Responsive image
博碩士論文 etd-1027111-140652 詳細資訊
Title page for etd-1027111-140652
論文名稱
Title
以液相沉積法備製氧化鈦與氧化鎳之研究
Study of Titanium Oxide and Nickel Oxide Films by Liquid Phase Deposition
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
124
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-10-21
繳交日期
Date of Submission
2011-10-27
關鍵字
Keywords
MOS 結構、高介電常數、循環伏安法、循環伏安儀、電致變色、液相沉積法、氧化鎳、二氧化鈦、鎳摻雜
nickel oxide, Titanium dioxide, high dielectric constant, MOS structure, liquid phase deposition, Nickel-doped
統計
Statistics
本論文已被瀏覽 5744 次,被下載 1045
The thesis/dissertation has been browsed 5744 times, has been downloaded 1045 times.
中文摘要
在此研究中,我們將研究二氧化鈦、鎳摻雜二氧化鈦與氧化鎳薄膜在透明導電玻璃、玻璃與矽基板上不同之特性與應用。我們會進行二氧化鈦、鎳摻雜二氧化鈦與氧化鎳薄膜之物理、化學、光、電致變色和電特性方面的量測與討論。物理特性方面,由場放射掃描電子顯微鏡和X光繞射來看薄膜的厚度和結構。化學特性部分,由X射線光電子光譜學和傅立葉轉換紅外光譜儀來看薄膜的化學組成比和化學鍵結。光特性部份,由反射式光譜儀來量測金屬氧化薄膜之穿透率,電致變色特性部份,由循環伏安儀與循環伏安法來量測薄膜特性,電特性部份,由電壓-電流特性圖與電容-電壓特性圖來看薄膜的漏電流與電容值。為了改善薄膜眾多特性,我們將進行氧氣、氮氣和笑氣下回火處理的研究。
在進行鎳摻雜二氧化鈦實驗中,我們選用氯化鎳當做實驗中的摻雜溶液,以改善電特性方面。在700度中通笑氣回火處理下,未摻雜的二氧化鈦薄膜之介電常數為29;摻雜後的二氧化鈦薄膜之介電常數提升到94。
Abstract
An uniform titanium oxide film was grown on indium tin oxide/glass substrate with the aqueous solutions of ammonium hexafluoro-titanate and boric acid. The as-deposition titanium oxide film shows good electrochromic property because of fluorine passivation on defects and dangling bonds. The transmittance of as-grown titanium oxide on indium tin oxide/glass with a thickness of 270 nm is about 85% at the wavelength of 550 nm. By 50 times electrochromic cycling test, the transparency ratio of TiO2 film is kept at 45% between fully colored state and fully bleached state at the wavelength of 550 nm.
Under ultraviolet illumination, the growth of titanium oxide film grown is enhanced. The root mean squared value of surface roughness is improved from 3.723 to 0.523 nm. Higher fluorine concentration from (NH4)2TiF6 passivate defects and dangling bonds of titanium oxide during the growth. After 50 times electrochromic cycling test, the transparency ratio UV-TiO2 is improved from 37.5% to 42.4% at the wavelength of 550 nm.
The electrical characteristics of nickel-doped titanium oxide films on p-type (100) silicon substrate by liquid phase deposition were investigated. For nickel doping, the nickel chloride was used as the doping solution and the electrical characteristics were improved. After thermal annealing in nitrous oxide at 700 oC, the dielectric constant of polycrystalline titanium oxide film is 29 and can be improved to 94 with nickel doping.
Uniform nickel oxide film was grown on a conducting glass substrate with the aqueous solution of saturated NiF2•4H2O solution and H3BO3. The quality of NiO is improved after thermal annealing at 300 oC in air from the decrease of oxygen vacancy and better F ion passivation on defects and dangling bonds. The transmittance of as-deposited NiO/ITO/glass with a thickness of 100 nm is about 78% and improved to 88% after annealing at the wavelength of 550 nm. By the electrochromic cycling test 50 times on annealed NiO film, the transparency ratio is kept at 48% between fully colored state and fully bleached state at the wavelength of 550 nm. By the memory time test, the annealed LPD-NiO film has shorter memory time.
