Responsive image
博碩士論文 etd-1028113-210142 詳細資訊
Title page for etd-1028113-210142
論文名稱
Title
TSG101與Snapin間交互作用之特性分析
Characterization of the Interaction between TSG101 and Snapin
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
95
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-11-25
繳交日期
Date of Submission
2013-11-28
關鍵字
Keywords
Snpain、內含體路徑、蛋白質交互作用、神經生理、腫瘤易感基因101
Snpain, endosomal pathway, neurophysiological function, protein interaction, Tumor susceptibility gene 101
統計
Statistics
本論文已被瀏覽 5687 次,被下載 279
The thesis/dissertation has been browsed 5687 times, has been downloaded 279 times.
中文摘要
腫瘤易感基因101(TSG101)為ESCRT-I(endosomal sorting complex required for transport complex I)複合體的成員之一,參與蛋白質分選及囊泡運輸,因此為細胞之生長及分化所必需。過去研究顯示TSG101能參與細胞自噬作用之調節,但詳細機制不明。據實驗室學長以TSG101為餌進行酵母菌雙雜交實驗結果,發現TSG101與Snapin蛋白有交互作用。Snapin最早因與SNAP25交互作用並促進神經傳遞物質釋放之活性而被發現,近期研究則指出其在細胞自噬與晚期內含體熟成及囊泡運輸扮演重要角色。然而,Snapin與內含體之連結蛋白仍未被報導。因此,TSG101與Snapin兩蛋白交互作用之生理意義值得進一步加以釐清。本研究首先利用Pull-down實驗及免疫共沉澱分析驗證兩蛋白間之交互作用。後續我們以共軛焦顯微鏡螢光影像分析發現:在子宮頸癌細胞HeLa中,兩者在細胞質內具點狀共位,且該兩蛋白皆與晚期內含體標誌Rab7共位,顯示其交互作用可能發生於晚期內含體上。而在未分化NSC-34類運動神經元細胞或誘導分化之NSC-34(NSC-34D)細胞中,皆觀察到兩蛋白在細胞質有點狀共位現象,在已分化NSC-34D之神經突中亦可觀察到兩蛋白之點狀共位。而我們的活體螢光顯微鏡縮時攝影觀察結果,亦發現兩蛋白之點狀共位於NSC-34之細胞質,或於NSC-34D之神經突中共同移動,再次驗證兩蛋白質之共位現象,並指出兩蛋白之交互作用可能具有神經生理相關功能。綜上所述,TSG101與Snapin蛋白具交互作用,該交互作用可能參與內溶酶體運輸路徑,而其在神經細胞之生理意義有待進一步釐清。
Abstract
Tumor susceptibility gene 101(TSG101) has important physiological functions in the regulation of cell cycle and membrane trafficking. TSG101 is essential for cell growth, proliferation, and survival, and also for the development of an organism. As a component of ESCRT(Endosomal Sorting Complex Required for Transport) complex I, TSG101 plays an important role in protein sorting and vesicular transportation. Recently, a study done by an ex-member of our laboratory indicated TSG101 is involved in the regulation of autophagy, but the detail still unclear. Our yeast-two-hybrid screening had found TSG101 can interact with Snapin, which can enhance the release of neurotransmitte. Recent reports indicate that Snapin plays an important part both in autophagy, endosomal maturation and vesicular transportation. However, the linkage between Snapin and late endosome is unknown. The interaction between TSG101 and Snapin therefore is a valuable issue to pursue. In the result of present study, GST-snapin pull down mixture showed the presence of TSG101. Our co-immunoprecipitation result also demonstrated the interaction between TSG101 and snapin. To investigate whether TSG101 colocalize with snapin, we have analyzed intracellular localization of these two proteins in HeLa, a cervical carcinoma cell, and in NSC-34, a motor neuron-like cell, through confocal microscopy. Our results indicated the colocalization of TSG101 and snapin in the vesicle-like structure within the cytosol both of HeLa and NSC-34 cell. Another confocal image showed that both TSG101 and snapin colocalized with a late endosome marker Rab7, but not with early endosome marker Rab5 in HeLa cell. In addition, TSG101 and snapin coloclized within soma as well as neurite in differentiated NSC-34(NSC-34D) cell. The time lapse fluorescent image acquisition of live NSC-34 and NSC-34D expressing cells futher confirmed the colocalization of TSG101 and Snapin. Our results also showed that the vesicle-like structure containing both proteins moves alone the neurite in NSC-34D. Taken together, there is an interaction between TSG101 and Snapin that may be involved in the endo-lysosomal pathway. Moreover, the neurophysiological significance of this interaction awaits further investigation.
