Responsive image
博碩士論文 etd-1026113-095553 詳細資訊
Title page for etd-1026113-095553
論文名稱
Title
表面物化特性對盤狀液晶配向影響之研究
The Study of Effect of Surface Physicochemical Properties on the Alignment of Discotic Liquid Crystals
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
242
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-11-15
繳交日期
Date of Submission
2013-11-28
關鍵字
Keywords
圖案化自組裝薄膜、表面拓樸結構、表面能量各向異性、液晶配向、表面自由能、盤狀液晶
liquid crystal alignment, surface free energy, discotic liquid crystal, patterned self-assembled monolayers, anisotropy of surface free energy, surface topological structure
統計
Statistics
本論文已被瀏覽 5689 次,被下載 430
The thesis/dissertation has been browsed 5689 times, has been downloaded 430 times.
中文摘要
盤狀液晶能透過分子間的π-π作用力組裝為柱狀結構。在有序的柱狀結構中,載子沿著柱軸方向上的遷移率較高(10−3 − 1 cm2V−1s−1),而在橫向上的遷移率則相當低。上述特性使得盤狀液晶能夠作為良好的一維方向載子傳輸通道,且特別適用於對單向高效傳輸有需求的元件,例如有機太陽能電池、有機發光二極體、有機半導體…等光電元件。為使上述元件擁有良好的工作性能,盤狀液晶必須具備長程有序排列,且分子指向需滿足元件要求;然而,目前尚無可靠且可供實用的盤狀液晶配向技術。在本研究中,以hexaalkoxydibenzo[a,c]phenazine 為實驗對象,通過實驗方式尋找影響盤狀液晶在基板表面上的分子排列有序度及排列模式的決定性參數,並在此基礎上研發盤狀液晶的配向技術。
首先,觀察液晶樣品的降溫條件對於盤狀分子排列有序度的影響。實驗結果表明,當樣品降溫速率控制在0.1oC/min以下,盤狀液晶較易形成有序的分子堆疊。其次,分析基板表面物化特性對盤狀分子指向分佈的影響,發現了基板表面自由能狀態對於盤狀分子的錨定模式有著決定性作用。研究結果顯示,當基板表面自由能高於60 mJ/m2時,堆疊其上的盤狀分子會趨於形成盤面朝上錨定;隨著表面自由能的逐漸降低,盤狀分子的錨定模式會發生轉變,並會在表面能量狀態低於20 mJ/m2時形成邊緣朝上的錨定模式。
實驗中,通過提高基板的表面自由能以及搭配緩慢的熱退火程序,實現了盤狀液晶的垂直配向;而在盤狀液晶的水平配向控制上,則是分別使用了表面具有微溝槽結構以及圖案化自組裝薄膜的基板作為液晶配向表面。實驗結果表明,在良好設計微溝槽結構的槽寬或者圖案化自組裝薄膜的條紋尺寸後,該配向表面不僅能夠實現盤狀液晶的水平配向,且液晶薄膜中的分子指向能夠進一步地獲得定域控制,達到了盤狀液晶的多侷域配向。
研究中對經過配向處理的盤狀液晶薄膜進行載子傳輸特性的量測,發現了在盤狀液晶的柱軸方向上,其所測得的電洞及電子的遷移率皆在10−3 cm2V−1s−1數量級,呈現出良好的雙極性載子傳輸表現;而在柱軸的橫向方向上所測得的載子傳輸表現則與絕緣層相當。此時薄膜整體呈現出明顯的電導各向異性。上述的實驗結果說明了我們所使用的配向技術,具有實現盤狀液晶優異功能的潛力。
Abstract
Discotic liquid crystals can assemble into columnar structure by means of π-π interaction between molecules. In the highly ordered columnar structure, the charge-carrier mobility along the discotic columns is high (10−3 − 1 cm2V−1s−1), whereas the mobility in the transverse direction of the column is rather low. Consequently, discotic liquid crystals with a highly ordered columnar structure can be regarded as a one-dimension conductor, and are particularly suitable for the devices that demand the unidirectional and efficient charge-carrier transport property, such as photovoltaic cells, organic light emitting diodes, organic semiconductors. In the applications mentioned above, a long-range molecular order of discotic liquid crystals and the suitable molecular orientation of discotic columns are demanded in order to enhance the performance for these devices. However, there is no practical and reliable techniques can be used to align the discotic liquid crystals. In this study, we investigate the decisive factors that dominate the molecular arrangement of discotic molecules, and develop the effective techniques for aligning the discotic liquid crystals, in which the discotic mesogen hexaalkoxydibenzo[a,c]phenazine is used as the experimental object.
Firstly, we observed the effect of the cooling procedure on the stacking of discotic molecules. Our experimental results show that a highly ordered molecular stacking of discotic liquid crystals may form when the cooling rate of the discotic layer is controlled to below 0.1 oC/min. Secondly, we studied the effect of the physicochemical properties of substrate on the molecular orientation of discotic molecules. Our investigation results indicate that the surface free energetic states of substrates play a decisive role in determining the molecular anchoring type of the discotic liquid crystals. We find that the surface with higher energetic state larger than 60 mJ/m2 supports the disk-face-on anchoring of discotic liquid crystals. With the surface free energy decreasing, the anchoring type varies. The disk-edge-on anchoring of discotic molecules forms when the surface free energy of substrate decreases to below a value of 20 mJ/m2.
The homeotropic alignment of discotic liquid crystals can be achieved by increasing the surface energetic state of substrates and on the help of slowly cooling process; whereas the homogeneous alignment of discotic layers can be obtained by aligning the discotic molecules using the microstructure surface or the patterned self-assembled monolayers. Our experimental results indicate that, under the conditions that the size of microstructure and the layout of the self-assembled monolayers are well designed, these alignment surfaces can align the discotic molecules into the homogeneous arrangement. Furthermore, the orientation of discotic columns in the discotic layer can be locally controlled, realizing the multi-domain molecular alignment of discotic liquid crystals.
