Responsive image
博碩士論文 etd-1027114-160633 詳細資訊
Title page for etd-1027114-160633
論文名稱
Title
一貫作業煉鋼廠製程管道排放細懸浮微粒化學特徵分析
Chemical Characteristics of Fine Particles Emitted from Stacks in an Integrated Steel Plant
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
193
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-10-21
繳交日期
Date of Submission
2014-12-05
關鍵字
Keywords
細懸浮微粒、排放管道、一貫作業煉鋼廠、化學成份分析、指紋特徵
integrated steel plant, dusts and stacks, fine particles, chemical analysis, physicochemical fingerprint
統計
Statistics
本論文已被瀏覽 5676 次,被下載 16
The thesis/dissertation has been browsed 5676 times, has been downloaded 16 times.
中文摘要
高雄市的臨海工業區為我國已開發規模最大的工業區之一,屬於綜合性工業區,而一貫作業煉鋼廠係臨海工業區重要的固定污染源之一,且以細懸浮微粒(PM2.5)為主要排放污染物。目前國內一貫作業煉鋼廠之固定污染源排放管道中細懸浮微粒資料仍相當缺乏,因此盼能藉本研究瞭解製程排放管道之細懸浮微粒特徵,並分析其物化特性,期建立不同製程之指標元素,俾提供環保相關單位及研究機關規劃控制對策之參考。而細懸浮微粒是懸浮於空氣中氣動粒徑小於等於2.5 µm的微細顆粒,是當前空氣污染防制工作上最大的挑戰之一。雖然,環保署已正式將PM2.5納入空氣品質標準,不過高雄市仍為全國空氣污染最嚴重的地區之一,要大幅改善細懸浮微粒的污染現況,勢必要提出適合地方特性與管制策略。
本研究首先蒐集一貫作業煉鋼廠之製程排放管道粒狀物污染排放相關文獻,藉以瞭解一貫作業煉鋼廠主要生產製程之粒狀物排放量。並針對一貫作業煉鋼廠污染排放量較大之製程排放管道,進行細懸浮微粒採樣及化學成份分析。本研究針對製程管道(含管道及煙囪)排氣中細懸浮微粒進行採樣及分析,係參考「排放管道中細懸浮微粒(PM2.5)檢測方法」環檢所公告之NIEA A212.10B(US Method 201A)及US Method 202,並瞭解其污染源排放污染物特徵與一貫作業煉鋼廠之相關性。
在一貫作業煉鋼廠各製程管道排放之可過濾PM2.5濃度約介於0.625-7.454 mg/Nm3之間,另可凝結PM2.5濃度約介於0.127-0.276 mg/Nm3之間。由各製程排放管道之PM2.5質量濃度(可過濾及可凝結之PM2.5)由高至低依序為: PS11 > PS31 > PS51 > PO13 > PS71 > PB53> PC83 > PP81 > PY55> PR62 > PPC1 > PR21,其中燒結製程排放之PM2.5濃度為最高,煉鋼製程次之,其他依序為高爐製程、煉焦製程、燃煤發電製程、原料堆置製程及加熱軋造製程等。
由各製程管道排放可過濾PM2.5之水溶性離子成份分析結果得知,陰離子濃度以NO3-為最高,其次為SO42-及Cl-,而陽離子濃度則以Na+為最高,其次為K+及Ca2+,陰陽離子當量比(A/C)則介於0.69-1.69。由金屬元素成份分析結果得知,各排放管道平均濃度以K及Ca為主要元素,其次為Al、Fe及Mg等金屬元素。另由碳成份分析結果得知,有機碳(OC)濃度皆高於元素碳(EC)平均濃度,OC/EC介於1.08-4.89之間。另由各製程之排放管道可凝結PM2.5水溶性離子成份分析結果得知,陰離子濃度亦以NO3-為最高,其次為SO42-及Cl-,而陽離子濃度則以K+為最高,其次則為Na+及Ca2+,陰陽離子當量比(A/C)則介於0.70-1.59。由金屬元素成份分析結果得知,各排放管道金屬元素以Ca為主,其次則為Mg、Al及Fe等。由碳成份分析結果得知,有機碳(OC)濃度亦皆高於元素碳(EC)濃度,OC/EC介於1.05-4.46之間。
本研究得知PM2.5中陰離子濃度以NO3-為最高,其次為SO42-,因一貫作業煉鋼廠各製程大致屬高溫燃燒,而細懸浮微粒生成與其燃燒成因(空氣中的氮)與物料成份有關,因原物料(如:鐵礦、石料、回收物料)及燃料(如:煤及4-6號重油)所皆含氮及硫份燃燒氧化後形成二氧化氮及二氧化硫,然後轉化為硝酸鹽及硫酸鹽成份;另在煉鋼過程中必須去除雜質,故添加脫硫劑使其形成爐渣加以去除,使得SO42-濃度較高。燒結製程排放管道之Cl-及Na+濃度較其他製程為高,可能係進料物中場內回收細料含氯及含鈉化合物,造成高濃度Cl-及Na+的釋出。
各製程排放管道可過濾及可凝結PM2.5中金屬元素K、Al及Ca成份較高,乃因還原精煉過程中,鋼液含有大量的氧,須添加脫氧劑與氧反應產生氧化鋁,達到脫氧目的,而分子量較輕的元素易存在細懸浮微粒中,故金屬元素K、Al及Ca可視為一貫作業煉鋼廠細懸浮微粒之重要特徵金屬元素。
Abstract
The Lin-Hai Industrial Complex in Kaohsiung City is one of the largest industrial areas in Taiwan. One of the major air pollution sources is fine particles(PM2.5)emitted from the integrating steel plant. However, the information of fine particles emitted from the stacks of the integration steel plant is rare. Thus, this study aims to sample the fine particulate matter emitted from the stacks of steel plants and further analyze its physical and chemical properties, in order to characterize the elemental indicator(s) for different manufacturing processes. The results would provide valuable emission data to the environmental related governments and research institutes, for establishing air pollution control strategies and identifying potential emission sources. Fine particles are particles suspended in the air, with aerodynamic diameter less than or equal to 2.5 μm, which has become the largest challenge for air pollution abatement. Although Taiwan EPA has already categorized PM2.5 into Ambient Air Quality Standard with national control strategies and projects, Kaohsiung City currently remains the most polluted area in Taiwan, thus significant reduction of PM2.5 emission is highly required, and therefore it is necessary to apply more advanced control strategies that are suitable for local areas.
