Responsive image
博碩士論文 etd-1027116-205706 詳細資訊
Title page for etd-1027116-205706
論文名稱
Title
女性楷模探究教學提升學生科學生涯投入之成效探討
Effects of Female Role Model-driven Inquiry Teaching on Students’ Engagement in Science Career
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
163
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-09-08
繳交日期
Date of Submission
2016-11-27
關鍵字
Keywords
科學生涯投入、女性楷模探究教學、科學家意象、國小學童、科學自我效能
female role model-driven inquiry, engagement in science career, elementary school students, scientific self-efficacy, images of scientists
統計
Statistics
本論文已被瀏覽 5713 次,被下載 25
The thesis/dissertation has been browsed 5713 times, has been downloaded 25 times.
中文摘要
本研究目的在驗證國小學童科學生涯投入理論模式,並探討女性楷模探究教學介入對於提升國小學童科學家意象、科學自我效能與科學生涯投入之成效。本研究分為兩階段進行,首先採取二階段叢集抽樣,選取南部某市3所國小四、六年級共計276名學童進行問卷調查,以了解學童科學家意象、科學自我效能及科學生涯投入之間的關係。接著實施準實驗研究法,以便利取樣方式選取南部某市一所公立國民小學四年級32位學童參與10週次、每週兩節課女性楷模探究教學介入是為實驗組;另外選取該市另一所公立國民小學四年級30位學童作為對照組進行一般引導式探究教學。除此外,由實驗組中選取4位科學生涯投入前測最高分及4位科學生涯投入前測最低分學生為目標學生,每週進行課室觀察,共進行20節課室觀察;並於教學介入完成一個月後進行目標學生、導師及自然科教師個別訪談。本研究發展信效度良好研究工具-「科學家意象量表」、「科學自我效能量表」、「科學生涯投入量表」、「畫科學家測驗」評量學童科學家意象、科學自我效能及科學生涯投入的狀況。再以描述性統計、獨立樣本及相依樣本t考驗、卡方考驗、共變數分析及結構方程模式進行量化資料分析;最後以內容主題歸納法分析課室觀察與個別訪談結果。資料分析結果發現角色楷模主要透過科學家意象和科學自我效能兩個中介因素間接影響國小學童的科學生涯投入,其中國小學童的科學家意象又會經由科學自我效能影響科學生涯投入。實施女性楷模探究教學後,實驗組學童對於科學家刻板意象在「外表」、「工作環境」與「個人特質」等三個分向度均有顯著改善;實驗組學童的科學生涯投入總分與「科學興趣」及「正向結果期待」兩個分向度亦有顯著提升;然而科學自我效能總分及分向度則無顯著差異。此外,實驗組學童的整體科學家意象與「外表」和「個人特質」兩個分向度均顯著優於對照組;科學自我效能總分與「樂意學習」及「成功經驗」等兩個分向度顯著優於對照組;科學生涯投入總分與「科學興趣」、「正向結果期待」、「科學生涯目標」等三個分向度也顯著優於對照組。本研究結果將提供資訊作為未來相關研究及改進自然科教學的參考。
Abstract
The purposes of the study were to explore the appropriateness of the engagement in science career model, and the effects of improving elementary school students’ images of scientists, scientific self-efficacy and engagement in science career through a female role model-driven inquiry. First, 276 participants from 3 typical elementary schools completed an Elementary School Student Questionnaire that included 4 well-constructive instruments of “Images of scientists scale”, “Scientific self-efficacy scale”, “Engagement in science career scale” and “Drawn-A-Scientist Test” to assess students’ images of scientists, scientific self-efficacy and engagement in science career. Second, 32 4th graders randomly selected to participate in a 10-week 20-hour intervention and formed the experimental group (EG), which conducted female role model-driven inquiry; another 30 4th graders were also randomly selected as the comparison group (CG). In addition, 8 target students from the EG either with the highest scores or with the lowest scores on the pretest of engagement in science career were purposively recruited to be observed weekly and interviewed after one month of the intervention. Descriptive statistics, independent and paired-wise t-tests, chi-square test, analyses of covariance and SEM were used to analyze the quantitative data between two groups; in addition, a content theme analysis was adopted to analyze 8 target student’s classroom observation and interviews information. It was found that role models indirectly affect students’ engagement in science career through the mediation of images of scientists and scientific self-efficacy; in addition, students’ images of scientists indirectly affect engagement in science career through the mediation of their scientific self-efficacy. Moreover, after conducting female role model-driven inquiry, EG students’ images of scientists total scores and on the dimensions of physical appearance, work environment and personal trait were significant improvement after the 10-week 20-hour intervention; EG students’ engagement in science career total scares and on the dimensions of interest in science and positive outcome expectation were also significantly improved, but the EG students’ scientific self-efficacy was found a non-significant difference between the groups. Additionally, EG students’ total scores on the images of scientists and on the dimensions of physical appearance and personal trait significantly outperformed the CG students; EG students’ total scores on scientific self-efficacy and on the dimensions of willing to learn and successful experience significantly outperformed than CG students; EG students’ total scores on engagement in science career and on the dimensions of interest in science, positive outcome expectation and career choice goal significantly outperformed than CG students. The results allowed us to shed an additional value on the effects of the female role model-driven inquiry model for the young learners, and also contributed empirical evidences for the future studies that focus on the effective and innovational teaching approaches.