We measured the characteristics of the charge-carrier transport of the aligned discotic liquid crystals. The experimental results show that the mobility of hole and electron are both on the order of 10−3 cm2V−1s−1, showing a good ambipolar charge-carrier transport property; whereas the mobility in the transverse direction of discotic columns is rather low. Therefore, the discotic liquid crystalline layer shows a clearly anisotropic conductivity. These results reveal that the alignment methods we used have the potential of realizing the one-dimensional charge-carrier transport properties of discotic molecules.
目次 Table of Contents
中文論文審定書 i
英文論文審定書 ii
致謝 iii
中文摘要 iv
Abstract vi
符號說明 xiv
第一章 緒論 1
1.1 引言 1
1.1.1 盤狀液晶配向研究背景及其現況 2
1.2 研究目標及主要研究內容 3
參考文獻 5
第二章 液晶材料及其應用介紹 7
2.1 液晶材料簡介 7
2.1.1 液晶概念 7
2.1.2 液晶的分類 7
2.2 液晶排列模式 9
2.2.1 桿狀液晶相態 9
2.2.2 盤狀液晶相態 11
2.3 液晶物理特性簡介 13
2.3.1 液晶分子秩序參數 13
2.3.2 液晶光學異向性 14
2.3.3 液晶介電異向性 16
2.3.4 液晶連續體彈性形變理論 18
2.4 盤狀液晶材料發展簡介 19
2.4.1 Triphenylene系列盤狀液晶 21
2.4.2 盤狀液晶中間相溫度的增廣 21
2.5 盤狀液晶研究現況 24
2.5.1 盤狀液晶基本配向模式 24
2.5.2 盤狀液晶的應用領域 25
2.5.3 盤狀液晶配向技術回顧 28
參考文獻 33
第三章 液晶材料、研究理論及方法介紹 37
3.1 引言 37
3.2 盤狀液晶Hexaalkoxydibenzo[a,c]phenazine介紹 37
3.2.1 相變溫度 38
3.2.2 分子堆疊模式 39
3.2.3 吸收光譜 41
3.3 基板表面自由能理論 41
3.3.1 表面能與表面張力 42
3.3.2 靜態接觸角與表面濕潤性 43
3.3.3 表面自由能測定理論 44
3.4 表面配向理論 46
3.4.1 配向表面對液晶分子的錨定 47
3.4.2 液晶分子的傾角控制 49
3.4.3 方位角配向機制 54
3.5 液晶配向模式檢測原理 57
3.5.1 相位延遲量 58
3.5.2 平行光束檢測液晶排列 59
3.5.3 聚光干涉檢測液晶配向 66
3.6 液晶排列秩序度檢測理論 71
3.6.1 紫外-可見吸收光譜 71
3.6.2 二向色性 72
3.6.3 盤狀分子排列秩序度檢測 73
3.7 基於液晶配向的表面改質技術及其理論 75
3.7.1 電漿表面改質原理及改質結果 75
3.7.2 紫外光表面改質及其原理 77
3.7.3 自組裝薄膜改質原理 78
3.7.4 圖案化自組裝薄膜 80
3.7.5 光微影蝕刻 85
3.8 有機半導體材料的載子傳輸理論及載子遷移率量測技術 86
3.8.1 有機材料的載子傳輸 87
3.8.2 載子遷移率的電場及溫度相依性 88
3.8.3 載子遷移率量測技術 90
參考文獻 92
第四章 實驗架設及測試技術 97
4.1 引言 97
4.2 接觸角量測系統 97
4.2.1 接觸角量測系統 97
4.2.2 接觸角量測及表面自由能測定 98
4.3 偏光顯微鏡檢測系統 101
4.3.1 正交偏光顯微鏡 101
4.3.2 透光強度檢測系統 103
4.3.3 聚光干涉檢測系統 105
4.4 紫外-可見光譜儀量測系統 106
4.4.1 紫外-可見光譜儀 106
4.4.2 液晶空盒間隙厚度量測 107
4.4.3 吸收光譜量測系統 108
4.5 表面形貌及薄膜厚度檢測設備 109
4.5.1 原子力顯微鏡 109
4.5.2 三維輪廓儀 110
4.6 基板表面處理及其表徵分析 110
4.6.1 基板清洗程序與其表徵分析 110
4.6.2 聚亞醯胺薄膜塗佈 112
4.6.3 氧氣電漿表面改質 114
4.6.4 自組裝薄膜表面改質 115
4.6.5 表面微結構製程 118
4.6.6 自組裝薄膜的表面圖案化處理 121
4.7 液晶樣品的製備方式 125
4.7.1 盤狀液晶材料在單一基板表面上的成膜程序 125
4.7.2 液晶夾層樣品製作程序 125
參考文獻 126
第五章 溫度及基板表面自由能對盤狀液晶垂直配向之影響 128
5.1 引言 128
5.2 熱處理條件對盤狀液晶排列有序度的影響 128
5.2.1 盤狀液晶在不同降溫速率下的分子堆疊形式 129
5.2.2 降溫速率影響盤狀分子堆疊有序度之討論 131
5.3 基板表面自由能對盤狀液晶傾角指向的影響 132
5.3.1 盤狀液晶在夾層基板間的堆疊模式 133
5.4 樣品溫度對盤狀液晶排列之影響 141
5.4.1 基板表面自由能的溫度相依性 141
5.4.2 垂直配向HDBP薄膜在不同溫度下的分子排列變化情形 142
5.4.3 盤狀分子傾角變化情形的檢測 143
5.4.4 樣品溫度的變遷影響盤狀分子傾角狀態之討論 145
5.5 盤狀液晶配向模式及分子堆疊有序度對載子傳輸影響 146
5.5.1 盤狀分子錨定模式對載子傳輸特性的影響 147
5.5.2 盤狀分子堆壘有序度對載子傳輸特性的影響 150
5.6 結論 155
參考文獻 156
第六章 微溝槽結構控制盤狀液晶形成水平配向排列 158
6.1 引言 158
6.2 大氣介面對盤狀液晶錨定模式的影響 158
6.2.1 盤狀液晶在單一基板表面上的堆疊模式 158
6.3 溝槽結構對盤狀液晶之配向效果檢測 160
6.3.1 盤狀液晶在溝槽結構中的排列 160
6.3.2 盤狀液晶分子排列有序度檢測 164
6.3.3 溝槽結構的表面自由能對盤狀液晶排列之影響 165
6.3.4 溝槽結構佈局定域控制盤狀液晶分子的指向 168
6.3.5 溝槽結構對商用盤狀分子材料的配向效果檢測 172
6.4 二維網絡微溝槽結構對於盤狀柱軸指向控制之研究 175
6.4.1 溝槽寬度控制盤狀分子指向 177
6.4.2 溝槽分布週期控制盤狀分子指向 181
6.4.3 二維溝槽結構對盤狀分子指向控制的分析 183
6.5 結論 184
參考文獻 185
第七章 圖案化自組裝薄膜控制盤狀液晶形成水平配向排列 186