Better understanding the emission of PM2.5 can be achieved by reviewing previous literature of fine particles emitted from the integrating steel plant, and by collecting the data of chemical properties of fine particles emitted from large stacks of steel plants. This study focused on the analysis of fine particles, referring to “sampling procedure fine particles(PM2.5)emitted from stationary sources for NIEA A212.10B” , issued by Taiwan’s EPA announced (equivalent to US EPA Method 201A) and adapted by US EPA Method 202, gaining better understanding of integrating steel plant.
The concentration of filterable PM2.5 emitted from the stacks of an integrating steel plant ranged from 0.625 to 7.454 mg/Nm3, while that of condensable PM2.5 ranged from 0.127 to 0.276 mg/Nm3. The concentration of PM2.5 from the highest to the lowest levels (filterable and condensable) were as follows: PS11 > PS31 > PS51 > PO13 > PS71 > PB53> PC83 > PP81 > PY55> PR62 > PPC1 > PR21. The highest PM2.5 levels came from sinter plants processes, followed by basic oxygen furnaces, blast furnaces, coke ovens, coal-fired power plant, raw material storage yards, and hot strip mills.
Water-soluble ions of filterable PM2.5 emitted from stacks showed that the highest anion concentration was NO3-, and followed by SO42- and Cl-, while the highest cation was Na+, and followed by K+ and Ca2+. The ratio of equivalent anions and cations (A/C) ranged from 0.69 to 1.69. Metallic elemental analysis showed that the most abundant elements were K and Ca, and followed by Al, Fe, and Mg. Carbonaceous content analysis showed that organic carbon (OC) concentrations were generally higher than elemental carbon (EC). The mass ratio of OC and EC (OC/EC) ranged from 1.08 to 4.89. Furthermore, water-soluble ions of condensable PM2.5 emitted from stacks showed that the highest anion concentration was NO3-, and followed by SO42- and Cl-, while the highest cation was K+, and followed by Na+ and Ca2+. The ratio of equivalent anions and cations (A/C) ranged from 0.70 to 1.59. Metallic elemental analysis showed that the most abundant element was Ca, and followed by Mg, Al, and Fe. Carbonaceous content analysis showed that organic carbon (OC) concentrations were generally higher than elemental carbon (EC). The mass ratio of OC and EC ranged from 1.05 to 4.46.
This study revealed that the highest ionic concentrations of PM2.5 was NO3-, and followed by SO42-. Due to high temperature combustion of the integrating steel plant, fine particles were highly correlated to nitrogen concent of raw materials and fuels. Both raw materials (iron ore, marble, and recycled materials) and fuels (coal and 4-6 grade heavy oil) contain N or S. The impurities can be removed by adding desulfurizer and forming slag,and thus raising the concentrations of SO42-. High concentrations of Cl- and Na+ were caused by the use of recycled materials consisting N and Na compounds from the sinter plant.
Within the steel integrating processes, both filterable and condensable PM2.5 contain higher concentrations of K, Al, and Ca due to the presence of O within the liquid steel during the reduction and refining processes. The addition of deoxidizers caused O to react, resulting in alumina. Metals with low molecular weight are more likely to exist within fine particles, such as K, Al, and Ca, which can be seen as metallic elements emitted from the Integrated Steel Plant.