目次 Table of Contents
論文審定書  i
誌  謝  ii
中文摘要  iii
英文摘要  v
目  錄  vii
圖  次  ix
表  次  x

第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 5
第三節 研究問題 5
第四節 名詞釋義 6
第二章 文獻探討 8
第一節 科學家意象的形成與相關研究 8
第二節 科學自我效能理論與相關研究 16
第三節 科學生涯投入理論與相關研究 19
第四節 女性楷模探究教學介入 24
第三章 研究方法 32
第一節 研究設計與流程 32
第二節 研究假設 34
第三節 研究對象 35
第四節 研究工具的發展與效化 38
第五節 女性楷模探究教學介入 60
第六節 資料分析 66
第四章 研究結果與討論 69
第一節 國小學童科學生涯投入理論模式驗證 69
第二節 實驗組學童科學家意象、科學自我效能與科學生涯投入的改變情形 83
第三節 實驗組與對照組國小學童科學家意象、科學自我效能和科學生涯投入的差異情形 102
第五章 結論與建議 120
第一節 結論 120
第二節 建議 122
第三節 研究限制 124
參考文獻 126
一、中文部分 126
二、英文部分 129
附錄 144
附錄一:國小學童科學生涯問卷(正式版)144

圖次
圖3-1 國小學童科學生涯投入假設理論模式 32
圖4-1 潛在變項的因素結構假設模式 74
圖4-2 潛在變項的因素結構競爭模式 75
圖4-3 以MIMIC模式比較角色楷模的潛在變項平均數 77
圖4-4 國小學童科學生涯投入理論模式(模式一)之標準化參數估計值 79
圖4-5 國小學童科學生涯投入理論競爭模式(模式二)之標準化參數估計值 79
圖4-6 國小學童科學生涯投入理論競爭模式(模式三)之標準化參數估計值 80
圖4-7 國小學童科學生涯投入理論競爭模式(模式四)之標準化參數估計值 80
圖4-8 目標學生性別互動課室觀察結果 92
圖4-9 目標學生科學自我效能課室觀察結果 93
圖4-10 目標學生科學參與課室觀察結果 94
圖4-11 實驗組學生科學家繪圖範例說明 114
圖4-12 對照組學生科學家繪圖範例說明 116

表次
表3-1 不等組前後測設計 33
表3-2 研究樣本各校人數分布情形 37
表3-3 科學家意象量表修訂情形 41
表3-4 刪題後科學家意象量表因素分析摘要表 44
表3-5 科學家意象量表與各分向度Cronbach’s α值 45
表3-6 科學家意象量表向度、題目與題數說明 45
表3-7 科學自我效能量表因素分析摘要表 48
表3-8 科學自我效能量表與各分向度Cronbach’s α值 49
表3-9 科學自我效能量表向度、題項、題數說明 49
表3-10 科學生涯投入量表因素分析摘要表 52
表3-11 科學生涯投入量表與各分向度Cronbach’s α值 53
表3-12 科學生涯投入量表向度、題項、題數說明 53
表3-13 簡式畫科學家測驗檢核表與評量指標 56
表3-14 女性楷模探究教學單元規劃表 64
表3-15 受訪對象背景資料 68
表4-1 測量模式之整體模式適配度考驗指數摘要 71
表4-2 觀察變項的個別項目信度及潛在變項的組合信度與平均變異抽取量 72
表4-3 假設模式各潛在變項間影響關係的標準化效果量 74
表4-4 競爭模式各潛在變項間影響關係的標準化效果量 76
表4-5 各競爭模式之整體模式適配度考驗指數摘要 78
表4-6 最終理論模式觀察變項與潛在變項間影響關係的標準化效果量 81
表4-7 實驗組與對照組國小學童的科學家意象相依樣本t考驗結果 84
表4-8 實驗組與對照組不同性別國小學童的科學家意象相依樣本t考驗結果 85
表4-9 實驗組與對照組國小學童的科學自我效能相依樣本t考驗結果 86
表4-10 實驗組與對照組不同性別國小學童的科學自我效能相依樣本t考驗結果 87
表4-11 實驗組與對照組國小學童的科學生涯投入相依樣本t考驗結果 89
表4-12 實驗組與對照組不同性別國小學童的科學生涯投入相依樣本t考驗結果 90
表4-13 實驗組與對照組國小學童的科學家意象獨立樣本t考驗結果 102
表4-14 實驗組與對照組國小學童的科學自我效能獨立樣本t考驗結果 103
表4-15 實驗組與對照組國小學童的科學生涯投入獨立樣本t考驗結果 104
表4-16 實驗組與對照組國小學童的科學家意象共變數分析結果 105
表4-17 實驗組與對照組不同性別國小學童的科學家意象共變數分析結果 106
表4-18 實驗組與對照組國小學童的科學自我效能共變數分析結果 107
表4-19 實驗組與對照組不同性別國小學童的科學自我效能共變數分析結果 108
表4-20 實驗組與對照組國小學童的科學生涯投入共變數分析結果 109
表4-21 實驗組與對照組不同性別國小學童的科學生涯投入共變數分析結果 110
表4-22 實驗組與對照組國小學童在畫科學家測驗檢核指標的卡方考驗結果 112
參考文獻 References
一、中文部分
于曉平、林幸台(2010)。角色楷模課程對高中數理資優女生性別角色、生涯自我效能與生涯發展影響之研究。教育科學研究期刊,55(1),27-61。
王采薇、張德勝(2016)。理工科系女性大學生學習經驗之質性研究。發表於105年度性別與科技研究計畫聯合成果討論會,高雄市。
王雅玄(2014)。如魚得水?科技女性成功論述之研究。教育科學研究期刊,59(4),137-164。
王靜如、周金燕、蔡瑞芬(2006)。國小教師科學教學基準系列報導(二)科學本質與科學探究。屏東教大科學教育,23,3-17。
內政部(2016)。各縣市現住人口數按性別及單一年齡分。取自:http://www.ris.gov.tw/zh_TW/346
田秀蘭(2003)。社會認知生涯理論之興趣模式驗證研究。教育心理學報,34(2),247-266。
行政院主計處(2015)。2015年性別圖像。台北市:作者。