目次 Table of Contents
標題
頁數
致謝 iii
摘要 iv
Abstract v
目錄 vii
縮寫表 ix
前言 1
一、TSG101相關背景 1
1、TSG101的發現與癌症的相關性 1
2、TSG101蛋白之結構及其功能 2
3、TSG101與內含體運輸 4
二、Snapin的發現、結構與功能 6
1、Snapin的發現與SNARE複合體 6
2、Snapin與內溶酶體系統 8
3、Snapin的其他功能 9
材料與方法 11
一、質體備製 11
二、融合蛋白之表現與純化 14
三、In vitro pull-down assay 17
四、細胞培養 18
五、真核細胞轉染 20
六、西方墨點法分析 22
七、免疫共沉澱分析 24
八、共軛焦顯微鏡影像分析 25
九、活體螢光顯微鏡縮時攝影觀察 27
十、小鼠myoblast分離與初級細胞培養 27
十一、Myotube及NSC-34細胞共同培養及電生理技術 29
結果 31
一、TSG101與Snapin間交互作用之確認 31
二、細胞中TSG101及Snapin之共位影像觀察 32
三、小鼠NSC-34D及肌肉母細胞共同培養模式之電生理測試 35
四、Snapin蛋白之同源二聚體的表現分析 36
討論 38
引用文獻 45
圖表 56
附錄 82
參考文獻 References
1. Li, L. and Cohen, S.N., tsg101: A Novel Tumor Susceptibility Gene Isolated by Controlled Homozygous Functional Knockout of Allelic Loci in Mammalian Cells. Cell, 1996. 85(3): p. 319-329.
2. Ma, X.R., Edmund Sim, U.H., Pauline, B., Patricia, L., and Rahman, J., Overexpression of WNT2 and TSG101 genes in colorectal carcinoma. Trop Biomed., 2008. 25(1): p. 46-57.
3. Liu, R.T., Huang, C.C., You, H.L., Chou, F.F., Hu, C.C.A., Chao, F.P., Chen, C.M., and Cheng, J.T., Overexpression of tumor susceptibility gene TSG101 in human papillary thyroid carcinomas. Oncogene, 2002. 21(31): p. 4830-4837.
4. Liu, F., Yu, Y., Jin, Y., and Fu, S., TSG101, identified by screening a cancer cDNA library and soft agar assay, promotes cell proliferation in human lung cancer. Mol. Biol. Rep., 2010. 37(6): p. 2829-38.
5. Krempler, A., Henry, M.D., Triplett, A.A., and Wagner, K.U., Targeted deletion of the Tsg101 gene results in cell cycle arrest at G1/S and p53-independent cell death. J. Biol. Chem., 2002. 277(45): p. 43216-23.
6. Wagner, K.U., Krempler, A., Qi, Y., Park, K., Henry, M.D., Triplett, A.A., Riedlinger, G., Rucker, I.E., and Hennighausen, L., Tsg101 is essential for cell growth, proliferation, and cell survival of embryonic and adult tissues. Mol. Cell. Biol., 2003. 23(1): p. 150-62.
7. Carstens, M.J., Krempler, A., Triplett, A.A., Van Lohuizen, M., and Wagner, K.U., Cell cycle arrest and cell death are controlled by p53-dependent and p53-independent mechanisms in Tsg101-deficient cells. J. Biol. Chem., 2004. 279(34): p. 35984-94.