目次 Table of Contents
目 錄
頁次
論文審定書.................................................................................... I
謝誌............................................................. .................................. II
中文摘要........................................................................................ III
英文摘要........................................................................................ V
目錄................................................................................................ VIII
表目錄............................................................................................ X
圖目錄............................................................................................ XIII
第一章 前言................................................................................ 1-1
1-1 研究緣起.......................................................................... 1-1
1-2 研究目的.......................................................................... 1-2
1-3 研究範圍及架構……..................................................... 1-2
第二章 文獻回顧........................................................................ 2-1
2-1 懸浮微粒性質與特性...................................................... 2-1
2-1-1 懸浮微粒之定義............... .... .............................. 2-1
2-1-2 懸浮微粒之種類.............. .................................... 2-2
2-1-3 懸浮微粒之形成機制........................................... 2-3
2-1-4 懸浮微粒之物化特性........................................... 2-7
2-1-5 懸浮微粒對健康的影響....................................... 2-13
2-1-6 懸浮微粒之水溶性離子成份特性....................... 2-15
2-1-7懸浮微粒之金屬成份特性.................................... 2-18
2-1-8懸浮微粒之碳成份特性........................................ 2-20
2-2 一貫作業煉鋼廠排放管道粒狀物之化學指紋特徵..... 2-22
2-2-1 一貫作業煉鋼廠排放管道粒狀物之化學成份... 2-22
2-3固定污染源管制相關法規............................................... 2-28
2-3-1空氣污染防制法..................................................... 2-28
2-3-2固定污染源設置與操作許可證管理辦法............. 2-29
2-3-3固定污染源空氣污染物排放標準……………... 2-29
2-3-4固定污染源空氣污染物連續自動監測設施管理辦法…………………………………………….. 2-29
2-3-5 鋼鐵業燒結工場空氣污染物排放標準………... 2-29
2-3-6檢查鑑定公私場所空氣污染物排放狀況之採樣設施規範………………………………………… 2-30
2-4一貫作業煉鋼廠製程污染源…………………………… 2-30
2-4-1 原料堆置製程…………………………………… 2-30
2-4-2 煉焦製程…………………………………………. 2-32
2-4-3 燒結製程………………………………………… 2-35
2-4-4 高爐製程…………………………………………. 2-39
2-4-5 轉爐製程………………………………………… 2-41
2-4-6 加熱軋鋼製程……………………………………. 2-43
2-5排放管道之資料收集…………………………………… 2-45
第三章 研究方法........................................................................ 3-1
3-1排放管道中細懸浮微粒(PM2.5)採樣方法及流程........... 3-1
3-2排放管道中細懸浮微粒採樣方法.................................. 3-2
3-3 細懸浮微粒之化學成份分析方法.................................. 3-7
3-3-1水溶性離子成份分析........................................... 3-7
3-3-2金屬元素成份分析............................................... 3-8
3-3-3碳成份分析………................................................. 3-9
3-3-4 採樣與分析之品保與品管................................... 3-11
第四章 結果與討論.................................................................... 4-1
4-1排放管道污染源操作情形及細懸浮微粒(PM2.5)排放濃
度...................................................................................... 4-1
4-2 排放管道細懸浮微粒(PM2.5)之化學成份....................... 4-10
4-2-1水溶性離子成份分析結果..................................... 4-10
4-2-2金屬元素成份分析結果…………......................... 4-31
4-2-3碳成份分析結果…………………………………. 4-52
4-3排放管道細懸浮微粒(PM2.5)之化學成份比例................. 4-60
4-3-1 細懸浮微粒(PM2.5)中水溶性離子所佔比例......... 4-60
4-3-2細懸浮微粒(PM2.5)中金屬元素成份所佔比例....... 4-67
4-3-3細懸浮微粒(PM2.5)中碳成份成份所佔比例…….. 4-73
4-4製程管道排放細懸浮微粒(PM2.5)之指紋特徵................. 4-79
第五章 結論與建議.................................................................... 5-1
5-1 結論.................................................................................. 5-1