7.1 引言 186
7.2 基板表面自由能各向異性分佈對盤狀分子指向的影響 186
7.2.1 高分子薄膜處理及其表面特徵分析 187
7.2.2 表面自由能異向性對盤狀液晶堆疊之影響 189
7.3 圖案化自組裝薄膜的製備參數選擇及其表徵分析 191
7.3.1 盤狀液晶外推長度計算 192
7.3.2 圖案化自組裝薄膜的表面能量各向異性程度分析 192
7.4 圖案化自組裝薄膜對盤狀液晶堆疊之影響 194
7.4.1 條紋寬度對盤狀液晶配向模式之影響 194
7.4.2 盤狀液晶分子排列有序度之檢測 201
7.4.3 盤狀液晶的有效配向面積測試 202
7.4.4 HDBP薄膜的單向載子傳輸特性 205
7.5 定域控制盤狀液晶配向 207
7.6 結論 211
參考文獻 211
第八章 總結與未來展望 213
8.1 總結 213
8.2 未來展望 214
附錄X1、光線斜向入射雙折射介質之相位延遲推導 216
附錄X2、液晶材料在非均勻表面上的體系總能計算 218
附錄X3、變溫表面自由能計算參數 223
參考文獻 References
Chapter 1
[1] O. H. LeBlanc, J. Chem. Phys., 33, 626 (1960).
[2] R. G. Kepler, Phys. Rev., 119, 1226-1229 (1960).
[3] L. Schmit-Mende, A. Fechtenkotter, K. Müllen, E. Moons, R. Friend, and J. D. Mackenzie, Science, 293, 1119-1122 (2001).
[4] L. Schmidt-Mende, M. Watson, K. Müllen, and R. H. Friend, Mol. Cryst. Liq. Cryst., 396, 73-90 (2003).
[5] A. Bacher, I. Bleyl, C. H. Erdelen, D. Haarer, W. Paulus, H.-W. Schmidt, Adv. Mater., 9, 1031-1035 (1997).
[6] J. H. Wendorff, T. Christ, B. Glüsen, A. Greiner, A. Ketter, H. Sander, V. Stümpflen, and V. V. Tsukruk, Adv. Mater., 9, 48-52 (1997).
[7] A. M. van de Craats, N. Stutzmann, O. Bunk, M. M. Nielsen, M. Watson, K. Müllen, H. D. Chanzy, H. Sirringhaus, and R. H. Friend, Adv. Mater., 15, 495-499 (2003).
[8] W. Pisula, A. Menon, M. Stepputat, I. Lieberwirth, U. Kolb, A. Tracz, H. Sirringhaus, T. Pakula, and K. Müllen, Adv. Mater., 17, 684-689 (2005).
[9] L. B. Schein, Phys. Rev. B, 15, 1024-1034 (1977).
[10] D. Adam, P. Schuhmacher, J. Simmerer, L. Häussling, K. Siemensmeyer, K. H. Etzbachi, H. Ringsdorf, and D. Haarer, Nature, 371, 141-143 (1994).
[11] J. Simmerer, B. Glüsen, W. Paulus, A. Kettner, P. Schuhmacher, D. Adam, K.-H.Etzbach, K. Siemensmeyer, J. H. Wendorff, H Ringsdorf, and D. Haarer, Adv. Mater., 8, 815-819 (1996).
[12] H. Iino, J.-i. Hanna, R. J. Bushby, B. Movaghar, B. J. Whitaker, and M. J. Cook, Appl. Phys. Lett., 87, 132102-3 (2005).
[13] H. Iino, J.-i. Hanna, D. Haarer, and R. J. Bushby, Jpn. J. Appl. Phys., 45, 430-433 (2006).
[14] I. O. Shklyarevskiy, P. Jonkheijm, N. Stutzmann, D. Wasserberg, H. J. Wondergem, P. C. M. Christianen, A. P. H. J. Schenning, D. M. de Leeuw, Ž. Tomović, J. Wu, K. Műllen, and J. C. Maan, J. Am. Chem. Soc., 127, 16233-16237 (2005).
[15] S. Chandrasekhar and V. S. K. Balagurusamy, Proc. R. Soc. Lond. A, 458, 1783-1794 (2002).
[16] S. Laschat, A. Baro, N. Steinke, F. Giesselmann, C. Hagele, G. Scalia, R. Judele, E. Kapatsina, S. Sauer, and A. Schreivogel, Angew. Chem. Int. Ed., 46, 4832-4887 (2007).
[17] S. Sergeyev, W. Pisula, and Y. H. Geerts, Chem. Soc. Rev., 36, 1902-1929 (2007).
[18] N. Boden, R. J. Bushby, J. Clements, K. Donovan, B. Movaghar, and T. Kreouzis, Phys. Rev. B, 58, 3063-3074 (1998).
[19] S. Zimmermann, J. H. Wendorff, and C. Weder, Chem. Mater., 14, 2218-2223 (2002).
[20] H. Monobe, K. Awazu and Y. Shimizu, Adv. Mater., 12, 1495-1499 (2000).
[21] H. Monobe, K. Kiyohara, N. Terasawa, M. Heya, K. Awazu, and Y. Shimizu, Adv. Funct. Mater., 13, 919-924 (2003).
[22] P.-O. Mouthuy, S. Melinte, Y. H. Geerts, and A. M. Jonas, Nano Lett., 7, 2627-2632 (2007).