何仕仁、黃台珠、吳裕益(2007)。科學自我效能量表之發展。科學教育學刊,15(6),613-626。
吳明隆(2007)。SPSS操作與應用:問卷統計分析實務。台北市:五南。
吳淑敏(2009)。傑出女性科學家生涯發展歷程之探討。特殊教育研究學刊,34(1),75-103。
吳嘉麗(2009)。追夢,我的世界宇宙大(上)。台北市:女書文化。
吳嘉麗(2009)。追夢,我的世界宇宙大(下)。台北市:女書文化。
余民寧(2006)。潛在變項模式:SIMPLIS的應用。台北市:高等教育。
佘曉清(1999)。影響我國中小學學生科學家印象因素之綜論。教育研究資訊,7(2),47-60。
邱明富、高慧蓮(2006)。科學史融入教學對國小學童科學本質觀影響之探究。科學教育學刊,14(2),163-187。
林信志(2014)。高級中學教科書性別偏見檢視規準之建構:德懷術與層級分析法之應用。課程與教學季刊,17(3),119-146。
周珮儀(2006)。從父權荒野的放逐到親密母土的回歸─女性主義課程理論的奧狄賽之旅。課程與教學季刊,9(4),1-18。
洪文東、黃俊偉(2008)。國小學童對科學家的意象調查研究:以屏東縣某國小學童為例。美和技術學院學報,27(2),21-48.
科技部(2015)。研究倫理審查。取自:https://www.most.gov.tw/hum/ch/list?menu_id=6a2d076c-3433-4a1b-b500-f57633c6f554&view_mode=listView
施悅欣、陸偉明(2002)。教師與學生之性別意識:以一個性別相關課程爲場域。女學學誌:婦女與性別研究,14,275-311。
孫旻暐(2016)。性別刻板印象影響的接續研究:性別刻板印象在數學表現上的威脅效果、威脅減除效果及促進效果的影響探討。論文發表於105年度性別與科技研究計畫聯合成果討論會,高雄市。
陳正昌、張慶勳(2007)。量化研究與統計分析。台北:新學林。
教育部(2016)。歷年大專校院學生人數-按領域、等級與性別分。取自:http://depart.moe.edu.tw/ED4500/cp.aspx?n=DCD2BE18CFAF30D0
郭重吉、蔣佳玲(1995)。評析學生對科學家的形象之相關研究。科學教育月刊,179,2-14。
郭靜姿、林美和及胡寶玉(2006)。女性資優生在工作或學業上的助力、阻力、因應及轉變。教育研究月刊,143,41-56。
康素瑜、方泰山(2003)。第三十五屆國際化學奧林匹亞選訓營之相關研究。發表於中華民國第十九屆科學教育學術研討會,台北:國立台灣師範大學。
張郁雯、林文瑛、王震武(2013)。科學表現的兩性差異縮小了嗎?國際科學表現評量資料之探究。教育心理學報,44,459-476。
張春興(1976)。國小男女學童學習行為的差異與其教師性別的關係。教育心理學報,9,1-20。
張惠博、何珮琪、林建隆(2000)。國中學生對於科學與科學家的認識之研究。教育研究資訊,8(5),136-152。
黃孝宗、蔡俊彥、黃台珠(2013)。公民科學家意象與參觀博物館對科學研究利益知覺之影響。教育科學研究期刊,58(3),1-22。
游美惠(2004)。多元文化與女性主義教育學:文獻評析與議題深探。臺灣教育社會學研究,4(2),41-69。
楊文金(1998)。「同儕科學家意像」對訊息合理性判斷的影響分析。師大學報:科學教育類,43(1),1-17。
楊幸真(2003)。重構女性主義教室:愛、信任、倫理與關懷。發表於意識、認同、實踐-2003女性主義學術研討會,新竹市。
楊秀停、王國華(2007)。實施引導式探究教學對於國小學童學習成效之影響。科學教育學刊,15(4),439-459。
楊泰興、陳建豪、司晏芳(2013)。她們,好厲害:台灣之光.18位女科學家改變世界。台北市:遠見。
楊榮祥、Fraser, B.(1998)。台灣和西澳科學教室環境的合作研究-研究架構、方法及對台灣科學教育的啟思。科學教育學刊,6(4),325-342。
熊召弟(1998)。藉反省式教學方式探究師院生的自然科教學觀。臺北師院學報,11,473-512。
鄭宜真(2001)。自然教室中的他與她-性別與科學教育。發表於中華民國第十七屆科學教育學術研討會,高雄市。
劉淑慧(1993)。性格適切性職業聲望職業興趣職業性向在職業評量上的相對重要性:以情境與刺激型態為中介變項考驗Gottfredson的理論。中華輔導學報,1,192-214。
劉淑慧、林怡青(2002)。國三學生選擇入學學校之抉擇歷程與其影響因素。中華輔導學報,11,71-123。
廖麗貞、林寶英、洪振方(2000)。將達爾文演化論發展史融入大學生命科學通識課程之研究。科學教育學刊,8(2),179-198。
潘淑琦(2010)。性別平等觀念融入國小自然與生活科技教學之行動研究--以女性科學家故事教學活動為例。屏東教大科學教育,31,44-60。
謝小岑(1998)。性別與科學教育。兩性平等教育中心資源學校相關人員培訓營成果報告手冊,教育部。
謝小芩、王雅各(2000)。經驗、發聲與性別政治—通識教育中的女性主義教育學。通識教育季刊,7(2/3),47-76。
謝淑敏(2014)。角色楷模學習輔導方案應用於科技領域大學生之成效研究。教育研究與發展期刊,10(4),47-78。
簡晉龍、任宗浩(2011)。邁向科學之路?臺灣中學生性別對科學生涯選擇意向之影響。科學教育學刊,19,461-481。
二、英文部份
Anderson, C. B., Lee, H. Y., Byars-Winston, A., Baldwin, C. D., Cameron, C., & Chang, S. (2015). Assessment of scientific communication self-efficacy, interest, and outcome expectations for career development in academic medicine. Journal of Career Assessment, 24(1), 182-196.
Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological Bulletin, 103(3), 411-423.
Andrew, S. (1998). Self-efficacy as a predictor of academic performance in science. Journal of Advanced Nursing, 27, 596-603.
Archer, L., DeWitt, J., Osborne, J., Dillon, J., Willis, B., &Wong, B. (2010). ‘Doing’ science versus‘being’ a scientist: Examining 10/11-year-old schoolchildren’s constructions of science through the lens of identity. Science Education, 94(4), 617-639.
Aschbacher, P. R., Li, E., & Roth, E. J. (2010). Is science me? High school students' identities, participation and aspirations in science, engineering, and medicine. Journal of Research in Science Teaching, 47, 564-582.
Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Academic of Marketing Science, 16(1), 76-94.
Bandura, A. (1977a). Self-efficacy: Toward a unifying theory of behavior change. Psychological Review, 84, 191-215.
Bandura, A. (1977b). Social learning theory. Englewood Cliffs, NJ: Prentice Hall.
Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Englewood Cliffs, NJ: Prentice Hall.
Bandura, A. (1997). Self-efficacy: The exercise of control. New York, NY: Freeman.
Barman, C. R. (1997). Students’ views of scientists and science: Results from a national study. Science & Children, 35(1), 18-23.
Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51, 1173-1182.
Barrett, A. C., & White, D. A. (1991). How John Henry effects confound the measurement of self-esteem in primary prevention programs for drug abuse in
middle schools. Journal of Alcohol and Drug Education, 36(3), 87-102.
Baumrind, D. (1971). Current patterns of parental authority. Developmental Psychology Monographs, 4, 1-103.
Bellamy, N. (1994). Bias in the classroom: Are we guilty? Science Scope, 17(6), 60-63.
Betz, N. E., & Fitzgerald, L. F. (1987). The career psychology of women. New York: Academis Press.
Blumberg, R. L. (2008). The invisible obstacle to education equality: Gender bias in textbook. Prospects, 38(3), 345-361.
Boylan, C. M., Hill, D. M., Wallace, A. R., & Wheeler, A. W. (1992). Beyond stereotypes. Science Education, 76(5), 465-476.
Bratcher, W. E. (1982). The influence of the family on career selection: A family systems perspective. The Personnel and Guidance Journal, 61, 87-91.
Brickhouse, N. W., Lowery, P., & Schultz, K. (2000). What kind of girls does science? The construction of school science identities. Journal of Research in Science Teaching, 37, 441-458.
Brislin, R. W. (1986). Back-translation for cross-cultural research. Journal of Cross-cultural Psychology, 1(3), 185-216.