The growth of nickel oxide film grown on indium-tin oxide/glass substrate by liquid phase deposition is enhanced under ultraviolet photo-irradiation was studied. a-Ni(OH)2 dominates the composition of as-grown NiO film. After thermal treatment at 300 oC,a-Ni(OH)2 is transformed into NiO. For thermally treated NiO under ultraviolet photo-irradiation, the recrystallization and the colored and bleached transmittance after 50 times electrochromic test were improved. Both improvements come from fluorine passivation.
Transparent and conductive thin films consisting of p-type nickel oxide (NiO) semiconductors were prepared by liquid phase deposition. A resistivity of 8 x 10-1 -cm was obtained for NiO films prepared at liquid phase deposition. The transmittance of NiO is almost 70 % in the 550 nm wavelength was obtained for a 384.3 nm thick NiO film.
目次 Table of Contents
CONTNETS

ACKNOWLEDGEMENT ii
摘 要 iv
ABSTRACT v
CONTNETS viii
LIST OF FIGURES xi
Chapter 1 1
Introduction 1
1-1 Metal oxides thin film 1
1-1.1 Titanium dioxide 1
1-1.2 Nickel oxide 1
1-2 Electrochromic 2
1-3 UV illumination 2
1-4 Liquid-Phase Deposition (LPD) 3
1-5 Advantages of Liquid Phase Deposition 5
1-6 Motivation of Doping Nickel 6
Chapter 2 9
Experiments 9
2-1 Deposition System 9
2-2 Cleaning of Substrate 10
2-2.1 ITO-coated glass Cleaning Procedures 10
2-2.2 Glass Cleaning Procedures 10
2-2.3 Silicon substrate Cleaning Procedures 10
2-3 Photoresist coated 11
2-4 Aluminum Metal Cleaning Processes 12
2-5 Preparation of Deposition Solution 12
2-5.1 Preparation of (NH4)2TiF6 solution 13
2-5.2 Preparation of NiF2•4H2O solution 13
2-5.3 Preparation of boric acid solution 13
2-5.4 Preparation of nickel chloride solution 13
2-6 Film Deposition 14
2-6.1 LPD-TiO2 process 14
2-6.2 LPD-NiO process 14
2-6.3 Ni-doped LPD-TiO2 process 14
2-6.4 UV illumination for LPD process 15
2-7 Growth Mechanisms 15
2-7-1 Growth Mechanisms of LPD-TiO2 Films 15
2-7-2 Growth Mechanisms of LPD-NiO Films 16
2-8 Improvements of Electrical Properties by Nickel Doping 17
2-9 Characteristics 17
2-9.1 Physical and Chemical Properties 17
(a) Thickness and Cross-Sectional Morphologies 17
(b) Surface Morphologies 18
(c) Structure 18
(d) Composition 18
2-9.2 Electrical Properties 18
(a) Structure for Electrical Measurement 18
(b) Current-Voltage (I-V) Measurement 19
(c) Capacitance-Voltage Measurement 19
2-9.3 Optical Properties 20
2-9.4 Electrochromic Properties 20
Chapter 3 27
Results and Discussion 27
3-1. LPD-TiO2 film deposited at 40 oC 27
3-1.1 Deposition rate and SEM views of the LPD-TiO2 27
3-1.2 Optical property of the LPD-TiO2 27
3-1.2 ESCA Analysis of LPD-TiO2 Films 28
3-2 UV-TiO2 and LPD-TiO2 film deposited at 30 oC 29
3-2.1 Deposition rate of the UV-TiO2 and LPD-TiO2 29
3-2.2 Atomic force microscopy (AFM) of the UV-TiO2 and LPD-TiO2 29
3-2.3 X-ray Diffraction Spectra of the UV-TiO2 and LPD-TiO2 30
3-2.3 Cyclic voltammograms test of the UV-TiO2 and LPD-TiO2 30
3-2.4 ESCA Analysis of the UV-TiO2 and LPD-TiO2 30
3-2.5 Electrochromic test for optical of the UV-TiO2 and LPD-TiO2 31
3-2.6 Electrochromic test of the UV-TiO2 31
3-3 Ni-doped TiO2 32
3-3.1 Deposition rate of the undoped and Ni-doped LPD-TiO2 32