5-2 建議.................................................................................. 5-2
參考文獻....................................................................................... R-1
附錄.............................................................................................. A-1

表 目 錄
頁次
表2-1 我國懸浮微粒濃度標準值................................................ 2-1
表2-2 不同粒徑懸浮微粒表面之金屬元素分佈....................... 2-5
表2-3 大氣懸浮微粒之粒徑分類及主要化學成份................... 2-7
表2-4 民國86-102年高雄市轄區內環保署自動測站PM10 濃
度彙整表............................................................................ 2-12
表2-5 固定污染源排放微粒成份中重金屬元素濃度及質量中
位粒徑................................................................................ 2-24
表2-6 裝煤、推焦及燃燒焦爐氣所產生廢氣中重金屬濃度及
成份.................................................................................... 2-25
表2-7 一貫煉鋼廠主要製程排放粒狀污染物中金屬元素成份
彙整表................................................................................ 2-26
表2-8 一貫煉鋼廠主要製程排放粒狀污染物中水溶性離子成
份、碳成份彙整表 ............................................................ 2-26
表2-9 煉焦工廠作業程序............................................................ 2-34
表2-10 燒結機點火後依料層高度溫度變化…………………. 2-37
表2-11 高爐製程煉鐵之化學反應……………………............. 2-40
表2-12 原料堆置製程排放管道PY55之歷年檢測結果............ 2-46
表2-13 煉焦製程排放管道PC83之歷年檢測結果.................... 2-46
表2-14 1號燒結製程排放管道PS11之歷年檢測結果............ 2-47
表2-15 2號燒結製程排放管道PS31之歷年檢測結果............ 2-47
表2-16 3號燒結製程排放管道PS51之歷年檢測結果............ 2-48
表2-17 4號燒結製程排放管道PS71之歷年檢測結果............ 2-48
表2-18 高爐製程排放管道PB53之歷年檢測結果.................... 2-49
表2-19 煉鋼製程排放管道PO13之歷年檢測結果.................... 2-49
表2-20 加熱軋造製程排放管道PR21之歷年檢測結果............ 2-50
表2-21 加熱軋造製程排放管道PR62之歷年檢測結果............ 2-50
表2-22 燃煤鍋爐發電製程排放管道PP81之歷年檢測結果.... 2-51
表2-32 燃氣鍋爐發電製程排放管道PPC1之歷年檢測結果.... 2-51
表3-1一貫作業煉鋼廠生產製程排放管道彙整......................... 3-1
表3-2 元素分析儀操作條件一覽表……………..................... 3-11
表4-1 一貫作業煉鋼廠排放管道細懸浮微粒PM2.5污染物檢
測結果濃度...................................................................... 4-7
表4-2 一貫作業煉鋼廠排放管道可過濾PM2.5之水溶性離子
成份彙整表.................................................................. 4-14
表4-3 一貫作業煉鋼廠排放管道可凝結PM2.5之水溶性離子
成份彙整表............................................................... 4-15
表4-4 一貫作業煉鋼廠排放管道可過濾PM2.5中金屬元素成
份彙整表................................................................... 4-35
表4-5 一貫作業煉鋼廠排放管道可凝結PM2.5中金屬元素成
份彙整表....................................................................4-36
表4-6 一貫作業煉鋼廠製程管道排放可過濾PM2.5之碳成份
分析結果 ........................................................................ 4-54
表4-7 一貫作業煉鋼廠製程管道排放可凝結PM2.5之碳成份
分析結果.......................................................................... 4-54
表4-8 一貫作業煉鋼製程管道排放中水溶性離子佔可過濾
PM2.5 濃度比例………………………………..………… 4-63
表4-9 一貫作業煉鋼製程管道排放中水溶性離子佔可凝結
PM2.5 濃度比例.................................................................. 4-63
表4-10一貫作業煉鋼製程管道排放中金屬元素佔可過濾
PM2.5 濃度比例................................................................. 4-69
表4-11一貫作業煉鋼製程管道排放中金屬元素佔可凝結
PM2.5 濃度比例................................................................ 4-69
表4-12一貫作業煉鋼製程管道排放中總碳成份佔可過濾
PM2.5 濃度比例............................................................ 4-75
表4-13一貫作業煉鋼製程管道排放中總碳成份佔可凝結
PM2.5 濃度比例........................................................... 4-75
表4-14 各廠製程管道排放可過濾PM2.5之水溶性陰陽離子濃
度排序及特徵離子…………………………………… 4-81
表4-15 各廠製程管道排放可凝結PM2.5之水溶性陰陽離子濃
度排序及特徵離子........................................................ 4-82
表4-16各廠製程管道排放可過濾PM2.5之金屬元素濃度排序
及特徵金屬元素............................................................ 4-88
表4-17各廠製程管道排放可過濾PM2.5之金屬元素濃度排序
及特徵金屬元素............................................................ 4-89
圖 目 錄
頁次
圖1-1 研究流程架構................................................................. 1-3
圖 2-1 大氣環境中懸浮微粒粒徑分佈圖................................. 2-2