Britner, S. L., & Pajares, F. (2001). Self-efficacy beliefs, motivation, race, and gender in middle school science. Journal of Women and Minorities in Science and Engineering, 7, 271-285.
Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A. Bollen & J. S. Long (Eds.), Testing structural equation models (pp. 136-162). Newbury Park, CA: Sage.
Byars-Winston, A., Estrada, Y., Howard, C., Davis, D., & Zalapa, J. (2010). Influence of social cognitive and ethnic variables on academic goals of underrepresented students in science and engineering: A multiple-groups analysis. Journal of Counseling Psychology, 57(2), 205-218.
Cakmakci, G., Tosun, O., Turgut, S., Orenler, S., Sengu, K., & Top, G. (2011). Promoting an inclusive image of scientists among students: Towards research evidence-based practice. International Journal of Science and Mathematics Education, 9(3), 627-655.
Chambers, D. W. (1983). Stereotypic images of the scientist: The Draw-A-Scientist’ Test. Science Education, 67(2), 253-265.
Chen, H-T., Wang, H-H., Lu, Y-Y., Lin, H-S., & Hong, Z. R. (2016). Using a modified argument-driven inquiry to promote elementary school students’ engagement in learning science and argumentation. International Journal of Science Education, 38(2), 170-191.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum.
Cook, T. D., & Campbell, D. T. (1979). Quasi-experimentation: Design and analysis for field settings. Chicago, IL: Rand McNally.
Coyle, N. Y. (2001, March). Why math careers? Women’s self-efficacy beliefs. Paper presented at the Annual Meeting of the Louisiana Educational Research Association, Baton Rouge, LA. (ERIC Document Reproduction Service No. ED452364)
Creswell, J. W. (2003). Research design: Qualitative, quantitative, and mixed methods approaches. London: Sage.
Cureton, E. E. (1957). The upper and lower twenty-seven percent rule. Psychometrika, 22, 293-296.
Dianne, D. H. (1995). Achieving gender equity. Boston: Ally & Bacon.
Farland-Smith, D., & McComas, W. (2009). Teaching the human dimensions of science. Science and Children, 46(9), 48-51.
Finson, K. D. (2009). What drawings reveal about perceptions of scientists: Visual data operationally defined. In J. E. Pederson & K. D. Finson (Eds.), Visual data: Understanding and applying visual data to research in education (pp. 59–77). Rotterdam, The Netherlands: Sense.
Finson, K. D., Beaver, J. B., & Cramond, B. L. (1995). Development and field test of a checklist for the Draw-A-Scientist test. School Science and Mathematics, 95(4), 195-205.
Fisher, R. J. (1993). Social desirability bias and the validity of indirect questioning. Journal of Consumer Research, 20, 303-315.
Flores, L. Y., & Obasi, E. M. (2005). Mentors' influence on Mexican American students' career and educational development. Journal of Multicultural Counseling and Development, 33(3), 146-164.
Foley, B., & McPhee, C. (2008). Students' attitudes towards science in classes using hands-on or textbook based curriculum. Washington, DC: American Educational Research Association.
Fraenkel, J. R., Wallen, N. E., & Hyun, H. H. (2012). How to design and evaluate research in education (8th ed.). New York: McGraw-Hill.
Frazier, P. A., Tix, A. P., & Barron, K. E. (2004). Testing moderator and mediator effects in counseling psychology research. Journal of Counseling Psychology, 51, 115-134.
Fung, Y. H. (2002). A comparative study of primary and secondary school students’ images of scientists. Research in Science & Technological Education, 20(2), 119-213.
Godding, P. R., & Glasgow, R. E. (1985). Self-efficacy and outcome expectations as predictors of controlled smoking status. Cognitive Therapy and Research, 9, 583-590.
Gold, R. L. (1969). Roles in sociological field observations. In G. J. McCall & J. L. Simmons (Eds.), Issues in participant observation (pp.33-90). Reading, MA: Addison-Wesley.
Gorsuch, R. L. (1983). Factor analysis (2nd ed.). Hillsdale, NJ: Erlbaum.
Gottfredson, L. S. (1981). Circumscription and compromise: A development theory of occupational aspirations. Journal of Counseling Psychology, 28(6), 545-579.
Grunert, M. G., & Bodner, G. M. (2011). Pedagogical environments in chemistry: Effects on women’s self-efficacy beliefs. Paper presented at the 2013 ASQ Advancing the STEM Agenda Conference. Retrieved from https://www.researchgate.net/publication/277011580_Pedagogical_environments_in_chemistry_Effects_on_women's_self-efficacy_beliefs
Grumet, M. R. (1988). Bitter milk: Women and teaching. Amherst: The University of Massachusetts Press.
Hackett, G., & Betz, N. (1981). A self-efficacy approach to the career development of women. Journal of Vocational Behavior, 18(3), 326-39.
Hair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C. (1998). Multivariate data analysis (5th ed.). Upper Saddle River, NJ: Prentice Hall.
Hawkins, J. (1985). Computer and girls: Rethinking the issues. Sex Roles, 12, 65-179.