8. Li, L., Li, X., Francke, U., and Cohen, S.N., The TSG101 Tumor Susceptibility Gene Is Located in Chromosome 11 Band p15 and Is Mutated in Human Breast Cancer. Cell, 1997. 88(1): p. 143-154.
9. Baffa, R., Moreno, J.G., Monne, M., Luisa Veronese, M., and Gomella, L.G., A comparative analysis of prostate-specific antigen gene sequence in benign and malignant prostate tissue. Urology, 1996. 47(6): p. 795-800.
10. Reeve, A.E., Sih, S.A., Raizis, A.M., and Feinberg, A.P., Loss of allelic heterozygosity at a second locus on chromosome 11 in sporadic Wilms' tumor cells. Mol. Cell. Biol., 1989. 9(4): p. 1799-1803.
11. Chang, J.G., Su, T.H., Wei, H.J., Wang, J.C., Chen, Y.J., Chang, C.P., and Jeng, C.J., Analysis of TSG101 tumour susceptibility gene transcripts in cervical and endometrial cancers. Br. J. Cancer, 1999. 79(3-4): p. 445-450.
12. Frank, W., Ruediger, R., Peer, B., Ruediger, K., Gunhild, M., Matthias, S., Dagmar, Z., Matthias, K., Thomas, L., Christian, H., and Magnus von Knebel, D., Identical variant TSG101 transcripts in soft tissue sarcomas and various non-neoplastic tissues. Mol. Carcinog., 1998. 23(4): p. 195-200.
13. Lee, M.P. and Feinberg, A.P., Aberrant Splicing but not Mutations of TSG101 in Human Breast Cancer. Cancer Res., 1997. 57(15): p. 3131-3134.
14. Moyret-Lalle, C., Duriez, C., Van Kerckhove, J., Gilbert, C., Wang, Q., and Puisieux, A., p53 Induction Prevents Accumulation of Aberrant Transcripts in Cancer Cells. Cancer Res., 2001. 61(2): p. 486-488.
15. Pornillos, O., Alam, S.L., Rich, R.L., Myszka, D.G., Davis, D.R., and Sundquist, W.I., Structure and functional interactions of the Tsg101 UEV domain. EMBO J., 2002. 21(10): p. 2397-2406.
16. Feng, G.H., Lih, C.-J., and Cohen, S.N., TSG101 Protein Steady-State Level Is Regulated Posttranslationally by an Evolutionarily Conserved COOH-Terminal Sequence. Cancer Res., 2000. 60(6): p. 1736-1741.
17. VerPlank, L., Bouamr, F., LaGrassa, T.J., Agresta, B., Kikonyogo, A., Leis, J., and Carter, C.A., Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55Gag. Proc. Natl. Acad. Sci. U. S. A., 2001. 98(14): p. 7724-7729.
18. Lu, Q., Hope, L.W., Brasch, M., Reinhard, C., and Cohen, S.N., TSG101 interaction with HRS mediates endosomal trafficking and receptor down-regulation. Proc. Natl Acad. Sci. USA, 2003. 100: p. 7626-7631.
19. Watanabe, M., Yanagi, Y., Masuhiro, Y., Yano, T., Yoshikawa, H., Yanagisawa, J., and Kato, S., A Putative Tumor Suppressor, TSG101, Acts as a Transcriptional Suppressor through Its Coiled-Coil Domain. Biochem. Biophys. Res. Commun., 1998. 245(3): p. 900-905.
20. Katoh, K., Suzuki, H., Terasawa, Y., Mizuno, T., Yasuda, J., Shibata, H., and Maki, M., The penta-EF-hand protein ALG-2 interacts directly with the ESCRT-I component TSG101, and Ca2+-dependently co-localizes to aberrant endosomes with dominant-negative AAA ATPase SKD1/Vps4B. Biochem. J., 2005. 391(Pt 3): p. 677-85.
21. Okumura, M., Ichioka, F., Kobayashi, R., Suzuki, H., Yoshida, H., Shibata, H., and Maki, M., Penta-EF-hand protein ALG-2 functions as a Ca2+-dependent adaptor that bridges Alix and TSG101. Biochem. Biophys. Res. Commun., 2009. 386(1): p. 237-241.
