這些資料對照圖 3.7(b)和3.7(c). 36
表3.4 熱化學分析結果 37
表4.1 超音波能量與球徑比較表 42
圖目錄
圖1.1 TCP封裝流程圖 54
圖1.2 TCP設備流程圖 55
圖1.3 熱壓法做動示意圖 56
圖1.4 熱壓頭鍍鑽石膜示意圖 57
圖1.5 OLB之製程 58
圖1.6 外引腳接合(OLB) 59
圖1.7 TCP的捲帶示意圖 60
圖1.8 金凸塊的製作 61
圖1.9 BGA塑膠封裝的流程 62
圖1.10 切割完成後的晶圓 63
圖1.11 晶片黏結製程 64
圖1.12 打線接合製程 65
圖1.13 焊線後的金線外觀 66
圖1.14 打線接合製程中的超音波接合過程 68
圖1.15 超音波接合所形成的楔形接點 69
圖1.16 打線接合製程中的熱壓接合過程 70
圖1.17 熱壓接合所形成的球形接點 71
圖1.18 封膠流程示意圖 72
圖2.1 TCP ILB與金凸塊接合圖 73
圖2.2 ILB與金凸塊接合圖 74
圖2.3 Au-Au 超音波ILB與金凸塊接合原理 75
圖2.4 Flip Chip-C4示意圖 76
圖2.5 HAST測試設備示意圖 77
圖2.6 離子遷移效應示意圖 78
圖2.7 TCP 可靠度測試流程 79
圖2.8 焊墊下的火山口現象(Creating) 80
圖2.9 鋁銅合金二元相圖 81
圖2.10 球焊點脫落 82
圖2.11 第二楔形銲點污染會導致介金屬化合物的產生與焊球脫落 83
圖3.1 ILB治具設計圖 84
圖3.2 各實驗條件樣品 SEM 圖 85
圖3.3良好的ILB接合 86
圖3.4良好的ILB接合微結構截面圖: (a)整體 (b)接合區域, (c)和(d)側邊區域 87
圖3.4良好的ILB接合微結構截面圖: (a)整體 (b)接合區域, (c)和(d)側邊區域 88
圖3.5金-銅二元相平衡圖(Au-Cu binary phase diagram) 89
圖3.6 不良的ILB接合 90
圖3.7不良的ILB接合微結構截面圖: (a)整體 (b)接合區域, (c)和(d)側邊區域 91
圖3.7不良的ILB接合微結構截面圖: (a)整體 (b)接合區域, (c)和(d)側邊區域 92
圖3.8 (a) Au-Sn 二次元相圖(22), (b) Au-Sn-Cu 三元相圖(21) 93
圖4.1 不同銅線燒球後的HAZ比較 94
圖4.2 在不同時間下,205°C老化實驗所作的銅焊線微結構截面圖 97
圖4.3 EPMA 定量分析結果與介金屬化合物相的認定 98
圖4.3 EPMA 定量分析結果與介金屬化合物相的認定 99
圖4.3 EPMA 定量分析結果與介金屬化合物相的認定 100
圖4.4 由 EPMA 做的定量分析針對 2000 小時後樣品的微結構圖 101
圖4.5 在 205°C 老化實驗下,不同時間後,銅線焊接點所有微結構 SEM 圖 102
圖4.6 空孔形成機制示意圖及氯腐蝕所造成的失效圖 103
參考文獻 References
陸、參考文獻
1.Janto Tjandra, CL Wong, James How, Stefan Peana, “ Au-Sn Microsoldering on Flexible Circuit”, IEEE/CPMT Electronic Packaging Technology Conference, 1997
2.A. Lettington and J.W. Steeds.,”Thin film diamond”,London,Published by Chapman & Hall for the Royal Society, New York, 1994
3.“Evaluation Method for Ion Migration Using Dew Cycle Test” , http://www.espec.co.jp/english/env-test/tech-report/tech-report.html.
4.Errong Jing; Bin Xiong; Yuelin Wang; State Key Lab. of Transducer Technol., Chinese Acad. of Sci., Shanghai, China ” The Bond Strength of Au/Si Eutectic Bonding Studied by IR Microscope”, Electronics Packaging Manufacturing, IEEE Transactions, issue 1, pp. 31-37, 2010.
5.Radeck, S. Kellenberger, D. Luechinger, C. ESEC SA, “Soft solder die bonding of multiple die devices, “Components and Packaging Technologies, IEEE Transactions, issue 4, pp. 646-656, 2000.