Hazari, Z., Sonnert, G., Sadler, P. M., & Shanahan, M-C. (2010). Connecting high school physics experiences, outcome expectations, physics identity, and physics career choice: A gender study. Journal Research in Science Teaching, 47, 978-1003.
Head, J. (1985). The Personal Response to Science. New York, NY: Cambridge University Press.
Hidi, S., & Renninger, K. A. (2006). The four-phase model of interest development. Educational Psychologist, 41(2), 111-127.
Hong, Z. R. (2010). Effects of a collaborative science intervention on high achieving students’ learning anxiety and attitudes toward science. International Journal of Science Education, 32(15), 1971-1988.
Hong, Z. R., & Lin, H. S. (2011). An Investigation of students’ personality traits and attitudes toward science. International Journal of Science Education, 33(7), 1001-1028.
Hong, Z. R., & Lin, H. S. (2013). Boy’s and girl’s involvement in science learning and their self-efficacy in Taiwan. International Journal of Psychology, 48(3), 272-284 .
Hong, Z. R., Lin, H. S., & Lawrenz, F. (2012). Effects of an integrated science and societal implication on promoting adolescent’s positive thinking and emotional perceptions. International Journal of Science Education, 34 (3/4), 329-352.
Hong, Z. R., Lin, H. S., Wang, H-H., Chen, H-T., & Yang, K-K. (2013). Promoting and scaffolding elementary school students attitudes toward science and argumentation through a science and society intervention. International Journal of Science Education, 35(10), 1625-1648.
Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1-55.
Jones, M. G., Howe, A., & Rua, M. J. (2000). Gender differences in students’ experiences, interests, and attitudes toward science and scientists. Science Education, 84(2), 180-192.
Kaiser, H. F. (1974). Little jiffy, mark iv. Educational and Psychological Measurement, 34(1), 111–117.
Kazdin, A. E. (2011). Single-case research design: Methods for clinical and applied settings (2nd ed.). Oxford, UK: Oxford University.
Kelley, T. L. (1939). The selection of upper and lower groups for the validation of test
items. Journal of Educational Psychology, 30(1), 17-24.
Kerr, B., & Robinson Kurpius, S. E. (2004). Encouraging talented girls in math and science: Effects of a guidance intervention. High ability studies, 15(1), 85-102.
Kessels, U., & Taconis, R. (2012). Alien or alike? How the perceived similarity between the typical science teacher and a student's self-Image correlates with choosing science at school. Research in Science Education, 42(6), 1049-1071.
Ketelhut, D. J. (2010). Assessing gaming, computer and scientific inquiry self-efficacy in a virtual environment. In L. Annetta & S. C. Bronack (Eds.), Serious educational game assessment: Practical methods and models for educational games, simulations and virtual worlds (p.1-18). Rotterdam, the Netherlands: Sense Publishers.
Khattak, S. G. (2011). Feminism in education: Historical and contemporary issues of gender inequality in higher education. Education & Lifelong Learning: An International Journal, 5(1-2), 67-81.
Kohlstedt, S. G. (2004). Sustaining gains: Reflections on women in science and technology in 20th century United States. National Women’s Studies Association Journal, 16(1), 1-26.
Kupermintz, H. (2002). Affective and conative factors as aptitude resources in high school science achievement. Educational Assessment, 8, 123-137.
Lamb, R. L., Vallett, D., & Annetta, L. (2014). Development of a short-form measure of science and technology self-efficacy using Rasch analysis. Journal of Science Education and Technology, 23(5), 641-657.
Leaper, C., Farkas, T., & Brown, C. S. (2012). Adolescent girls’ experiences and gender-related beliefs in relation to their motivation in math/science and English. Journal of Youth and Adolescence, 41, 268-282.
Lee, M.-H., Tsai, C.-C., & Chai, C. S. (2012). A comparative study of Taiwan, Singapore, and China preservice teachers’ epistemic beliefs. The Asia-Pacific Education Researcher, 21(3), 599-609.
Lent, R. W., & Brown, S. D. (1996). Social cognitive approach to career development: An overview. The Career Development Quarterly, 44, 310-321.
Lent, R. W., & Brown, S. D. (2003). Relation of contextual supports and barriers to choice behavior in engineering majors: Test of alternative social cognitive models. Journal of Counseling Psychology, 50(4), 458-465.
Levine, M., Serio, N., Radaram, B., Chaudhuri, S., & Talbert, W. (2015). Addressing the STEM gender gap by designing and implementing an educational outreach chemistry camp for middle school girls. Journal of Chemical Education, 92, 1639-1644.
Lewin, K. (1947). Frontiers in group dynamics: Concept, method and reality in social science; social equilibria and social change. Human Relations, 1(5), 5-41.
Lewis, M. G. (1994). Without a word: Teaching beyond women’s silence. New York, NY: Routledge.
Lin, H. S., Hong, Z. R., & Chen, Y. (2013). Exploring the development of college students’ situational interest in learning science. International Journal of Science Education 35(13), 2152-2173.
Lin, H. S., Hong, Z. R., & Huang, T. (2012). The role of emotional factors in building public scientific literacy and engagement with science. International Journal of Science Education, 34(1), 25-42.