3-3.2 ESCA Analysis of the Ni-doped LPD-TiO2 32
3-3.3 X-ray Diffraction Spectra of the Ni-doped LPD-TiO2 32
3-3.4 Electrical Characteristics of LPD-TiO2 Films by N2O Annealing 33
3-3.5 Electrical Characteristics of Nickel-doped LPD-TiO2 Films by N2O Annealing 34
3-4 LPD- NiO film deposited at 40 oC 35
3-4.1 Deposition rate and SEM views of the LPD-NiO 35
3-4.2 SEM views of the LPD-NiO 36
3-4.3 Optical property of the LPD-NiO 36
3-4.4 Electrochromic parameters for LPD-NiO films 37
3-5 UV-NiO and LPD-NiO film deposited at 30 oC 40
3-5.1 Deposition rate and SEM views of the LPD-NiO and UV-NiO 40
3-5.2 FTIR Spectra of LPD-NiO and UV-NiO 40
3-5.2 ESCA Analysis of the LPD-NiO and UV-NiO 41
3-5.3 X-ray Diffraction Spectra of the LPD-NiO and UV-NiO 42
3-5.4 Atomic force microscopy (AFM) of the LPD-NiO and UV-NiO 42
3-5.5 Optical property of the LPD-NiO and UV-NiO 42
3-5.6 Cyclic voltammograms of the LPD-NiO and UV-NiO 43
3-6 Transparent conducting LPD- NiO film 43
3-6.1 Deposition rate and SEM views of the transparent conducting LPD-NiO 43
3-6.2 X-ray Diffraction Spectra of the transparent conducting LPD-NiO 44
3-6.3 Optical property of the transparent conducting LPD-NiO 44
3-6.4 Resistivity 44
Chapter 4 92
Conclusions 92
Reference 95
Chapter 1 95
Chapter 2 98
Chapter 3 99
Publication List 105
(a)Journal Papers 105
(b)Conference Papers 106
Autobiography 109
參考文獻 References
Reference
Chapter 1
[1-1] W. A. Badawy, “Preparation, electrochemical, photoelectrochemical and solid-state characteristics of indium-incorporated TiO2 thin films for solar cell fabrication”, Journal of Materials Science 32 pp.4979-4984, 1997.
[1-2] T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, M. Matsumura, ” Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light” Applied Catalysis A: General, 265, pp.115-121, 2004.
[1-3] Cinnsealach R, Boschloo G, Rao S N and D Fitzmaurice “Coloured electrochromic windows based on nanostructured TiO2 films modified by adsorbed redox chromophores” Solar Energy Materials & Solar Cells, 57, pp.107-125, 1999.
[1-4] S. Y. Huang, G. Schlichthorl, A. J. Nozik, M. Gratzel, A. J. Frank, “Charge Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cells”, J. Phys. Chem. B 101, pp.2576-2582, 1997.
[1-5] M. K. Lee, C. M. Shih, S. C. Fang, H. F. Tu, C. L. Ho, ”Preparation of Niobium-Doped Titanium Oxide Film by Liquid Phase Deposition”, Japanese Journal of Applied Physics, 46, pp.1653-1655, 2007.
[1-6] I. Hotovy, V. Rehacek, P. Siciliano, S. Capone, L. Spiess, “Sensing characteristics of NiO thin films as NO2 gas sensor”, Thin Solid Films, 418, pp.9-15, 2002.
[1-7] M. Kitao, K. Izawa, K. Urabe, T. Komatsu, S. Kuwano, and S. Yamada,” Preparation and Electrochromic Properties of RF-Sputtered NiOx Films Prepared in Ar/O2/H2 Atmosphere”, Japanese Journal of Applied Physics, 33, pp.6656-6662, 1994.
[1-8] K. Yoshimura, T. Miki, and S. Tanemura, “Nickel Oxide Electrochromic Thin Films Prepared by Reactive DC Magnetron Sputtering”, Japanese Journal of Applied Physics, 34, pp.2440-2446, 1995.
[1-9] P. Puspharajah, and S. Radhakrishna, “Transparent conducting lithium-doped nickel oxide thin films by spray pyrolysis technique”, Journal of Materials Science, 32, pp.3001-3006 1997.