圖2-2 大氣懸浮粒狀物的粒徑分佈........................................... 2-5
圖2-3 高雄市監測站總懸浮微粒濃度變化趨勢....................... 2-11
圖2-4 因暴露懸浮微粒之潛在受損危害圖............................... 2-14
圖2-5 NH4+與nss-SO42-+NO3-之相關性.................................. 2-18
圖2-6 天津市PM2.5、PM10及TSP中OC與EC之相關性........... 2-22
圖2-7 燒結工廠採樣粉塵中粒狀物之粒徑分佈....................... 2-27
圖2-8 煉焦作業之生產流程....................................................... 2-33
圖2-9 燒結生產流程示意圖....................................................... 2-35
圖2-10燒結過程各層反應示意圖............................................... 2-36
圖2-11燒結細部生產流程圖....................................................... 2-38
圖2-12高爐煉鐵生產流程........................................................... 2-40
圖2-13轉爐煉鋼流程圖……....................................................... 2-41
圖2-14氧氣頂吹轉爐流程圖....................................................... 2-43
圖2-15熱軋鋼板生產流程…....................................................... 2-44
圖3-1排放管道中PM2.5採樣設備及裝置圖............................... 3-2
圖3-2排放管道中PM2.5採樣流程圖........................................... 3-3
圖4-1一貫作業煉鋼廠排放管道可過濾及可凝結PM2.5濃度比
較圖.................................................................................... 4-8
圖4-2一貫作業煉鋼廠排放管道細懸浮微粒PM2.5濃度比例
圖........................................................................................ 4-8
圖4-3一貫作業煉鋼廠製程管道排放可過濾PM2.5之水溶性離
子成份比較圖.................................................................... 4-16
圖4-4一貫作業煉鋼廠製程管道排放可凝結PM2.5之水溶性離
子成份比較圖.................................................................... 4-17
圖4-5排放管道PY55可過濾PM2.5之水溶性離子成份分佈....... 4-18
圖4-6排放管道PY55可凝結PM2.5之水溶性離子成份分佈....... 4-18
圖4-7排放管道PC83可過濾PM2.5之水溶性離子成份分佈....... 4-19
圖4-8 排放管道PC83可凝結PM2.5之水溶性離子成份分佈...... 4-19
圖4-9 排放管道PS11可過濾PM2.5之水溶性離子成份分佈...... 4-20
圖4-10 排放管道PS11可凝結PM2.5之水溶性離子成份分佈... 4-20
圖4-11 排放管道PS31可過濾PM2.5之水溶性離子成份分佈... 4-21
圖4-12 排放管道PS31可凝結PM2.5之水溶性離子成份分佈... 4-21
圖4-13 排放管道PS51可過濾PM2.5之水溶性離子成份分佈... 4-22
圖4-14 排放管道PS51可凝結PM2.5之水溶性離子成份分佈... 4-22
圖4-15 排放管道PS71可過濾PM2.5之水溶性離子成份分佈... 4-23
圖4-16 排放管道PS71可凝結PM2.5之水溶性離子成份分佈... 4-23
圖4-17 排放管道PB53可過濾PM2.5之水溶性離子成份分佈... 4-24
圖4-18 排放管道PB53可凝結PM2.5之水溶性離子成份分佈... 4-24
圖4-19 排放管道PO13可過濾PM2.5之水溶性離子成份分佈... 4-25
圖4-20 排放管道PO13可凝結PM2.5之水溶性離子成份分佈... 4-25
圖4-21 排放管道PR21可過濾PM2.5之水溶性離子成份分佈... 4-26
圖4-22 排放管道PR21可凝結PM2.5之水溶性離子成份分佈... 4-26
圖4-23 排放管道PR62可過濾PM2.5之水溶性離子成份分佈... 4-27
圖4-24 排放管道PR62可凝結PM2.5之水溶性離子成份分佈... 4-27
圖4-25 排放管道PP81可過濾PM2.5之水溶性離子成份分佈... 4-28
圖4-27 排放管道PP81可凝結PM2.5之水溶性離子成份分佈... 4-28
圖4-27 排放管道PPC1可過濾PM2.5之水溶性離子成份分佈... 4-29
圖4-28 排放管道PPC1可凝結PM2.5之水溶性離子成份分佈... 4-29
圖4-29一貫作業煉鋼廠製程管道排放可過濾PM2.5之金屬元
素成份比較圖.................................................................. 4-37
圖4-30一貫作業煉鋼廠製程管道排放可凝結PM2.5之金屬元
素成份比較圖.................................................................. 4-38
圖4-31 排放管道PY55可過濾PM2.5之金屬元素成份分佈…... 4-39
圖4-32 排放管道PY55可凝結PM2.5之金屬元素成份分佈….. 4-39
圖4-33 排放管道PC83可過濾PM2.5之金屬元素成份分佈….... 4-40
圖4-34 排放管道PC83可凝結PM2.5之金屬元素成份分佈….. 4-40
圖4-35 排放管道PS11可過濾PM2.5之金屬元素成份分佈…... 4-41
圖4-36 排放管道PS11可凝結PM2.5之金屬元素成份分佈….. 4-41
圖4-37 排放管道PS31可過濾PM2.5之金屬元素成份分佈…... 4-42
圖4-38 排放管道PS31可凝結PM2.5之金屬元素成份分佈….. 4-42
圖4-39 排放管道PS51可過濾PM2.5之金屬元素成份分佈…... 4-43
圖4-40 排放管道PS51可凝結PM2.5之金屬元素成份分佈….. 4-43
圖4-41 排放管道PS71可過濾PM2.5之金屬元素成份分佈…... 4-44
圖4-42 排放管道PS71可凝結PM2.5之金屬元素成份分佈….. 4-44
圖4-43 排放管道PB53可過濾PM2.5之金屬元素成份分佈…... 4-45
圖4-44 排放管道PB53可凝結PM2.5之金屬元素成份分佈….. 4-45
圖4-45 排放管道PO13可過濾PM2.5之金屬元素成份分佈…... 4-46
圖4-46 排放管道PO13可凝結PM2.5之金屬元素成份分佈….. 4-46
圖4-47 排放管道PR21可過濾PM2.5之金屬元素成份分佈…... 4-47
圖4-48 排放管道PR21可凝結PM2.5之金屬元素成份分佈….. 4-47
圖4-49 排放管道PR62可過濾PM2.5之金屬元素成份分佈…... 4-48
圖4-50 排放管道PR62可凝結PM2.5之金屬元素成份分佈….. 4-48
圖4-51 排放管道PP81可過濾PM2.5之金屬元素成份分佈…... 4-49
圖4-52 排放管道PP81可凝結PM2.5之金屬元素成份分佈….. 4-49
圖4-53 排放管道PPC1可過濾PM2.5之金屬元素成份分佈…... 4-50