22. Morita, E., Sandrin, V., Chung, H.-Y., Morham, S.G., Gygi, S.P., Rodesch, C.K., and Sundquist, W.I., Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. EMBO J., 2007. 26(19): p. 4215-4227.
23. Carlton, J.G. and Martin-Serrano, J., Parallels Between Cytokinesis and Retroviral Budding: A Role for the ESCRT Machinery. Science, 2007. 316(5833): p. 1908-1912.
24. Maucuer, A., Camonis, J.H., and Sobel, A., Stathmin interaction with a putative kinase and coiled-coil-forming protein domains. Proc. Natl. Acad. Sci. U. S. A., 1995. 92(8): p. 3100-3104.
25. Larsson, N., Segerman, B., Howell, B., Fridell, K., Cassimeris, L., and Gullberg, M., Op18/Stathmin Mediates Multiple Region-Specific Tubulin and Microtubule-Regulating Activities. J. Cell Biol., 1999. 146(6): p. 1289-1302.
26. Ismaili, N., Blind, R., and Garabedian, M.J., Stabilization of the Unliganded Glucocorticoid Receptor by TSG101. J. Biol. Chem., 2005. 280(12): p. 11120-11126.
27. Hittelman, A.B., Burakov, D., Iniguez-Lluhi, J.A., Freedman, L.P., and Garabedian, M.J., Differential regulation of glucocorticoid receptor transcriptional activation via AF-1-associated proteins. EMBO J., 1999. 18(19): p. 5380-5388.
28. Katzmann, D.J., Babst, M., and Emr, S.D., Ubiquitin-Dependent Sorting into the Multivesicular Body Pathway Requires the Function of a Conserved Endosomal Protein Sorting Complex, ESCRT-I. Cell, 2001. 106(2): p. 145-155.
29. Oestreich, A.J., Davies, B.A., Payne, J.A., and Katzmann, D.J., Mvb12 is a novel member of ESCRT-I involved in cargo selection by the multivesicular body pathway. Mol. Biol. Cell, 2007. 18(2): p. 646-57.
30. Kostelansky, M.S., Schluter, C., Tam, Y.Y., Lee, S., Ghirlando, R., Beach, B., Conibear, E., and Hurley, J.H., Molecular architecture and functional model of the complete yeast ESCRT-I heterotetramer. Cell, 2007. 129(3): p. 485-98.
31. Doyotte, A., Russell, M.R., Hopkins, C.R., and Woodman, P.G., Depletion of TSG101 forms a mammalian "Class E" compartment: a multicisternal early endosome with multiple sorting defects. J. Cell Sci., 2005. 118(14): p. 3003-3017.
32. Babst, M., Odorizzi, G., Estepa, E.J., and Emr, S.D., Mammalian Tumor Susceptibility Gene 101 (TSG101) and the Yeast Homologue, Vps23p, Both Function in Late Endosomal Trafficking. Traffic, 2000. 1(3): p. 248-258.
33. Amit, I., Yakir, L., Katz, M., Zwang, Y., Marmor, M.D., Citri, A., Shtiegman, K., Alroy, I., Tuvia, S., Reiss, Y., Roubini, E., Cohen, M., Wides, R., Bacharach, E., Schubert, U., and Yarden, Y., Tal, a Tsg101-specific E3 ubiquitin ligase, regulates receptor endocytosis and retrovirus budding. Genes Dev., 2004. 18(14): p. 1737-1752.
34. McDonald, B. and Martin-Serrano, J., Regulation of Tsg101 Expression by the Steadiness Box: A Role of Tsg101-associated Ligase. Mol. Biol. Cell, 2008. 19(2): p. 754-763.
35. Kim, B.Y., Olzmann, J.A., Barsh, G.S., Chin, L.S., and Li, L., Spongiform neurodegeneration-associated E3 ligase Mahogunin ubiquitylates TSG101 and regulates endosomal trafficking. Mol. Biol. Cell, 2007. 18(4): p. 1129-42.
