Responsive image
博碩士論文 etd-1026110-152201 詳細資訊
Title page for etd-1026110-152201
論文名稱
Title
使用時域有限差分法模擬與分析微帶線饋入的介質共振器天線
The Analysis and Simulation of Microstrip-Fed Dielectric Resonator Antenna Using FDTD Method
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
92
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-10-20
繳交日期
Date of Submission
2010-10-26
關鍵字
Keywords
時域有限差分法、介質共振器天線、動差法
Finite-Difference Time-Domain, Dielectric Resonator Antennas, Method of Moment
統計
Statistics
本論文已被瀏覽 5668 次,被下載 0
The thesis/dissertation has been browsed 5668 times, has been downloaded 0 times.
中文摘要
介質共振器天線(DRA)比起傳統微帶天線有許多吸引人的特性,像是尺寸小、低姿態、輕、容易激發,在高頻段擁有高輻射效率。隨著DRA受到越來越多的注目,理論分析已經不足以滿足人們對於分析介質共振器的需求。
因而許多研究人員以數值分析的方法,如時域有限差分法(FDTD)、動差法(MoM)、有限元素法(FEM)等方法來分析模擬介質共振器天線。本論文說明比較了FDTD與MoM在模擬DRA上的差異性,並以FDTD去模擬分析各種不同結構的DRA。
對於DRA設計方面,本文以理論近似公式求得DRA尺寸的概略值,並以FDTD做精確的分析,最後本文實際去設計一個工作在5.8GHz的DRA,並以一種L形微帶線來增大DRA的阻抗頻寬。由以上的研究希望能建立出快速且準確的一套程序來求得DRA的共振頻率、工作頻寬與遠場場形圖,以縮短工程師設計DRA的時間。
Abstract
Dielectric resonator antennas(DRAs) offer some attractive characteristics over conventional microstrip antennas, such as small size, low profile, light weight, ease of excitation, and high radiation efficiency at higher frequency bands. Since DRAs attract more and more attention, theoretical analysis have been insufficient to simulate various configurations of dielectric resonator antennas.
Therefore some researchers introduce numerical methods to analyze DRAs, such as Finite Difference Time Domain (FDTD) method, Method of Moment (MoM), Finite Element Method (FEM). In this author, we apply two kinds of methods, including FDTD and MoM, to analysis DRA and compare the results applied these two methods. Then we simulate various configurations of dielectric resonator antennas using FDTD method.
About designing the DRA construction, in this author we applied an equivalent approach to solve approximate dimensions of DRAs, and then we obtain accurate dimensions using FDTD method. In this author,a DRA work at 5.8GHz have been proposed, then we using a L-shaped patch to increase impedance bandwidth. Above all, we hope to built a fast and accurate procedure to solve the resonant frequency, bandwidth, and far field pattern of DRAs. And to supply the engineer to reduce time consume in design DRAs.
目次 Table of Contents
目錄

第一章 序論
1.1 研究動機與目的...........................................................................................1
1.2 論文大綱.......................................................................................................4
第二章 介質共振器天線
2.1 介質共振器發展簡介...................................................................................5
2.2 介質共振器天線簡介...................................................................................7
2.3 介質共振器天線的參數.............................................................................12
2.3.1 天線參數....................................................................................12
2.3.2 介質共振器參數........................................................................13
2.3.3 介質共振器的介電常數............................................................14
2.3.4 介質共振器的品質因子............................................................15
2.3.5 共振頻率溫度係數……............................................................16
2.4 介質共振器天線的特性.............................................................................17
第三章 數值分析方法
3.1 介紹.............................................................................................................20
3.2 時域有限差分法.........................................................................................20
3.2.1 FDTD公式推導........................................................................21
3.2.2 Courant穩定準則......................................................................25
3.2.3 阻抗性電壓源與電阻模擬........................................................26
3.2.4 吸收邊界條件............................................................................28
3.2.5 細導線修正公式........................................................................29
3.2.6 近遠場轉換................................................................................31
3.2.7 FDTD曲狀介質結構的處理....................................................33
3.3 動差法.........................................................................................................36
3.4 有限時域差分法與動差法的比較.............................................................39
第四章 運用FDTD模擬介質共振器天線
4.1 矩形介質共振器天線.................................................................................44
4.1.1 微帶線饋入的矩形介質共振器天線........................................44
4.1.2 微帶線貼面饋入的矩形共振器天線........................................47
4.2 圓柱形介質共振器天線.............................................................................48
4.3 半球形介質共振器天線.............................................................................51
4.4 實做量測矩形介質共振器天線.................................................................54
4.5 槽孔耦合….................................................................................................58
4.6 同軸探針耦合….........................................................................................59
4.7 介質損耗與接地面尺寸效應….................................................................61
4.8 介質共振器與饋入結構之間的耦合.........................................................64
第五章 介質共振器天線之設計
5.1 半球形介質共振器天線.............................................................................67
5.2 圓柱形介質共振器天線.............................................................................69
5.3 矩形介質共振器天線….............................................................................71
5.4 介質共振器天線設技實例.........................................................................74
5.5 寬頻化的介質共振器天線.........................................................................75
第六章 結論............................................................................................................78
參考文獻 References
參考文獻