Chapter 2
[1] F. Reinitzer, Monatsh. Chem., 9, 421-441 (1888).
[2] P. G. de Gennes and J. Prost, "Physics of Liquid Crystals," Oxford University, New York, U.S.A. (1993).
[3] D.-K. Yang and S.-T. Wu, "Fundamentals of liquid crystal devices," John Wiley & Sons, Inc., New Jersey, U.S.A. (2006).
[4] S. V. Shiyanovskii, O. D. Lavrentovich, T. Schneider T. Ishikawa, I. I. Smalyukh, C. J. Woolverton, G. D. Niehaus, and K. J. Doane, Mol. Cryst. Liq. Cryst., 434, 259-270 (2005).
[5] I. Dierking, "Textures of liquid crystals," Wiley-VCH, Weinheim, Germany (2003).
[6] R. J. Bushby and O. R. Lozman, Curr. Opin. Colloid. Interface. Sci., 7, 343-354 (2002).
[7] P. Yeh and C. Gu, "Optics of liquid crystal displays," John Wiley & Sons, Inc., New York, U.S.A. (1999).
[8] C. W. Oseen, Trans. Faraday Soc., 29, 883-899 (1933).
[9] H. Zocher, Trans. Faraday Soc., 29, 945-957 (1933).
[10] F. C. Frank, Discuss. Faraday Soc., 25, 19-28 (1958).
[11] S. Chandrasekhar, B. K. Sadashiva, and K. A. Suresh, Pramana, 9, 471-480 (1977).
[12] S. Laschat, A. Baro, N. Steinke, F. Giesselmann, C. Hagele, G. Scalia, R. Judele, E. Kapatsina, S. Sauer, and A. Schreivogel, Angew. Chem. Int. Ed., 46, 4832-4887 (2007).
[13] S. Kumar, Chem. Soc. Rev., 35, 83-109 (2006).
[14] D. Adam, F. Closs, T. Frey, D. Funhoff, D. Haarer, P. Schuhmacher, and K. Siemensmeyer, Phys. Rev. Lett., 70, 457-460 (1993)
[15] J. Simmerer, B. Glüsen, W. Paulus, A. Kettner, P. Schuhmacher, D. Adam, K.-H. Etzbach, K. Siemensmeyer, J. H. Wendorff, H Ringsdorf, and D. Haarer, Adv. Mater., 8, 815-819 (1996).
[16] H. Iino, J.-i. Hanna, D. Haarer, and R. J. Bushby, Jpn. J. Appl. Phys., 45, 430-433 (2006).
[17] H. Monobe, Y. Shimizu, S. Okamoto, and H. Enomoto, Mol. Cryst. Liq. Cryst., 476, 31-41 (2007).
[18] H. Iino, Y. Takayashiki, J.-i. Hanna, R. J. Bushby, and D. Haarer, Appl. Phys. Lett., 87, 192105-3 (2005).
[19] D. Adam, P. Schuhmacher, J. Simmerer, L. Häussling, K. Siemensmeyer, K. H. Etzbachi, H. Ringsdorf, and D. Haarer, Nature, 371, 141-143 (1994).
[20] H. Iino, Y. Takayashiki, J.-i. Hanna, and R. J. Bushby, Jpn. J. Appl. Phys., 44, L1310-L1312 (2005).
[21] H. Iino, J.-i. Hanna, R. J. Bushby, B. Movaghar, B. J. Whitaker, and M. J. Cook, Appl. Phys. Lett., 87, 132102-3 (2005).
[22] Y. Shimizu, Y. Miyake, H. Yoshida, H. Monobe, M. J. Cook, A. Fujii, and A. Ozaki, Mol. Cryst. Liq. Cryst., 549, 127-132 (2011).
[23] J. Wu , W. Pisula, and K. Müllen, Chem. Rev., 107, 718-747 (2007).
[24] J. Billard, J. C. Dubois, N. H. Tinh, and A. Zann, Nouv. J. Chim., 2, 535-540 (1978).
[25] A. N. Cammidge and R. J. Bushby, In "Handbook of Liquid Crystals," (Eds.: D. Demus, J. W. Goodby, and G. W. Gray), Wiley-VCH, New York, U.S.A., 2B, 693-748 (1998).
[26] S. Kumar, Liq. Cryst., 31, 1037-1059 (2004).
[27] A. Bayer, S. Zimmermann, and J. H. Wendorff, Mol. Cryst. Liq. Cryst., 396, 1-22 (2003).
[28] K. J. Donovan, T. Kreouzis, K. Scott, J. C. Bunning, R. J. Bushby, N. Boden, O. R. Lozman, and B. Movaghar, Mol. Cryst. Liq. Cryst., 396, 37-41 (2003).
[29] J. M. Warman and A. M. Van De Craats, Mol. Cryst. Liq. Cryst., 396, 41-72 (2003).
[30] J. Cross , J. W. Goodby , A. W. Hall , M. Hird , S. M. Kelly , K. J. Toyne, and C. Wu, Liq. Cryst., 25, 1-11 (1998).
[31] P. Herwig, C. W. Kayser, K. Müllen, H. W. Spiess, Adv. Mater., 8, 510-513 (1996).
[32] G. R. J. Müller, C. Meiners, V. Enkelmann, Y. Geerts, and K. Müllen, J. Mater. Chem., 8, 61-64 (1998).
[33] B. Mohr, G. Wegner, and K. Ohta, J. Chem. Soc., Chem. Commun.,10, 995-996 (1995).
[34] J. Babuin, J. Foster, and V. E. Williams, Tetrahedron Lett., 44, 7003-7005 (2003).
[35] E. J. Foster, J. Babuin, N. Nguyen, and V. E. Williams, Chem. Commun., 2004, 2052-2053 (2004).
[36] E. J. Foster, R. B. Jones, C. Lavigueur, and V. E. Williams, J. Am. Chem. Soc., 128, 8569-8574 (2006).
[37] R.J. Bushby, K. J. Donovan, T. Kreouzis, and O. R. Lozman, Opto.-Electron. Rev., 13, 269-279 (2005).