36. Jiao, J., Sun, K., Walker, W.P., Bagher, P., Cota, C.D., and Gunn, T.M., Abnormal regulation of TSG101 in mice with spongiform neurodegeneration. Biochim. Biophys. Acta, 2009. 1792(10): p. 1027-35.
37. Xie, W., Li, L., and Cohen, S.N., Cell cycle-dependent subcellular localization of the TSG101 protein and mitotic and nuclear abnormalities associated with TSG101 deficiency. Proceedings of the National Academy of Sciences, 1998. 95(4): p. 1595-1600.
38. Bache, K.G., Brech, A., Mehlum, A., and Stenmark, H., Hrs regulates multivesicular body formation via ESCRT recruitment to endosomes. The Journal of Cell Biology, 2003. 162(3): p. 435-442.
39. Wagner, K.-U., Krempler, A., Qi, Y., Park, K., Henry, M.D., Triplett, A.A., Riedlinger, G., Rucker III, E.B., and Hennighausen, L., Tsg101 Is Essential for Cell Growth, Proliferation, and Cell Survival of Embryonic and Adult Tissues. Mol. Cell. Biol., 2003. 23(1): p. 150-162.
40. Ruland, J., Sirard, C., Elia, A., MacPherson, D., Wakeham, A., Li, L., Luis de la Pompa, J., Cohen, S.N., and Mak, T.W., p53 Accumulation, defective cell proliferation, and early embryonic lethality in mice lacking tsg101. Proceedings of the National Academy of Sciences, 2001. 98(4): p. 1859-1864.
41. Li, L., Liao, J., Ruland, J., Mak, T.W., and Cohen, S.N., A TSG101/MDM2 regulatory loop modulates MDM2 degradation and MDM2/p53 feedback control. Proceedings of the National Academy of Sciences, 2001. 98(4): p. 1619-1624.
42. Cheng, T.-H. and Cohen, S.N., Human MDM2 Isoforms Translated Differentially on Constitutive versus p53-Regulated Transcripts Have Distinct Functions in the p53/MDM2 and TSG101/MDM2 Feedback Control Loops. Mol. Cell. Biol., 2007. 27(1): p. 111-119.
43. Oh, H., Mammucari, C., Nenci, A., Cabodi, S., Cohen, S.N., and Dotto, G.P., Negative regulation of cell growth and differentiation by TSG101 through association with p21Cip1/WAF1. Proceedings of the National Academy of Sciences, 2002. 99(8): p. 5430-5435.
44. You, H.-L., Eng, H.-L., Hsu, S.-F., Chen, C.-M., Ye, T.-C., Liao, W.-T., Huang, M.-Y., Baer, R., and Cheng, J.-T., A PKC-Sp1 signaling pathway induces early differentiation of human keratinocytes through upregulation of TSG101. Cell. Signal., 2007. 19(6): p. 1201-1211.
45. Maxfield, F.R. and McGraw, T.E., Endocytic recycling. Nat. Rev. Mol. Cell Biol., 2004. 5(2): p. 121-132.
46. Lin, S.X., Mallet, W.G., Huang, A.Y., and Maxfield, F.R., Endocytosed cation-independent mannose 6-phosphate receptor traffics via the endocytic recycling compartment en route to the trans-Golgi network and a sub-population of late endosomes. Mol. Biol. Cell, 2003.
47. Dunn, K.W., McGraw, T.E., and Maxfield, F.R., Iterative fractionation of recycling receptors from lysosomally destined ligands in an early sorting endosome. J. Cell Biol., 1989. 109: p. 3303-3314.
48. Mayor, S., Presley, J.F., and Maxfield, F.R., Sorting of membrane components from endosomes and subsequent recycling to the cell surface occurs by a bulk flow process. J. Cell Biol., 1993. 121: p. 1257-1269.
49. Mukherjee, S., Ghosh, R.N., and Maxfield, F.R., Endocytosis. Physiol. Rev., 1997. 77: p. 759-803.
50. Ishidoh, K. and Kominami, E., Processing and activation of lysosomal proteinases. Biol. Chem., 2002. 383(12): p. 1827-31.