[1-10] A. Neubecker, T. Pompl, T. Doll, W. Hansch, I. Eisele, ” Ozone-enhanced molecular beam deposition of nickel oxide (NiO) for sensor applications”, Thin Solid Films, 310, pp.19-23 1997.
[1-11] M. Gómez, A. Medina, W. Estrada, “Improved electrochromic films of NiOx and WOxPy obtained by spray pyrolysis”, Solar Energy Materials & Solar Cells, 64, pp.297-309 2000.
[1-12] N. N. Dinh, N. Th. T. Oanh, P. D. Long, M. C. Bernard, A. H. L. Goff, “Electrochromic properties of TiO2 anatase thin films prepared by a dipping sol–gel method”, Thin Solid Films, 423, pp.70-76, 2003.
[1-13] M. K. Lee, C. H. Fan, “Electrochromic Characterization of Nickel Oxide Films Grown on ITO/Glass by Liquid Phase Deposition”, Journal of The Electrochemical Society, 156, 10, pp.D395-D399, 2009.
[1-14] C. T. Huang, P. H. Chang, and J. S. Shie, “Photoassisted Liquid-Phase Deposition of Silicon Dioxide”, Journal of the Electrochemical Society, 143, pp.2044-2048. 1996.
[1-15] T. Homma, T. Katoh, Y. Yamada, Y. Murao, “A Selective SiO2 Film-Formation Technology Using Liquid-Phase Deposition for Fully Planarized Multilevel Interconnections”, Journal of the Electrochemical Society, 140, pp.2410-2414, 1993.
[1-16] H. Nagayama, H. Honda, and H. Kawahara, “A New Process for Silica Coating”, Journal of The Electrochemical Society, 135, pp.2013-2016, 1988.
[1-17] S. Deki, Y. Aoi, “Synthesis of metal oxide thin films by liquid-phase deposition method”, Journal of Materials Research, 13, pp.883-890, 1998.
[1-18] Shu-Ming Chang, “The Electrical Properties of Liquid-Phase Deposited SiOF Films with Annealing Treatment”, 2003.
[1-19] Craig A. J. Fisher, Veluz M. H. Prieto, and M. S. Islam, "Lithium Battery Materials LiMPO4 (M ) Mn, Fe, Co, and Ni): Insights into Defect Association, Transport Mechanisms, and Doping Behavior," Chem. Mater., 20, pp. 5907-5915, 2008.
[1-20] K. S. Hwang, J. H. Jeong, J. H. Ahn, B. H. Kim, “Hydrophilic/hydrophobic conversion of Ni-doped TiO2 thin films on glass substrates”, Ceramics International, 32, pp.935-937, 2006.

Chapter 2
[2-1] Y. Gao, Y. Masuda, K. Koumoto “Microstructure-controlled deposition of SrTiO3 thin film on self-assembled monolayers in an aqueous solution of (NH4)2TiF6-Sr(NO3)2-H3BO3”, Chem. Mater, 15, pp. 2399-2410, 2003.
[2-2] Y. Gao, Masuda. Y, T. Yonezawa. T, K. Koumoto, “Site-selective deposition and micropatterning of SrTiO3 thin film on self-assembled Mmonolayers by the liqid phase deposition mothod ”,Chem. Mater, 14, pp. 5006-5014, 2002.
[2-3] C. A. Wamser, “Equilibria in system Boron Trifuoride” J. Am. Chem. Soc , 73, pp. 409, 1951.
[2-4] R. H. Schmitt, H. L. Glove, R. D. Brown, ”The Equivalent Conductance of the Hexafluorocomplexes of Group IV (Si, Ge, Sn, Ti, Zr, Hf) ,” Journal of the American Chemical Society, vol. 82, pp.5292-5295,1960.
[2-5] Christian A. Wamser, “Equilibria in the System Boron Trifluoride--Water at 25°, “Journal of the American Chemical Society, vol.73, pp. 409-416,1951.
[2-6] K. Shimizu, H. Imai, H. Hirashima, K. Tsukumab, “Low-temperature synthesis of anatase thin films on glass and organic substrates by direct deposition from aqueous solutions, “Thin Solid Films, vol.351, pp. 220-224, 1999.