Lohman, D. F., & Lakin, J. M. (2009). Consistencies in sex differences on the cognitive abilities test across countries, grades, test forms, and cohorts. British Journal of Educational Psychology, 79, 389-407.
Losh, S. C., Wilke, R., & Pop, M. (2008). Some methodological issues with “Draw a Scientist Tests” among young children. International Journal of Science Education, 30(6), 773-792.
Maccoby, E. E., & Martin, J. A. (1983). Socialization in the context of the family: Parent-child interaction. In P. H. Mussen, (Ed.), Handbook of child psychology: Vol. 4. Socialization, Personality, and Social Development (pp. 1-101). New
York, NY: Wiley.
Manicom, A. (1992). Feminist pedagogy: Transformations, standpoints, and politics. Canadian Journal of Education, 17(3), 365-389.
Martin, M. O., Mullis, I. V. S., & Foy, P. (with Olson, J.F., Erberber, E., Preuschoff, C., & Galia, J.) (2008). TIMSS 2007 international science report. Chestnut Hill, MA: TIMSS & PIRLS International Study Center, Boston College, MA.
McCarney, R., Warner, J., Iliffe, S., van Haselen, R., Griffin, M., & Fisher, P. (2007). The Hawthorne effect: A randomized, controlled trial. BMC Medical Research Methodology, 3, 7-30.
Mead, M., & Metraux, R. (1957). Image of the scientist among high-school students. Science, 126(3270), 384-390.
Milford, T. M., & Tippett, C. D. (2013). Preservice teachers' images of scientists: Do prior science experiences make a difference? Journal of Science Teacher Education, 24(4), 745-762.
Miller, J. L. (2005). Sound of silence breaking: Women, autobiography, curriculum. New York, NY: Peter Lang.
Miller, D. I., Eagly, A. H., & Linn, M. C. (2015). Women’s representation in science predicts national gender-science stereotypes: Evidence from 66 nations. Journal
of Educational Psychology, 107(3), 631-644.
Miyake, A., Kost-Smith, L. E., Finkelstein, N. D., Pollock, S. J., Cohen, G. L., & Ito, T. A. (2010). Reducing the gender achievement gap in college science: A classroom study of values affirmation. Science, 330, 1234-1237.
Morrongiello, B. A., & Dawber, T. (2000). Mothers’ responses to sons and daughters engaging in injury-risk behaviors on a playground: Implications for sex differences in injury rates. Journal of Experimental Child Psychology, 76, 89-103.
Narayan, R., Park, S., Peker, D., & Suh, J. (2013). Students’ Images of scientists and doing science: An international comparison study. Eurasia Journal of Mathematics, Science & Technology Education, 9(2), 115-129.
National Research Council. (1996). The National Science Education Standards: Guidelines for moving the vision into practice. Washington, DC: NSTA Press.
National Science Board. (2014). Science and engineering indicators 2014 (Report No.
NSB 14–01). Arlington, VA: National Science Foundation.
National Science Foundation. (2013). Women, minorities, and persons with disabilities in science and engineering. Arlington, VA: National Science Foundation. Retrieved from http://www.nsf.gov/statistics/wmpd/2013/start.cfm
Nederhof, A. J. (1985). Methods of coping with social desirability bias: a review. European Journal of Social Psychology, 15, 263-280.
Organization for Economic Co-operation and Development. (2006). Women in scientific careers unleashing the potential. Paris, France: Author.
Organization for Economic Co-operation and Development. (2014). PISA 2012 Results in Focus: What 15-year-olds know and what they can do with what they know. Paris, France: Author.
Osborne, J. F., Simon, S., & Collins, S. (2003). Attitudes towards science: A review of the literature and its implications. International Journal of Science Education, 25(9), 1049-107.
Ozel, M. (2012). Children's images of scientists: Does grade level make a difference? Educational Sciences: Theory and Practice, 12(4), 3187-3198.
Painter, J., Jones, M. G., Tretter, T. R., & Kubasko, D. (2006). Pulling back the curtain: Uncovering and changing students' perceptions of scientists. School Science and Mathematics, 106, 181-190.
Patton, M. (1990). Qualitative evaluation and research methods (pp. 169-186). Beverly Hills, CA: Sage.
Patton, M. Q. (2002). Qualitative evaluation and research methods (3rd ed.). Thousand Oaks, CA: SAGE.
Patton, M. Q. (2005). Qualitative research: Encyclopedia of statistics in behavioral science. New Jersey: John Wiley & Sons.
Pellegrini, A. D. (1996). Observing children in their natural worlds: A methodological primer. Mahwah, NJ: Lawrence Erlbaum.
Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior Research Methods, 40, 879-891.
Pugh, K. J., Linnenbrink-Garcia, L., Koskey, K. L. K., Stewart, V. C., & Manzey, C. (2010). Motivation, learning, and transformative experience: A study of deep
engagement in science. Science Education, 94, 1-28.
Quintana, S. M., & Maxwell, S. E. (1999). Implications of recent developments in structural equation modeling for counseling psychology. The Counseling Psychologist, 27, 485-527.