[38] R. J. Bushby, N. Boden, C. A. Kilner, O. R. Lozman, Z. Lu, Q. Liu and M. A. Thornton-Pett, J. Mater. Chem., 13, 470-474 (2003).
[39] C. W. Ong, J. Y., Hwang, M. C. Tzeng, S. C. Liao, H. F. Hsu, and T. H. Chang, J. Mater. Chem., 17, 1785-1790 (2007).
[40] K. Kawata, Chem. Rec., 2, 59-80 (2002).
[41] A. M. van de Craats, N. Stutzmann, O. Bunk, M. M. Nielsen, M. Watson, K. Müllen, H. D. Chanzy, H. Sirringhaus, and R.H. Friend, Adv. Mater., 15, 495-499 (2003).
[42] W. Pisula, A. Menon, M. Stepputat, I. Lieberwirth, U. Kolb, A. Tracz, H. Sirringhaus, T. Pakula, and K. Müllen, Adv. Mater., 17, 684-689 (2005).
[43] L. Schmit-Mende, A. Fechtenkotter, K. Müllen, E. Moons, R. Friend, and J. D. Mackenzie, Science, 293, 1119-1122 (2001).
[44] L. Schmidt-Mende, M. Watson, K. Müllen, and R. H. Friend, Mol. Cryst. Liq. Cryst., 396, 73-90 (2003).
[45] A. Bacher, I. Bleyl, C. H. Erdelen, D. Haarer, W. Paulus, H.-W. Schmidt, Adv. Mater., 9, 1031-1035 (1997).
[46] J. H. Wendorff, T. Christ, B. Glüsen, A. Greiner, A. Ketter, H. Sander, V. Stümpflen, and V. V. Tsukruk, Adv. Mater., 9, 48-52 (1997).
[47] F. Charra and J. Cousty, Phys. Rev. Lett., 80, 1682-1685 (1998).
[48] S. D. Xu, Q. D. Zeng, J. Lu, C. Wang, L. J. Wan and C. L. Bai, Surf. Sci., 538, L451–L459 (2003).
[49] M. Palma, J. Levin, V. Lemaur, A. Liscio, V. Palermo, J. Cornil, Y. Geerts, M. Lehmann, and P. Samorì, Adv. Mater., 18, 3313-3317 (2006).
[50] R. Friedlein, X. Crispin, C. D. Simpson, M. D. Watson, F. Jäckel, W. Osikowicz, S. Marciniak, M. P. de Jong, P. Samorí, S. K. M. Jönsson, M. Fahlman, K. Müllen, J. P. Rabe, and W. R. Salaneck, Phys. Rev. B, 68, 195414-7 (2003).
[51] H. Eichhorn, J. Porphyrins Phthalocyanines, 4, 88-102 (2000).
[52] S. Sergeyev, W. Pisula, and Y. H. Geerts, Chem. Soc. Rev., 36, 1902-1929 (2007).
[53] S.-W. Kang, Q. Li, B. D. Chapman, R. Pindak, J. O. Cross, L. Li, M. Nakata, and S. Kumar, Chem. Mater., 19, 5657-5663 (2007).
[54] D. Goldfarb, Z. Luz, and H. Zimmermann, J. Phys., 42, 1303-1311 (1981).
[55] J.-H. Lee, H.-S. Kim, B. D. Pate, and S.-M. Choi, Physica B, 385-386, 798-800 (2006).
[56] H.-S. Kim, S.-M. Choi, J.-H. Lee, P. Busch, S. J. Koza, E. A. Verploegen, and B. D. Pate, Adv. Mater., 20, 1105-1109 (2008).
[57] M. Yoshio, T. Mukai, H. Ohno, and T. Kato, J. Am. Chem. Soc., 126, 994-995 (2004).
[58] Z. An, J. Yu, S.C. Jones, S. Barlow, S. Yoo, B. Domercq, P. Prins, L. D. A. Siebbeles, B. Kippelen, and S. R. Marder, Adv. Mater., 17, 2580-2583 (2005).
[59] H. Monobe, K. Awazu and Y. Shimizu, Adv. Mater., 12, 1495-1499 (2000).
[60] H. Monobe, K. Kiyohara, N. Terasawa, M. Heya, K. Awazu, and Y. Shimizu, Adv. Funct. Mater., 13, 919-924 (2003).
[61] J. C. Wittmann and P. Smith, Nature, 352, 414-417 (1991).
[62] S. Zimmermann, J. H. Wendorff, and C. Weder, Chem. Mater., 14, 2218-2223 (2002).
[63] A. Tracz, J. K. Jeszka , M. D. Watson, W. Pisula, K. Müllen, and T. Pakula, J. Am. Chem. Soc., 125, 1682-1683 (2003).
[64] P.-O. Mouthuy, S. Melinte, Y. H. Geerts, and A. M. Jonas, Nano Lett., 7, 2627-2632 (2007).
Chapter 3
[1] C. W. Ong, J. Y., Hwang, M. C. Tzeng, S. C. Liao, H. F. Hsu, and T. H. Chang, J. Mater. Chem., 17, 1785-1790 (2007).
[2] R. C. Cammarata, Prog. Surf. Sci., 46, 1-38 (1994).
[3] R. Shuttleworth," The surface tension of solids," Proc. Phys. Soc. A, 63, 444-457 (1950).
[4] R. R. Vanfl Surf. Sci., 341, 40-50 (1995).
[5] T. Young, Phil. Trans. R. Soc. Lond., 95, 65-87 (1805).
[6] H. W. Fox and W. A. Zisman, J. Colloid Sci., 7, 428-442 (1952).
[7] E. G. Shafrin , W. A. Zisman, J. Phys. Chem., 64, 519-524 (1960).
[8] F. M. Fowkes, Ind. Eng. Chem., 56, 40-52 (1964).
[9] D. K. Owens and R. C. Wendt, J. Appl. Polym. Sci., 13, 1741-1747 (1969).
[10] T. Uchida, "Surface alignment of liquid crystals," in Liquid crystals-applications and uses, Vol. 3, (Ed.: B. Bahadur), World Scientific, Singapore (1990).