[2-7] A. Stabel, A. Caballero, J.P. Espinos, F. Yubero, A. Justo, A.R. Gonzalez-Elipe, Surf. Coat. Technol. 101, pp.142, 1998.
[2-8] K. S. Hwang, J. H. Jeong, J. H. Ahn, B. H. Kim, “ Hydrophilic/hydrophobic conversion of Ni-doped TiO2 thin films on glass substrates,” Ceramics International, 32, pp935 , 2006.
[2-9] S. Riyas, V.A. Yasir, P.N.M. Das, Bull. Mater. Sci., 25, pp.267, 2002.

Chapter 3
[3-1] T. J. Richardson, M. D. Rubin, “Liquid phase deposition of electrochromic thin film” Electrochimica Acta, 46, pp.2119-2123, 2001.
[3-2] K. Bange, C. R. Ottermann, O. Anderson, U. Jeschkowski, “Investigations of TiO2 films deposited by different techniques” Thin Solid Film, 197, pp.279-285, 1991.
[3-3] C. Minero, G. Mariella, V. Maurino, D. Vione, E. Pelizzetti, “Photocatalytic Transformation of Organic Compounds in the Presence of Inorganic Ions. 2. Competitive Reactions of Phenol and Alcohols on a Titanium Dioxide−Fluoride System”, Langmuir, 16, pp. 8964-8972, 2000.
[3-4] C. Minero, G. Mariella, V. Maurino, E. Pelizzetti “Photocatalytic Transformation of Organic Compounds in the Presence of Inorganic Anions. 1. Hydroxyl-Mediated and Direct Electron-Transfer Reactions of Phenol on a Titanium Dioxide−Fluoride System” Langmuir, 16, pp.2632-2641, 2000.
[3-5] J.C. Yu, J.G. Yu, W.K. Ho, Z.T. Jiang, L.Z. Zhang Chem. Mater.”Effects of F- Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders”, 14, pp.3808-3816, 2002.
[3-6] Y. Y. Song, F. S. Stein, S. Bauer, P. Schmuki, “Amphiphilic TiO2 Nanotube Arrays: An Actively Controllable Drug Delivery System” Journal of the American Chemical Society, 131, pp.4230-4232, 2009.
[3-7] H. F. Lu, F. Li, G. Liu, Z. G. Chen, D. W. Wang, H. T. Fang, G. Q. Lu, Z. H. Jiang, H. M. Cheng, “Amorphous TiO2 nanotube arrays for low-temperature oxygen sensors”, Nanotechnology, 19, pp.405504-405510, 2008.
[3-8] W. D. Brown, W. W. Grannemann, “C-V characteristics of metal-titanium dioxide-silicon capacitors”, Solid-State Electron, 21, pp.837-846, 1978.
[3-9] E. Vigil, J. A. Ayllon, A. M. Peiro, R. R. Clemente, X. Dome`nech, J. Peral, “TiO2 Layers Grown from Flowing Precursor Solutions Using Microwave Heating” Langmuir, 17, pp.891-896, 2001.
[3-10] C. M. Wang, S. Y. Lin, ”Electrochromic properties of sputtered TiO2 thin films” J Solid State Electrochem, 10, pp.255-259, 2006.
[3-11] Wang Z and Hu X, “Fabrication and electrochromic properties of spin-coated TiO2 thin films from peroxo-polytitanic acid”, Thin Solid Films, 352, pp.62-65, 1999.
[3-12] J. Liqiang, S. Xiaojun, C. Weimin, X. Zili, D. Yaoguo, and F. Honggang, “The preparation and characterization of nanoparticle TiO2/Ti films and their photocatalytic activity”, Journal of Physics and Chemistry of Solids, 64, pp.615-623 2003.
[3-13] N. H. Hong, J. Sakai, and W. Prellier, “Distribution of dopant in Fe:TiO2 and Ni:TiO2 thin films” Journal of Magnetism and Magnetic Materials, 281, pp.347-352 2004.