Reis, P., & Galvao, C. (2004). Socio-scientific controversies and students’ conceptions about scientists. International Journal of Science Education, 26(13), 1621-1633.
Sadker, D. (1999). Gender equity: Still knocking at the classroom door. Educational Leadership, 56(7), 22-27.
She, H. C. (1995). Elementary and middle school students’ image of science and scientists related to current science textbooks in Taiwan. Journal of science education and technology, 4(4), 283-294.
Sheared, V. (1994). Giving voice: An inclusive model of instruction –A womanist perspective., In E. Hayes & S. A. J. Colin III (Eds.), Confronting racism and
sexism (pp.27-37). San Francisco, CA: Jossey-Bass Publishers.
Shrout, P. E., & Bolger, N. (2002). Mediation in experimental and nonexperimental studies: New procedures and recommendations. Psychological Methods, 7(4), 422-445.
Smith, J. K., & Krajkovich, J. G. (1979). Validation of the image of science and scientists scale. Educational and Psychological Measurement, 39, 495-498.
Smith, W. S., & Erb, T. O. (1986). Effect of women science career role models on early Adolescents’ attitudes toward scientists and women in science. Journal of Research in Science Teaching, 23(8), 667-676.
Strand, S., Deary, I. J., & Smith, P. (2006). Sex differences in cognitive ability test scores: A UK national picture. British Journal of Educational Psychology, 76, 463-480.
Sullivan, G. M., & Artino, A. R. Jr. (2013). Analyzing and interpreting data from Likert-type scales. Journal of Graduate Medical Education, 5(4), 541-542.
Super, D. E. (1976). Career education and the meaning of work. Washington, D.C.: U.S. Government Printing Office.
Tabachnick, B. G., & Fidell, L. S. (2013). Using multivariate statistics (6th ed.). Boston: Pearson.
Thomas, M. D., Henley, T. B., & Snell, C. M. (2006). Draw a scientist test: A different population and a somewhat different story. College Student Journal, 40(1), 140-148.
Thompson, M. S., & Green, S. B. (2006). Evaluating between-group differences in latent variable means. In G. R. Hancock & R. O. Mueller (Eds.), Structural equation modeling: A second course (pp. 119-169). Greenwich, CT: Information Age.
Togrol, A. Y. (2013). Turkish students' images of scientists. Journal of Baltic Science Education.12(3), 289-298.
Trochim, W. M. (2006). The Research Methods Knowledge Base. Retrieved from
http://www.anatomyfacts.com/research/researchmethodsknowledgebase.pdf
Trujillo, G., & Tanner, K. D. (2014). Considering the role of affect in learning: Monitoring students’ self-efficacy, sense of belonging, and science identity. CBE—Life Sciences Education, 13, 6-15.
Türkmen, H. (2008). Turkish primary students’ perceptions about scientist and what factors affecting the image of the scientists. Eurasian Journal of Mathematics, Science and Technology Education, 4, 55-61.
Turnbull, S., Case, P., Edwards, G., Schedlitzki, D., & Simpson, P. (2012) (Eds.) Worldly leadership: Alternative wisdoms for a complex world. London, UK: Palgrave Macmillan.
U.S. Department of Education (2013). Federal STEM education 5-year strategic plan.
Retrieved from htts//www.ed.gov
Wagner, A. (2014). Re-imagining the (un)familiar: feminist pedagogy in rural spaces. Gender and Education, 26(5), 553-567.
Whitney, L., & Hoffman, R. M. (1998). Middle school advisories: A vehicle for developing students’ gender self-confidence. Education, 119(2), 232-242.
Williamson, J. B., Karp, D. A., Dolphin, J. R., & Gray, P. S. (1982). The research craft: An introduction to social research methods. Boston, MA: Little, Brown & Co.
Woodcock, A., Hernandez, P. R., & Schultz, P. W. (2015). Diversifying science: Intervention programs moderate the effect of stereotype threat on motivation and career choice. Social Psychological and Personality Science, 1-9.
Wyer, M., Schneider, J., Nassar-McMillan, S., & Oliver-Hoyo, M. (2010). Capturing stereotypes: Developing a scale to explore U.S. college students' images of science and scientists. International Journal of Gender, Science, and Technology, 2(3), 382-415.
Yang, K-K., Lin, S-F., Hong, Z. R., & Lin, H. S. (2016). Exploring the assessment of and relationship between elementary students’ scientific creativity and science inquiry. Creativity Research Journal, 28(1), 16-23.
Yang, Y., & Barth, J. M. (2015). Gender differences in STEM undergraduates' vocational interests: People–thing orientation and goal affordances. Journal of Vocational Behavior, 91, 65-75.
Zeldin, A. L., Britner, S. L., & Pajares, F. (2008). A comparative study of the self-efficacy beliefs of successful men and women in mathematics, science, and technology careers. Journal of Research on Science Teaching, 45(9), 1036-1058.
Zhai, J., Jocz, J., & Tan, A-L. (2014). “Am I like a scientist?”: Primary children’s images of doing science in school. International Journal of Science Education, 36(4), 553-576.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code