[11] K. Takatoh, M. Hasegawa, M. Koden, N. Itoh, R. Hasegawa, and M. Sakamoto, "Alignment technologies and applications of liquid crystal devices," Taylor & Francis, New York, U.S.A. (2005).
[12] B. Jerome, Rep. Prog. Phys. 54, 391-451 (1991).
[13] W. J. Zheng and M. H. Huang, Thin Solid Films, 520, 2841-2845 (2012).
[14] L. T. Creagh and A. R. Kmetz, Mol. Cryst. Liq. Cryst., 24, 59-68 (1972).
[15] G. Porte, J. de Physique, 37, 1245-1252 (1976).
[16] M. A. Bouchiat and D. Langevin-Cruchon, Phys. Lett. A, 34, 331-332 (1971).
[17] I. Haller, Appl. Phys. Lett., 24, 349-351 (1974).
[18] S. Naemura, J. Appl. Phys., 51, 6149-6159 (1980).
[19] J. L. White, M. Buecheler and C.B. Ng, Carbon, 20, 536-538 (1982).
[20] R. Hurt, G. Krammer, G. Crawford, K. Jian, and C. Rulison, Chem. Mater., 14, 4558-4565 (2002).
[21] I. K. Iverson, S. M. Casey, W. Seo, and S.-W. Tam-Chang, Langmuir, 18, 3510-3516 (2002) .
[22] K. Jian, H.-S. Shim, D. Tuhus-Dubrow, S. Bernstein, C. Woodward, M. Pfeffer, D. Steingart, T. Gournay, S. Sachsmann, G. P. Crawford, and R. H. Hurt, Carbon, 41, 2073-2083 (2003).
[23] K. Jian, H. Xianyu, J. Eakin, Y. Gao, G. P. Crawford, and R. H. Hurt, Carbon, 43, 407-415 (2005).
[24] Eric Grelet and Harald Bock, Europhys. Lett., 73, 712–718 (2006).
[25] M. Gharbia, A. Gharbi, M. Cagnon, and G. Durand, J. Phys. France, 51, 1355-1365 (1990).
[26] H. L. Ong, A. J. Hurd, and R. B. Meyer, J. Appl. Phys., 57, 186-192 (1985).
[27] B. W. Lee and N. A. Clark, Science, 291, 2576-2580 (2001).
[28] T. Scharf, S. Park, C. Padeste, H. Schift, N. Basturk, and J. Grupp, Mol. Cryst. Liq. Cryst., 438, 55-65 (2005).
[29] J. T. K. Wan, O. K. C. Tsui, H.-S. Kwok, and P. Sheng, Phys. Rev. E, 72, 021711-4 (2005).
[30] L. Komitov, G. Barbero, I. Dahl, B. Helgee, and N. Olsson, Liq. Cryst., 36, 747-753 (2009).
[31] D. W. Berreman, Mol. Cryst. Liq. Cryst., 23, 215-231 (1973).
[32] J. M. Geary, J. W. Goodby, A. R. Kmetz, and J. S. Patel, J. Appl. Phys., 62, 4100-4108 (1987).
[33] J. A. Castellano, Mol. Cryst. Liq. Cryst., 94, 33-41 (1983).
[34] W. Zheng, C.-H. Lu, and Y.-C. Ye, Jpn. J. Appl. Phys., 47, 1651-1656 (2008).
[35] E. Hecht, "Optics (4th edition)," Addison Wesley, San Francisco, USA (2002).
[36] R. C. Jones, J. Opt. Soc. A., 31, 488-493 (1941).
[37] W. D. Nesse, "Introduction to optical mineralogy," Oxford University, New York (1991).
[38] P. Yeh and C. Gu, "Optics of liquid crystal displays," John Wiley & Sons, Inc., New York, U.S.A. (1999).
[39] J. K. Vij, A. Kocot, and T. S. Perova, Mol. Cryst. Liq. Cryst., 397, 231-244 (2010).
[40] Z. Burhanudin and P. Etchegoin, Chem. Phys. Lett., 336, 7-12 (2001).
[41] A. Beiser, "Concepts of modern physics (6th edition)," McGraw-Hill, Boston, USA (2003).
[42] D. Bauman and Z. Salamon, 48, 306-308 (1984).
[43] M. Yoneyama, M. Sugi, M. Saito, K. Ikegami, S.-i. Kuroda, and S. Iizima, Jpn. J. Appl. Phys., 25, 961-965 (1986).
[44] S. Zimmermann, J. H. Wendorff, and C. Weder, Chem. Mater., 14, 2218-2223 (2002).
[45] I. K. Iverson, S. M. Casey, W. Seo, and S.-W. Tam-Chang, Langmuir, 18, 3510-3516 (2002).
[46] J. Piris, M. G. Debije, N. Stutzmann, B. W. Laursen, W. Pisula, M. D. Watson, T. Bjørnholm, K. Müllen, and J. M. Warman, Adv. Funct. Mater., 14, 1053-1061 (2004).
[47] C. D. west and R. C. Jones, J. Opt. Soc. Am., 41, 976-982 (1951).
[48] F. S. Denes , S. Manolache, Prog. Polym. Sci., 29, 815-885 (2004).
[49] E. S. Lee, J. H. Choi, and H. K. Baik, Surf. Coat. Tech., 201, 4973-4978 (2007).
[50] M. R. Sanchisa, V. Blanesa, M. Blanesa, D. Garciab, and R. Balartb, Eur Polym J., 42, 1558-1568 (2006).
[51] E. S. Lee, J. H. Choi, and H. K. Baik, Surf. Coat. Tech., 201, 4973-4978 (2007).
[52] Z. Z. You, and J. Y. Dong, J. Colloid Interf. Sci., 300, 697-703(2006)
[53] S.M. Mirabedini, H. Arabi, A. Salem, and S. Asiaban, Prog. Org. Coat., 60, 105-111 (2007).
[54] D. A. Bolon and C. O. Kunz, Polym. Eng. Sci., 12. 109-111 (1972).
[55] B. S. Krusor, D. K. Biegelsen, R. D. Yingling, and J. R. Abelson, J. Vac. Sci. Technol. B, 7, 129-130 (1989).