51. Futter, C.E., Pearse, A., Hewlett, L.J., and Hopkins, C.R., Multivesicular endosomes containing internalized EGF-EGF receptor complexes mature and then fuse directly with lysosomes. The Journal of Cell Biology, 1996. 132(6): p. 1011-1023.
52. Hurley, J.H., ESCRT complexes and the biogenesis of multivesicular bodies. Curr. Opin. Cell Biol., 2008. 20(1): p. 4-11.
53. Raymond, C.K., Howald-Stevenson, I., Vater, C.A., and Stevens, T.H., Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E vps mutants. Mol. Biol. Cell, 1992. 3(12): p. 1389-402.
54. Nickerson, D.P., Russell, M.R.G., and Odorizzi, G., A concentric circle model of multivesicular body cargo sorting. EMBO Rep, 2007. 8(7): p. 644-650.
55. Teo, H., Gill, D.J., Sun, J., Perisic, O., Veprintsev, D.B., Vallis, Y., Emr, S.D., and Williams, R.L., ESCRT-I core and ESCRT-II GLUE domain structures reveal role for GLUE in linking to ESCRT-I and membranes. Cell, 2006. 125(1): p. 99-111.
56. Garrus, J.E., von Schwedler, U.K., Pornillos, O.W., Morham, S.G., Zavitz, K.H., Wang, H.E., Wettstein, D.A., Stray, K.M., Côté, M., Rich, R.L., Myszka, D.G., and Sundquist, W.I., Tsg101 and the Vacuolar Protein Sorting Pathway Are Essential for HIV-1 Budding. Cell, 2001. 107(1): p. 55-65.
57. Bouamr, F., Melillo, J.A., Wang, M.Q., Nagashima, K., de Los Santos, M., Rein, A., and Goff, S.P., PPPYEPTAP Motif Is the Late Domain of Human T-Cell Leukemia Virus Type 1 Gag and Mediates Its Functional Interaction with Cellular Proteins Nedd4 and Tsg101. J. Virol., 2003. 77(22): p. 11882-11895.
58. Timmins, J., Schoehn, G., Ricard-Blum, S., Scianimanico, S., Vernet, T., Ruigrok, R.W.H., and Weissenhorn, W., Ebola Virus Matrix Protein VP40 Interaction with Human Cellular Factors Tsg101 and Nedd4. J. Mol. Biol., 2003. 326(2): p. 493-502.
59. Freed, E.O., Viral Late Domains. J. Virol., 2002. 76(10): p. 4679-4687.
60. Carlson, L.-A. and Hurley, J.H., In vitro reconstitution of the ordered assembly of the endosomal sorting complex required for transport at membrane-bound HIV-1 Gag clusters. Proceedings of the National Academy of Sciences, 2012. 109(42): p. 16928-16933.
61. Demirov, D.G., Ono, A., Orenstein, J.M., and Freed, E.O., Overexpression of the N-terminal domain of TSG101 inhibits HIV-1 budding by blocking late domain function. Proceedings of the National Academy of Sciences, 2002. 99(2): p. 955-960.
62. Ilardi, J.M., Mochida, S., and Sheng, Z.H., Snapin: a SNARE-associated protein implicated in synaptic transmission. Nat. Neurosci., 1999. 2(2): p. 119-124.
63. Buxton, P., Zhang, X.M., Walsh, B., Sriratana, A., Schenberg, I., Manickam, E., and Rowe, T., Identification and characterization of Snapin as a ubiquitously expressed SNARE-binding protein that interacts with SNAP23 in non-neuronal cells. Biochem. J., 2003. 375: p. 433-440.
64. Gowthaman, R., Silvester, A.J., Saranya, K., Kanya, K.S., and Archana, N.R., Modeling of the potential coiled-coil structure of snapin protein and its interaction with SNARE complex. Bioinformation, 2006. 1(7): p. 269-75.
65. Sollner, T., Whiteheart, S.W., Brunner, M., Erdjument-Bromage, H., Geromanos, S., Tempst, P., and Rothman, J.E., SNAP receptors implicated in vesicle targeting and fusion. Nature, 1993. 362(6418): p. 318-324.