圖4-54 排放管道PPC1可凝結PM2.5之金屬元素成份分佈….. 4-50
果...................................................................................... 4-55
圖4-56各製程管道排放可過濾PM2.5之元素碳成份分析結
果...................................................................................... 4-55
圖4-57各製程管道排放可過濾PM2.5之元素碳及有機碳成份
分析結果.......................................................................... 4-56
圖4-58各製程管道排放可凝結PM2.5之有機碳成份分析結
果...................................................................................... 4-57
圖4-59各製程管道排放可凝結PM2.5之元素碳成份分析結
果...................................................................................... 4-57
圖4-60各製程管道排放可凝結PM2.5之元素碳及有機碳成份
分析結果.......................................................................... 4-58
圖4-61各製程排放管道之可過濾PM2.5中水溶性離子濃度比
例圖.................................................................................. 4-64
圖4-62各製程排放管道之可凝結PM2.5中水溶性離子濃度比
例圖.................................................................................. 4-65
圖4-63各製程排放管道之可過濾PM2.5中金屬元素濃度比例
圖...................................................................................... 4-70
圖4-64各製程排放管道之可凝結PM2.5中金屬元素濃度比例
圖...................................................................................... 4-71
圖4-65各製程排放管道之可過濾PM2.5中碳成份濃度比例
圖….................................................................................. 4-76
圖4-66各製程排放管道之可凝結PM2.5中碳成份濃度比例
圖..................................................................................... 4-77
參考文獻 References
Ahn Y.C. and Lee J.K., Physical, chemical, and electrical analysis of aerosol particles generated from industrial plants, Journal of Aerosol Science, 37, pp.187-202, 2006.
Appel, B.R., Hoffer, E.M., Kothny, E.L., Wall, S.M., Haik, M., and Knights, R.L., Analysis of carbonaceous material in southern California atmospheric aerosols, Environmental Science and Technology, 13, pp.98-104, 1979.
Chang, C.C., Tsai, S.S., Ho S.C., and Yang, C.Y., Air pollution and hospital admissions for cardiovascular disease in Taipei, Taiwan, Environmental Research, 98, pp.114-119, 2005.
Christen, K.A. and Livebjerg, H. A field study of submicron particles from the combustion of straw, Aerosol Science and Technology, 25, pp.185-199, 1996.
Dall’Osto, M., Booth, M.J., Smith, W., Fisher, R., and Harrison, R.M., A study of the size distributions and the chemical characterization of airborne particles in the vicinity of a large integrated steelworks, Aerosol Science and Technology, 42, pp.981–991, 2008.
Dongarra, G, Manno, E., Varrica, D., Lombardo, M., and Vultaggio, M., Study on ambient concentrations of PM10, PM10-2.5, PM2.5 and gaseous pollutants -Trace elements and chemical speciation of atmospheric particulates, Atmospheric Environment, 44, pp.5244-5257, 2010.
Dyremark, A. and Westerholm, R., Polycyclic aromatic hydroxycarbon (PAH) emission from charcoal grilling, Atmospheric Environment, 29, pp.1553-1558,1995.
Favez, O., Cachier, H., Sciare, J., Alfaro S.C., El-Araby, T.M., Harhash, M.A., and Abdelwahab, M.M., Seasonality of major aerosol species and their transformations in Cairo megacity, Atmospheric Environment, 42, pp.1503-1516, 2008.
Hleis, D., Fernandez-Olmo, I., Ledoux, F., Kfoury, A., Courcot, L., Desmonts, T. and Courcot, D., Chemical profile identification of fugitive and confined particle emissions from an integrated iron and steelmaking plant, Journal of Hazardous Materials, 250-251, pp.246-255, 2013.
Kappos A.D., Bruckmann P., Eikmann T., Englert N., Heinrich U., Hoppe P., Koch E., Krause G.H.M., Kreyling W.G., Rauchfuss K., Rombout P., Schulz-Klemp V., Thiel W.R., and Wichmann H-E. Health effects of particles in ambient air, International Journal of Hygiene and Environmental Health, 207, pp.399-407, 2004.