[56] A. B. Ponter, W. R. Jones Jr., and R. H. Jansen, Polym. Eng. Sci., 34, 1233-1238 (1994).
[57] D. O. H. Teare, C. Ton-That, and R. H. Bradley, Surf. Interface. Anal., 29, 276-283 (2000).
[58] G. M. Whitesides and B. Grzybowski, Nature, 295, 2418-2421 (2002).
[59] J. Sagiv, J. Am. Chem. Soc., 102,92-98 (1980).
[60] W. Geyer, V. Stadler, W. Eck, M. Zharnikov, A. Gölzhäuser, and M. Grunze, " Appl. Phys. Lett., 75, 2401-2403 (1999).
[61] R. Klauser, M.-L. Huang,S.-C. Wang, C.-H. Chen, T. J. Chuang, A. Terfort, and M. Zharnikov, Langmuir, 20, 2050-2053 (2004).
[62] M.-H. Lin, C.-F. Chen, H.-W. Shiu, C.-H. Chen and S. Gwo, J. Am. Chem. Soc., 131, 10984-10991 (2009).
[63] J.B. Brzoska, N. Shaidzadeh, and F. Rondelez, Nature, 360, 719-721 (1992).
[64] M. D. Porter , T. B. Bright , D. L. Allara , and C. E. D. Chidsey, J. Am. Chem. Soc., 109, 3559-3568 (1987).
[65] D. Janssen, R. D. Palma, S. Verlaak, P. Heremans, and W. Dehaen, Thin Solid Films, 515, 1433-1438 (2006).
[66] P. Silberzan, L. Léger, D. Ausserré, and J. J. Benattar, Langmuir, 7, 1647-1651 (1991).
[67] C. Carraro, O. W. Yauw, M. M. Sung, and R. Maboudian, J. Phys. Chem. B, 102, 4441-4445 (1998).
[68] M. E. McGovern, K. M. R. Kallury, and M. Thompson, Langmuir, 10, 3607-3614 (1994).
[69] Y. Xia, J. A. Rogers, K. E. Paul, and G. M. Whitesides, Chem. Rev., 99, 1823-1848 (1999).
[70] A. Lien, R. A. John, M. Angelopoulos, K. W. Lee, H. Takano, K. Tajima, and A. Takenaka, Appl. Phys. Lett., 67, 3108-3110 (1995).
[71] J. Chen, P. J. Bos, H. Vithana and D. L. Johnson, Appl. Phys. Lett., 67, 2588-2590 (1995).
[72] A. Kumar and G. M. Whitesides, Appl. Phys. Lett., 63, 2002-2004 (1993).
[73] E. Kim, Y. Xia, and G. M. Whitesides, Nature, 376, 581-584 (1995).
[74] M.-H. Lin, C.-F. Chen, H.-W. Shiu, C.-H. Chen and S. Gwo, J. Am. Chem. Soc., 131, 10984-10991 (2009).
[75] Q. Xu, B. T. Mayers, M. Lahav, D. V. Vezenov, and G. M. Whitesides, J. Am. Chem. Soc., 127, 854-855 (2005).
[76] W. J. Dressick, C. S. Dulcey, J. H. Georger Jr., and J. M. Calvert, Chem. Mater., 5, 148-150 (1993).
[77] W. J. Dressick and J. M. Calvert, Jpn. J. Appl. Phys., 32, 5829-5839 (1993).
[78] Y.-J. Kim, K.-H. Lee, H. Sano, J. Han, T. Ichii, K. Murase, and H. Sugimura, Jpn. J. Appl. Phys., 47, 307-312 (2008).
[79] N. Tessler, Y. Preezant, N. Rappaport, and Y. Roichman, Adv. Mater., 21, 2741-2761 (2009).
[80] A. Dieckmann, H. Bässler, and P. M. Borsenberger, J. Chem. Phys., 99, 8136-8141 (1993).
[81] H. H. Poole, Philos. Mag., 34, 195-204 (1917).
[82] J. Frenkel, Phys. Rev., 54, 647-648 (1938).
[83] H. Bässler and A. Köhler, Top. Curr. Chem., 312, 1-66 (2012).
[84] I. Bleyl , C. Erdelen, H.-W. Schmidt, and D. Haarer, Philoso. Mag. B, 79, 463-475 (1999).
[85] A. M. van de Craats, J. M. Warman, M. P. de Haas, D. Adam, J. Simmerer, D. Haarer, and P. Schuhmacher, Adv. Mater., 8, 823-826 (1996).
[86] Z. An, J. Yu, B. Domercq, S. C. Jones, S. Barlow, B. Kippelen, and S. R. Marder, J. Mater. Chem., 19, 6688-6698 (2009).
[87] W. Pisula, A. Menon, M. Stepputat, I. Lieberwirth, U. Kolb, A. Tracz, H. Sirringhaus,T. Pakula, and K. Müllen, Adv. Mater., 17, 684-689 (2005).
[88] Q. Li, "Self-organized organic semiconductors: from materials to device applications," John Wiley & Sons, Inc., Hoboken, New Jersey (2011).
Chapter 4
E. Hecht, "Optics (4th edition)," Addison Wesley, San Francisco, USA (2002).
[2] K. H. Yang, J. Appl. Phys., 64, 4780-4781 (1988).
[3] D.-S. Seo, S. Kobayashi, and M. Nishikawa, Appl. Phys. Lett., 61, 2392-2394 (1992).
[4] T. Uchida, M. Hirano, and H. Sakai, Liq. Cryst., 5, 1127-1137 (1989).
[5] L. L. Kosbar, C. D. Dimitrakopoulos, and D. J. Mascaro, Mater. Res. Soc. Symp. Proc., 665, C10.6 (2001).
[6] N. Tillman, A. Ulman, J S. Schildkraut, and T. L. Penner, J. Am. Chem. Soc., 110, 6136-6144 (1988).
[7] A. Y. Fadeev and T. J. McCarthy, Langmuir, 16, 7268-7274 (2000).
[8] D. Janssen, R. D. Palma, S. Verlaak, P. Heremans, and W. Dehaen, Thin Solid Films, 515, 1433-1438 (2006).