6.鍾文仁, 陳佑任, “IC封裝製程與CAE應”,全華圖書,2005.
7.http://elearning.stut.edu.tw/teach/electron/coat.htm.
8.England, L.; Jiang, T.; Micron Technol. Inc., Boise, “Reliability of Cu Wire Bonding to Al Metallization” Electronic Components and Technology Conference, 57th, May 29 2007-June 1 2007, pp. 1604 – 1613, 2007.
9.S. Murali, N. Srikanth, Charles J. Vath III, "Grains, deformation substructures, and slip bands observed in thermosonic copper ball bonding", Materials Characterization, Vol.50, pp. 39-50, 2003.
10.E. Zakel, J. Gwiasda, J. Kloeser, J. Eldring, G. Engelmann and H. Reichi, “Flexless Flip Chip Assembly on Rigid and Flexible Polymer Substrates Using the Au-Sn Metallurgy”, IEEE/CPMT Int’l Electronics Manufacturing Technology Symposium, pp. 177-184, 1994.
11.J.K.L. Lai, M.C. Loo and K.Y. Cheng, “Effects of Bond Temperature and Pressure on Microstructures of Tape Automated Bonding (TCP) Inner Lead Bonds (ILB) with Thin Tape Metallization”, ECTC Proceesing, pp. 819-826, 1995.
12.T. S. Liu, “Aspects of Gold-Tin Bump-Lead Interconnection Metallurgy,” in Proceedings/ International Microelectronics on Symposium, pp. 120-128, 1997.
13.E. Zakel and H. Reichi, “Au-Sn Bonding Metallurgy of TCP Contacts and Its Influence on the Kirkendall Effects in the Ternary Cu-Au-Sn,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 16, No 3, pp. 323-332, 1993,.
14.B. K. Furman, S. G. Mita, “Gold to Gold (Au-Au) Thermocompression (TC) Bonding of Very Large Arrays, IMB T.J. Watson Research Center, IEEE, pp. 883-889, 1992.
15.Eiichi HOSOMI et al.,” A New Bonding Mechanism of 50 um Pitch TCP-ILBwith 0.25 um Sn Plated Cu Lead”, IEEE, 1995
16.E. Zakel, J. Simon, G. Azdasht, H. Reichl, (1993) "Gold-Tin Solder Bumps for TCP Inner Lead Bonding with Reduced Bonding Pressure", Soldering & Surface Mount Technology, Vol. 4, pp. 27 – 32, 1993.
17.C.F.Luk, Y.C.Chan and K.C.Hung, “Development of Gold to Gold Interconnection Flip Chip Bonding for Chip On Suspension Assemblies,” IEEE Conference, 2001.
18.Hideji Hatanaka, “Packaging Processes using Flip Chip bonder and Future Directions of Technology Development,” IEEE Conference, pp. 434-439, 2002.
19.P.H.Lawyer, D..Choudhury, M.D.Wetzel and D.B.Rensch, “Thermosonic Bonding of High-Power Semiconductor Devices for Integration with Planar Microstrip Circuitry,” IEEE/CPMT Symposium, pp. 390-393, 1998.
20.Hiromi Yatsuda, Taira Horishima, Takeshi Eimura, and Takao Ooiwa, “Miniaturized SAW Filters Using a Flip-Chip Technique” IEEE Trans., Vol.43, No.1, pp. 125-129, 1996.
21.Elke Zakel, Herbert Reichl, “Au-Sn Bonding Metallurgy of TCP Contacts and Its Influence on the Kirkendall Effect in the Ternary Cu-Au-Sn”, IEEE, Vol. 16, No. 3, 1993.
22.Nicholas T. Panousis, “Thermocompression Bondability of Bare Copper Leads”, IEEE transaction on components,hybrids, and manufacturing technology, Vol. Chmt-1, No. 4, 1978.
23.Frank Welle, Alexandra Mauer, Roland Franz, ”Migration and sensory changes of packaging materials caused by ionizing radiation”, Radiation Physics and Chemistry, Vol.63, pp. 841-844, 2002.
24.C.M.Chan, “IST Reliability Test Program”, Document Control Center, 2005
25.G. G. Harman, “Wire Bonding in Microelectronics: Materials, Processes, Reliability and Yield”, 2nd ed., New York: McGraw-Hill, 1997.
26.E. Philofsky, “Design Limits When using Gold-Aluminum Bonds”, Proc. IEEE Reliability Phys. Symp., Las Vegas, NV, pp. 11-16, 1971.