[1] R. D. Richtmyer, “Dielectric Resonators,” Journal of Applied Physics, Vol.10, Issue.6, pp.391~398, 1939.

[2] A. Okaya, L. F. Barash, “The Dielectric Microwave Resonator,” proceedings of the IRE, pp.2081~2092, October 1962.

[3] M. Gastine, , L. Courtois, J. L. Dormann, “Electromagnetic Resonances of Free Dielectric Spheres,” IEEE Trans. Microwave Theory and Techniques, Vol.15, Issue.12, pp.694~700, 1967.

[4] S. B. Cohn, “Microwave Bandpass Filters Containing High-Q Dielectric Resonators,” IEEE Trans. Microwave Theory and Techniques, Vol.16, Issue.4, pp.218~227, 1968.

[5] S. Long, M. McAllister, Shen Liang, “The resonant cylindrical dielectric cavity antenna,” IEEE Trans. Antennas and Propagation, Vol.31, Issue.3, pp.406~412, 1983.

[6] A. Petosa, A. Ittipiboon, Y. M. M. Antar, D. Roscoe, M. Cuhaci, “Recent advances in dielectric-resonator antenna technology,” IEEE Antennas and Propagation Magazine, Vol.40, Issue.3, pp.35~48, 1998.

[7] Y. X. Guo, K. M. Luk, K. W. Leung, “Mutual coupling between rectangular dielectric resonator antennas by FDTD,” IEE Proceedings - Microwaves, Antennas and Propagation, Vol.146, Issue.4, pp.292~294, 1999.

[8] S. M. Shum, K. M. Luk, “FDTD analysis of probe-fed cylindrical dielectric resonator antenna,” IEEE Trans. Antennas and Propagation, Vol.46, Issue.3, pp.325~333, 1998.

[9] A. Buerkle, K. Sarabandi, H. Mosallaei, “Compact slot and dielectric resonator antenna with dual-resonance, broadband characteristics,” IEEE Trans. Antennas and Propagation, Vol.53, Issue.3, pp.1020~1027, 2005.

[10] S. M. Shum, K. M. Luk, “Analysis of aperture coupled rectangular dielectric resonator antenna,” Electronics Letters, Vol.30, Issue.21, pp.1726~1727, 1994.

[11] M. S. M. Aras, M. K. A. Rahim, A. Asrokin, M. Z. A. A. Aziz, “Dielectric resonator antenna (DRA) for wireless application,” IEEE International RF and Microwave Conference, 2008.RFM 2008, pp.454~458, 2008.

[12] M. F. Ain, S. I. S. Hassan, M. R. Jaffar, M. A. Othman, M. N. Ismail, A. Othman, A. A. Sulaiman, M. A. Zakariyya, S. Sreekantan, S. D. Hutagalung, Z. A. Ahmad “Small and compact rectangular dielectric resonator antenna for WLAN applications,” IEEE International RF and Microwave Conference, 2008. RFM 2008, pp.106~108, 2008.

[13] A. S. Al-Zoubi, A. A. Kishk, A. W. Glisson, “Aperture Coupled Rectangular Dielectric Resonator Antenna Array Fed by Dielectric Image Guide, ” IEEE Trans. Antennas and Propagation, Vol.57, Issue.8, pp.2252~2259, 2009.

[14] R. K. Mongia, A. Ittibipoon, M. Cuhaci, “Low profile dielectric resonator antennas using a very high permittivity material,” Electronics Letters, Vol.30, Issue.17, pp.1362~1363, 1994.

[15] H. Y. Lo, K. W. Leung, K. M. Luk, E. K. N. Yung, “Low profile triangular dielectric resonator antenna,” IEEE Antennas and Propagation Society International Symposium, Vol.4, pp.2088~2091, 2000.