[9] D. F. S. Petri, G. Wenz, P. Schunk, and T. Schimmel, Langmuir, 15, 4520-4523 (1999).
[10] J. A. Howarter and J. P. Youngblood, Langmuir,22, 11142-11147 (2006).
[11] E. A. Smith and W. Chen, Langmuir, 24, 12405-12409 (2008).
[12] A. K. Chauhan, D. K. Aswal, S. P. Koiry, S. K. Gupta, J. V. Yakhmi, C. Sürgers, D. Guerin, S. Lenfant, and D. Vuillaume, Appl. Phys. A, 90, 581-589 (2008).
[13] M.-H. Lin, C.-F. Chen, H.-W. Shiu, C.-H. Chen and S. Gwo, J. Am. Chem. Soc., 131, 10984-10991 (2009).
Chapter 5
[1] J. Wang, Z. He, Y. Zhang, H. Zhao, C. Zhang, X. Kong, L. Mu, and C. Liang, Thin Solid Films, 518, 1973-1979 (2010).
[2] Eric Grelet and Harald Bock, Europhys. Lett., 73, 712–718 (2006).
[3] S. Zimmermann, J. H. Wendorff, and C. Weder, Chem. Mater., 14, 2218-2223 (2002).
[4] A. M. van de Craats, N. Stutzmann, O. Bunk, M. M. Nielsen, M. Watson, K. Müllen, H. D. Chanzy, H. Sirringhaus, and R. H. Friend, Adv. Mater., 15, 495-499 (2003).
[5] H. Monobe, N. Terasawa, K. Kiyohara, Y. Shimizu, H. Azehara, A. Nakasa, and M. Fujihira, Mol. Cryst. Liq. Cryst., 412, 229-236 (2004).
[6] M. Yoshio, T. Kagata, K. Hoshino, T. Mukai, H. Ohno, and T. Kato, J. Am. Chem. Soc., 128, 5570-5577 (2006).
[7] A. Hayer, V. de Halleux, A. Köhler, A. El-Garoughy, E. W. Meijer, J. Barbera, J. Tant, J. Levin, M. Lehmann, J. Gierschner, J. Cornil, and Y. H. Geerts, J. Phys. Chem. B, 110, 7653-7659 (2006).
[8] W. Pisula, M. Kastler, B. El Hamaoui, M.-C. Garcia-Gutierrez, R. J. Davies, C. Riekel, and K. Muellen, ChemPhysChem, 8, 1025-1028 (2007).
[9] B. Jerome, Rep. Prog. Phys. 54, 391-451 (1991).
[10] P. Oswald, J. Physique Lett., 42, L171-L173 (1981).
[11] P M. Okazaki, K. Kawata, H. Nishikawa, and M. Negoro, Polym. Adv. Technol., 11, 398-403 (2000).
[12] C.-Y. Liu, A. Fechtenkötter, M. D. Watson, K. Müllen, and A J. Bard, Chem. Mater., 15, 124-130 (2003).
[13] A. Fe1rguson and E. J. Irons, Proc. Phys. Soc., 53, 182-185 (1941).
[14] H. Zhang and J. F. Banfield, J. Mater. Chem., 8, 2073-2076 (1998).
[15] Q. Jiang and Z. Wen, "Thermodynamics of materials," Springer-Verlag, Berlin, Germany (2011).
[16] C.-W. Fan and S.-C. Lee, Mater. Chem. Phys., 107, 334-338 (2008).
[17] Q. Zhao, Y. Liu, E.W. Abel, J. Colloid. Interf. Sci., 280, 174-183 (2004).
[18] T. J. Scheffer and J. Nehring, J. Appl. Phys., 48, 1783-1792 (1977).
[19] T. S. Perova, J. K. Vij, and A. Kocot, Europhys. Lett., 44, 198-204 (1998).
[20] J. K. Vij, A. Kocot, T. S. Perova, Mol. Cryst. Liq. Cryst., 397, 231-244, (2003).
[21] L.-Y. Chen, F.-H. Chien, Y.-W. Liu, W. Zheng, C.-Y. Chiang, C.-Y. Hwang ,C.-W. Ong, Y.-K. Lan, and H.-C. Yang, Org. Electron., 14, 2065-2070 (2013).
[22] Q. Li, "Self-organized organic semiconductors: from materials to device applications," John Wiley & Sons, Inc., New Jersey, U.S.A. (2011).
[23] H. Iino and J.-i.Hanna, Jpn.f J. Appl. Phys., 45, L867-L870 (2006).
Chapter 6
[1] P.-O. Mouthuy, S. Melinte, Y. H. Geerts, and A. M. Jonas, Nano Lett., 7, 2627-2632 (2007).
[2] D.-R. Chiou, L.-J. Chen, and C.-D. Lee, Langmuir, 22, 9403-9408 (2006).
[3] D.-R. Chiou and L.-J. Chen, J. Phys. Chem. C, 113, 9797-9803 (2009)
[4] J. P. Bramble, D. J. Tate, D. J. Revill, K. H. Sheikh, J. R. Henderson, F. Liu, X. Zeng, G. Ungar, R. J. Bushby, and S. D. Evans, Adv. Funct. Mater., 20, 914-920 (2010).
Chapter 7
[1] J. C. Wittmann and P. Smith, Nature, 352, 414-417 (1991).
[2] H. Hansma, F. Motamedi, P. Smith, P. Hansma, and J. C. Wittman, Polymer, 33, 647-649 (1992).
[3] P. Oswald, J. Physique Lett., 42, L171-L173 (1981).
[4] P. Oswald and P. Pieranski, "Smectic and columnar liquid crystals," Taylor & Francis, Boca Raton, U.S.A. (2006).
[5] S. Zimmermann, J. H. Wendorff, and C. Weder, Chem. Mater., 14, 2218-2223 (2002).
[6] D. W. Berreman, Phys. Rev. Lett., 28, 1683-1686 (1972).
[7] J. M. Geary, J. W. Goodby, A. R. Kmetz, and J. S. Patel, J. Appl. Phys., 62, 4100-4108 (1987).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code