27.H. S. Chang, J. X. Pon, K.C. Hsieh, C.C. Chen, “Intermetallic Growth of Wire-bond at 175 °C High Temperature Aging”, J. Electronic Materials, Vol.30, pp. 1171-1177, 2001.
28.H. S. Chang, K.C. Hsieh, T. Martens, A.Yang, “Wire-bond Void Formation During High Temperature Aging”, IEEE Transactions on Components and Packaging Technologies, Vol. 27, pp. 155-160, 2004.
29.M. H. Lue, C. T. Huang, S. T. Huang, K. C. Hsieh, “Bromine- and Chlorine-Induced Degradation of Gold-Aluminum Bonds”, J. Electronic Materials, Vol.33, pp. 1111-1117, 2004.
30.K. Toyozawa, K. Fujiya, S. Minamide, T. Maeda, “Development of Copper Wire Bonding Application Technology”, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol.13, pp. 667-672, 1990.
31.Y. H. Tian, I. Lum, S. J. Won, S. H. Park, J. P. Jung, M. Mayer, Y. Zhou, “Experimental Study of Ultrasonic Wedge Bonding with Copper Wire”, 2005 6th International Conference on Electronic Packaging Technology, pp. 389-393, 2005.
32.H. J. Kim, J. Y. Lee, K. W. Paik, “Effect of Cu/Al Intermetallic Compound (IMC) on Copper Wire and Aluminum Pad Bondability”, IEEE Transactions on Components and Packaging Technologies, Vol. 26, pp. 367-373, 2003.
33.S. L. Khoury, D. J. Burkhard, D. P. Galloway, T. A. Scharr, A “Comparison of Copper and Gold Wire Bonding on Integrated Circuit Devices”, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol.13, pp. 673-681, 1990.
34.K. W. Lam, H. M. Ho, S. Stoukatch, M. Van De Peer, P. Ratchev, C. J. Vath III, A. Schervan, E. Beyne, “Fine Pitch Copper Wire Bonding on Copper Bond Pad Process Optimization”, 2002 International Symposium on Electronic Materials and Packaging, pp. 63-68, 2002.
35.F. W. Wulff, C. D. Breach, D. Stephan, Saraswati, K. J. Dittmer, “Characterization of Intermetallic Growth in Copper and Gold Ball Bonds on Aluminum Metallization”, 6th EPTC, Pan Pacific Singapore, 2004.
36.Wei-Yao Chang Hsiang-Chen Hsu Shen-Li Fu Chang-Lin Yeh Yi-Shao Lai, “Characteristic of Heat Affected Zone for Ultra Thin Gold Wire/Copper Wire and Advanced Finite Element Wirebonding Model”, Electronics Packaging Technology Conference, 2008. EPTC 2008. 10th, 9-12 Dec. 2008, pp. 419 – 423, 2008.
37.C.J. Hang, C.Q. Wang, M. Mayer, Y.H. Tian, Y. Zhou and H.H. Wang, “Growth Behavior of Cu/Al Intermetallic Compounds and Cracks in Copper Ball Bonds During Isothermal Aging”, Microelectronics Reliability, pp. 416-424, 2008.
38.ASM, Metals Handbook,Vol. 8, Eighth Edition.
39.儲德鋒 中央大學 機械工程研究所, “鋁/銅液相擴散接合研究與應用”, pp. 75, 2004.
40.H.G. song, J.W. Morris, Jr., and M.T. McCormack, “The Microstructure of Ultrafine Eutectic Au-Sn Solder Joints on Cu”, J. of Electronic Materials, Vol. 29, No.8, pp. 1038-1046, 2000.
41.H. Okamoto and T.B.Massalski, “Binary Alloy Phase Diagrams”, Vo1. 1, pp.193, 1984.
42.O.B. Karlsen, A. Kjekshus and E. Rost, “The Ternary System Au-Cu-Sn”, Acta Chemica Scandinavica, Vol. 46, pp. 147-156, 1992.
43.R. Hultgren, P.D. Desai, D. T. Hawkins, M. Gleiser and K. K. Kelley, “Selected Values of the Thermodynamics Properties of Binary Alloys”, American Society for Metals, Metals Park, Ohio USA, pp. 320-328, 1973.
44.L.C. Chan, “Wire Bond Microstructure Analysis and Void Formation Mechanism”, Master Thesis (2006), National Sun Yat-Sen University, Department of Materials and Optoelectronic Science, Kaohsiung, Taiwan ROC, 2006.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.191.21.86
論文開放下載的時間是 校外不公開

Your IP address is 18.191.21.86
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code