[3-14] Y. Wang, L. Zhang, “Polyol-Mediated Synthesis of Ultrafine TiO2 Nanocrystals and Tailored Physiochemical Properties by Ni Doping”, Journal of Physical Chemistry C, 113, pp.9210-9217, 2009.
[3-15] M. Kadoshima, M. Hiratani, Y. Shimamoto, K. Torii, H. Miki, S. Kimura, T. Nabatame, “Rutile-type TiO2 thin film for high-k gate insulator”, Thin Solid Films, 424, pp.224-228, 2003.
[3-16] P. Kofstad, “Defects and transport properties of metal oxides”, Oxidation of Metals, 44, pp.3-27, 1995.
[3-17] J. H. Wei, S. C. Lee, “The Structure Change of Liquid Phase Deposited Silicon Oxide by Water Dilution”, Journal of the Electrochemical Society, 144, pp.1870 (1997).
[3-18] M. P. Houng, C. J. Huang, Y. H. Wang, W. J. Chang, “Extremely low temperature formation of silicon dioxide on gallium arsenide”, Journal of Applied. Physics, 82, pp.5788-5792, 1997.
[3-19] M. K. Lee, C. L. Ho, J. Y. Zeng, ” Electrical characteristics of temperature-difference liquid phase deposited SiO2 on GaN with (NH4)2Sx treatment”, Physica Status Solidi (a), 11, pp.2679-2682, 2008.
[3-20] C. P. Li, A. Proctor, D. M. Hercules, “Curve Fitting Analysis of ESCA Ni 2p Spectra of Nickel-Oxygen Compounds and Ni/Al2O3 Catalysts”, Applied Spectroscopy, 38, pp.880-886, 1984.
[3-21] S. W.Gaarenstroom and N. Winograd, “Initial and final state effects in the ESCA spectra of cadmium and silver oxides”, The journal of Chemical Physics, 67 pp.3500-3506, 1977.
[3-22] M. Y. Wang, C. W. Chang, C. M. Wu, C. T. Lin, C. H. Hsieh, W. S. Shue, and M. S. Liang, “Novel Co/Ni bi-layer salicidation for 45 nm gate technology”, Symposium on VLSl Technology Digest of Technical Papers, pp.157-158 2003.
[3-23] A. L Ortiz, V. H. Collins-Martinez, C. A. Hernandez-Escobar, S. G. Flores-Gallardo, E. A. Zaragoza-Contreras, “Protection of NiO nanoparticles against leaching in acid medium by grafting of polyacrylic acid”, Materials Chemistry and Physics. 109, pp.306-310, 2008.
[3-24] W. Xing, F. Li, Z. F. Yan, and G. Q. Lu, “Synthesis and electrochemical properties of mesoporous nickel oxide”, Journal of Power Sources, 134, pp.324-330 2004.
[3-25] I. P. Gerothanassis, N. Birlirakis, C. Sakarellos, and M Marraudt, “Solvation state of the Tyr side chain in peptides. An FT-IR and 17O NMR approach”, J. Am. Chem. SOC. 114, pp.9043-9047 1992.
[3-26] A. Martucci, N. Bassiri, M. Guglielmi, L. Armelao, S. Gross, J.C. Pivin “NiO-SiO2 Sol-Gel Nanocomposite Films for Optical Gas Sensor”, Journal of Sol-Gel Science and Technology, 26, pp.993-996, 2003.
[3-27] S. Deki, A. Hosokawa, A. B. Béléké, and M. Mizuhata, “α-Ni(OH)2 thin films fabricated by liquid phase deposition method”, Thin Solid Films, 517, pp.1546-1554 2009.
[3-28] K. Tse, and J. Robertsona, “Defect passivation in HfO2 gate oxide by fluorine”, Applied Physics Letters, 89, pp.142914-142914-3, 2006.
[3-29] X.H. Xia, J.P. Tu, J. Zhang, X.L. Wang, W.K. Zhang, and H. Huang, “Electrochromic properties of porous NiO thin films prepared by a chemical bath deposition”, Solar Energy Materials & Solar Cells, 92, pp.628-633, 2008.
[3-30] M. Zhang, Y. Nakayama, “Effect of ultraviolet light irradiation on amorphous carbon nitride films”, Journal of Applied Physics, 82, pp.4912-4915, 1997.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code