Kong, S.F., Han, B., Bai, Z.P., Chen, L., Shi, J.W., and Xu, Z., Receptor modeling of PM2.5, PM10 and TSP in different seasons and long-range transport analysis at a coastal site of Tianjin, China, Science of the Total Environment, 408, pp.4681-4694, 2010.
Kulshrestha, A., Satsangi, P.G., Masih, J., and Taneja, A., Metal concentration of PM2.5 and PM10 particles and seasonal variations in urban and rural environment of Agra, India, Science of the Total Environment, 407, pp.6196-6204, 2009.
Lee, R.E., Crist, H.L., Riley, A.E. and MacLead, K.E., Concentration and size of trace metal emissions from a power plant, a steel plant, and a cotton gin, Environmental Science and Technology, 9, pp.643-647, 1975.
Lin, J.J., Characterization of water-soluble ion species in urban particles, Environment International, 28, pp.55-61, 2002.
Lundgren D.A., Burton R.M., Effect of particle size distribution on the cut point between fine and coarse ambient mass fractions, Inhalation Toxicology, 7(1), pp. 131~148, 1995.
Manahan, S.E., Environmental Chemistry, 5th Edition, Lewis Publishers, Chelsea, 1991.
Mangelson, N.F., Lewis, L., Joseph, J.M., Wilkerson, T., and Jensen, D.T., The contribution of sulfate and nitrate to atmospheric fine particles during winter inversion fogs in Cache Valley, Journal of Air & Waste Management Association, 47, pp.167-175, 1997.
Mu, L., Peng, L., Liu, X., Bai, H., Song, C., Wang, Y., and Li, Z., Emission characteristics of heavy metals and their behavior during coking processes, Environmental Science and Technology, 46(11), pp.6425–6430, 2012.
Olmez, I., Instrumental neutron activation analysis of atmospheric particulate matter, Methods of Air Sampling and Analysis, Lewis Publishers, Chelsae, MI, pp.143-150, 1989.
Pakkanen, T.A., Study of formation of coarse particle nitrate asrosol, Atmospheric Environment, 30, pp.2475-2482, 1996.
Peter, A., Wichmann, H.E., Tuch, T., Heinrich, J. and Heyder, J., Respiratory effects are associated with the number of ultrafine particles, American Journal of Respiratory & Critical Care Medicine, 155, pp.13761383,1997.
Sammut M.L., Noack Y., Rose J., Hazemann J.L., Proux O., Depoux M., Ziebel A., and Fiani E., Speciation of Cd and Pb in dust emitted from sinter plant, Chemosphere, 78, pp.445-450, 2010.
Seaton, A., MacNee, W., Donaldson, K., and Godden, D., Particulate air pollution and acute health effects, Lancet. 345, pp.176-178, 1995.
Terzi, E., Argyropoulos, G., Bougatioti, A., Mihalopoulos, N., Nikolaou, K., and Samara, C., Chemical composition and mass closure of ambient PM10 at urban sites, Atmospheric Environment, 44, pp.2231-2239, 2010.
Tsai, J.H., Lin, K.H., Chen, C.Y., Ding, J.Y., Choa, C.G., and Chiang, H.L., Chemical constituents in particulate emissions from an integrated iron and steel facility, Journal of Hazardous Materials, 147, pp.111–119, 2007.
Turpin, B.J. and Huntzicker, J.J., Identification of secondary organic aerosol episodes and quantification of primary and secondary organic aerosol concentrations during SCAQR, Atmospheric Environment, 29, pp.3527-3544, 1995.
Whitby, K.T. and Cantrell, B. “Fine particles in international conference on environmental sensing and assessment” Las Vegas, NV, Institute of Electrical and Electronic Engineers, 1976
Wicken, A.J. and Buck, S.F., Report on a study of Environmental Factors Associated with Lung Cancer and Bronchitis Mortality in Areas of North east England, Research Paper No. 8. Tobacco Research Council, London, 1964.
Wu, Y., Hao, J., Fu, J., Wang, Z., and Tang, U., Chemical characteristics of airborne particulate matter near major roads and at background locations in Macao, China, Science of the Total Environment, 317, pp.159-172, 2003.
Yatin, M., Tuncel, S., Aras, N.K., Olmez, I. and Aygun, S., Atmospheric trace element in Ankara, Turkey:1. Factors affecting chemical composition of fine particle, Atmospheric Environment, 34, pp.1305-1318, 2000.
Zhang, H., An assessment of heavy metals contributed by industry in urban atmosphere from Nanjing, China, Environmental Monitoring & Assessment, 154, pp.451-458, 2009.