[16] Rajesh Kumar Mongia, Apisak Ittipiboon, “Theoretical and experimental investigations on rectangular dielectric resonator antennas,” IEEE Trans. Antennas and Propagation, Vol.45, No.9, September 1997.

[17] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equation in isotropic media,” IEEE Trans. Antenna and Propagation, vol.14, No.3, pp.300~307, May 1966.

[18] R. J. Luebbers, H. S. Langdon, “A simple feed model that reduces time steps needed for FDTD antenna and microstrip calculations,” IEEE Trans. Antennas and Propagation, Vol.44, Issue.7, pp.1000~1005, 1996.

[19] R. M. Makinen, J. S. Juntunen, M. A. Kivikoski, “An improved thin-wire model for FDTD,” IEEE Trans. Microwave Theory and Techniques, Vol.50, Issue.5, pp.1245~1255, 2002.

[20] A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed:Artech House 2000.

[21] Tao Su, Yongjun Liu, Wenhua Yu, R. Mittra, “A conformal mesh-generating technique for the conformal finite-difference time-domain (CFDTD) method,” IEEE Antennas and Propagation Magazine, Vol.46, Issue.1, pp.37~49, 2004.

[22] Wenhua Yu, R. Mittra, “A conformal finite difference time domain technique for modeling curved dielectric surfaces,” IEEE Microwave and Wireless Components Letters, Vol.11, Issue.1, pp.25~27, 2001.

[23] Y. Ge, K. P. Esselle, “Microwave dielectric-resonator antenna analysis and design,” Microwave Conference, 2000 Asia-Pacific, pp.1473~1476, 2000.

[24] Y. Ge, K. P. Esselle, “The analysis of a rectangular dielectric resonator antenna using the method of moments,” IEEE Antennas and Propagation Society International Symposium, 2000. Vol.3, pp.1454~1457, 2000.

[25] A. B. Kakade, B. Ghosh, “Efficient Technique for the Analysis of Microstrip Slot Coupled Hemispherical Dielectric Resonator Antenna,” IEEE Antennas and Wireless Propagation Letters, Vol.7, pp.332~336, 2008.

[26] D. Yau, M. V. Shuley, “Numerical analysis of an aperture coupled rectangular dielectric resonator antenna using a surface formulation and the method of moments,” IEE Proceedings - Microwaves, Antennas and Propagation, Vol.146, Issue.2, pp.105~110, 1999.

[27] A.Petosa, Dielectric resonator antenna handbook, Artech House, Boston, Feb.2007

[28] J. Van Bladel, “On the Resonances of a Dielectric Resonator of Very High Permittivity,” IEEE Trans. Microwave Theory and Techniques, Vol.23, Issue.2, pp.199~208, 1975.

[29] J. Van Bladel, “The Excitation of Dielectric Resonators of Very High Permittivity,” IEEE Trans. Microwave Theory and Techniques, Vol.23, Issue.2, pp.208~217, 1975.

[30] Alexandre Perron, Tayeb A. Denidni, Abdel R. Sebak, “computer aided-design and analysis of dielectric resonator antennas,” International Journal of RF and Microwave Computer-Aided Engineering, Vol.20, No.1, January 2010.

[31] R. Kumar Mongia, A. Ittipiboon, “Theoretical and experimental investigations on rectangular dielectric resonator antennas,” IEEE Trans. Antennas and Propagation, Vol.45, Issue.9, pp.1348~1356, 1997

[32] M. Verplanken, J. V. Bladel, “The Electric-Dipole Resonances of Ring Resonators of Very High Permittivity,” IEEE Trans. Microwave Theory and Techniques, Vol.24, Issue.2, pp.108~112, 1976.

[33] A. A. Kishk, “Wide-band truncated tetrahedron dielectric resonator antenna excited by a coaxial probe,” IEEE Trans. Antennas and Propagation, Vol.51, Issue.10, Part2, pp.2913~2917, 2003.

[34] Y. Coulibaly, T. A. Denidni, H. Boutayeb, “Broadband Microstrip-Fed Dielectric Resonator Antenna for X-Band Applications,” IEEE Antennas and Wireless Propagation Letters, Vol.7, pp.341~345, 2008.

[35] X. L. Liang, T. A. Denidni, L. N. Zhang, “Wideband L-Shaped Dielectric Resonator Antenna With a Conformal Inverted-Trapezoidal Patch Feed,” IEEE Trans. Antennas and Propagation, Vol.57, Issue.1, pp.272~274, 2009

電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.131.110.169
論文開放下載的時間是 校外不公開

Your IP address is 3.131.110.169
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code