行政院環境保護署,「台灣細懸浮微粒(PM2.5)成因分析與管制策略研擬」,2013。
行政院環境保護署,「空氣污染防制-空氣品質標準」,中華民國101年5月14修正,2012。
行政院環保署,「行業別污染排放清潔指標及規範建立計畫」,2000。
朱樹恭,「工業化學概論」,台灣商務印書館,1991。
吳沛愉,「鋼鐵業煙道排放粒狀物之物化指紋特徵分析」,國立中山大學環境工程研究所碩士論文,2014。
吳家安,「高雄地區大氣中細懸浮微粒之監測分析及管制策略」,國立中山大學環境工程研究所碩士論文,2013。
李宗璋,「金廈地區懸浮微粒物化特性分析及污染源解析探討」, 國立中山大學環境工程研究所碩士論文,1999。
李厚文,「高雄地區大氣環境中細微粒之特性研究」,輔英科技大學環境工程與科學系碩士論文,2011。
邵承宗,「大陸沙塵暴對澎湖地區懸浮微粒特性之影響研究」,國立中山大學環境工程研究所碩士論文,2003。
周宇光,「重工業周邊地區空氣中懸浮微粒物化特性探討」, 國立中山大學環境工程研究所碩士論文,2009。
底宗鴻,「高雄地區陸域及鄰近海域懸浮微粒物化特性分析及時空分 佈探討」,國立中山大學環境工程研究所碩士論文,2008。
林鉅富,「高雄地區大氣中懸浮微粒PM2.5特性及來源之探討」,國立中山大學環境工程研究所碩士論文,1998。
袁中新,「鋼鐵工廠鄰近下風處懸浮微粒之物化特性及污染源解析」, 中華民國氣膠年會暨第十二屆中華民國國際氣膠科技研討會,2005。
袁中新、張瑞正、袁菁、楊宏宇、林文印、李崇垓、李崇德,「能見度與懸浮微粒物化特徵之相關性探討」,1999年氣膠科技研討會, 1999。
袁中新、袁景嵩、張瑞正、袁菁,「台灣南部地區PM2.5及PM10之時空分布趨勢探討」,第十五屆空氣污染控制技術研討會,1998。
陳昭忞,「重油鍋爐煙道排放之 PM2.5及PM10微粒的特性及化學組成」,國立中興大學環境工程學系碩士論文,2002。
高雄市政府環境保護局,「101暨102年度空氣品質管理暨污染總量管制計畫」,2013。
高雄市政府環境保護局,「高雄市空氣品質管理計畫」,2010。
郭肓良,「職業病概論」,華杏出版股份有限公司,1998。
黃美倫,「中部空品區大氣氣膠中水溶性離子微粒之特性探討」,國
立中興大學環境工程學系碩士論文,2001。
黃堯聖,「大氣懸浮微粒化學組成及來源推估」,輔英科技大學環境 工程與科學系碩士班碩士論文, 2006。
黃鈴珺,「彭佳嶼海域大氣懸浮微粒中金屬元素的濃度、來源及粒徑 分佈研究」,國立台灣大學海洋研究所碩士論文, 2001。
董國安、黃瀚緯,「鋼鐵冶煉與生活」,國立自然科學博物館館訊第274期,2010。
鄭曼婷、邱嘉斌、楊宏隆、陳紀綸,「沿海地區大氣懸浮微粒污染來源分析」,第十五屆空氣污染控制技術研討會,1998。
廖嘉政,「鋼鐵工廠周界及鄰近敏感點之懸浮微粒物化特性分析及污 染源解析」,國立中山大學環境工程研究所碩士論文,2012。
蔡士鳴,「大氣中懸浮微粒含碳成分之分佈與來源」,國立成功大學 環境工程學系碩士論文,2002.
蔡協宏,「南台灣陸域及鄰近海域受海陸風及東北季風影響之空氣污 染物傳輸及擴散研究」,國立中山大學環境工程研究所博士論文,2010。
劉山豪,「高雄都會區消光係數與能見度量測及細微粒污染源貢獻量 解析」,國立中山大學環境工程研究所碩士論文,2000。
劉育甫、蔡協宏、袁中新、洪崇軒、林啟燦、錢立行,「海島地區懸浮微粒物化特性分析-以琉球嶼為例 」,第六屆海峽兩岸氣膠技術研討會論文,2009
賴順安、李文智、楊錫賢、陳瑞仁、薛宏榮、趙雯蕙,「鋼鐵工業煙 道排放金屬元素之特徵」,第十六屆空氣污染控制技術研討會論 文, 1999。
盧達溶,「工業系統概論」,清華大學出版社,2005。
蕭綱衡,「鐵礦及燒結製程」,台灣大學材料所鐵礦及燒結製程課程
講義,2009。
謝徨麒,「固定污染源排放金屬元素之特徵」,國立成功大學環境工
程學系碩士論文,2001。
謝徨麒、楊錫賢、陳瑞仁、謝祝欽,「固定污染源煙道廢氣粒狀物中
金屬元素之特徵」,第十七屆空氣污染控制技術研討會論文,2000。
魏明通,「化學與人生」,五南圖書出版, 2013。
蘇宜春,「煉焦工藝學」,冶金工業出版社,1994。鐘博章,「東海南部大氣中金屬元素之濃度、來源及通量研究」,國立台灣大學海洋研究所碩士論文, 2002。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.191.157.186
論文開放下載的時間是 校外不公開

Your IP address is 18.191.157.186
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code