66. Jahn, R. and Südhof, T.C., MEMBRANE FUSION AND EXOCYTOSIS. Annu. Rev. Biochem., 1999. 68(1): p. 863-911.
67. Weber, T., Zemelman, B.V., McNew, J.A., Westermann, B., Gmachl, M., Parlati, F., Söllner, T.H., and Rothman, J.E., SNAREpins: Minimal Machinery for Membrane Fusion. Cell, 1998. 92(6): p. 759-772.
68. George J, A., How does calcium trigger neurotransmitter release? Curr. Opin. Neurobiol., 2001. 11(3): p. 320-326.
69. Wei, S., Xu, Y., Shi, H., Wong, S.-H., Han, W., Talbot, K., Hong, W., and Ong, W.-Y., EHD1 is a synaptic protein that modulates exocytosis through binding to snapin. Mol. Cell. Neurosci., 2010. 45(4): p. 418-429.
70. Tian, J.-H., Wu, Z.-X., Unzicker, M., Lu, L., Cai, Q., Li, C., Schirra, C., Matti, U., Stevens, D., Deng, C., Rettig, J., and Sheng, Z.-H., The Role of Snapin in Neurosecretion: Snapin Knock-Out Mice Exhibit Impaired Calcium-Dependent Exocytosis of Large Dense-Core Vesicles in Chromaffin Cells. J. Neurosci., 2005. 25(45): p. 10546-10555.
71. Schmidt, T., Schirra, C., Matti, U., Stevens, D.R., and Rettig, J., Snapin accelerates exocytosis at low intracellular calcium concentration in mouse chromaffin cells. Cell Calcium, 2013. 54(2): p. 105-110.
72. Pan, P.-Y., Tian, J.-H., and Sheng, Z.-H., Snapin Facilitates the Synchronization of Synaptic Vesicle Fusion. Neuron, 2009. 61(3): p. 412-424.
73. Chheda, M.G., Ashery, U., Thakur, P., Rettig, J., and Sheng, Z.H., Phosphorylation of Snapin by PKA modulates its interaction with the SNARE complex. Nat. Cell Biol., 2001. 3(4): p. 331-338.
74. Yun, H.J., Park, J., Ho, D.H., Kim, H., Kim, C.H., Oh, H., Ga, I., Seo, H., Chang, S., Son, I., and Seol, W., LRRK2 phosphorylates Snapin and inhibits interaction of Snapin with SNAP-25. Exp. Mol. Med., 2013. 45: p. e36.
75. Wolff, S., Stöter, M., Giamas, G., Piesche, M., Henne-Bruns, D., Banting, G., and Knippschild, U., Casein kinase 1 delta (CK1δ) interacts with the SNARE associated protein snapin. FEBS Lett., 2006. 580(27): p. 6477-6484.
76. Zhang, Q., Li, Y., Zhang, L., Yang, N., Meng, J., Zuo, P., Zhang, Y., Chen, J., Wang, L., Gao, X., and Zhu, D., E3 ubiquitin ligase RNF13 involves spatial learning and assembly of the SNARE complex. Cell. Mol. Life Sci., 2013. 70(1): p. 153-165.
77. Chen, M., Lucas, K.G., Akum, B.F., Balasingam, G., Stawicki, T.M., Provost, J.M., Riefler, G.M., Jörnsten, R.J., and Firestein, B.L., A Novel Role for Snapin in Dendrite Patterning: Interaction with Cypin. Mol. Biol. Cell, 2005. 16(11): p. 5103-5114.
78. Chou, J.-l., Huang, C.-L., Lai, H.-L., Hung, A.C., Chien, C.-L., Kao, Y.-Y., and Chern, Y., Regulation of Type VI Adenylyl Cyclase by Snapin, a SNAP25-binding Protein. J. Biol. Chem., 2004. 279(44): p. 46271-46279.
79. Wu, C.-S., Lin, J.-T., Chien, C.-L., Chang, W.-C., Lai, H.-L., Chang, C.-P., and Chern, Y., Type VI Adenylyl Cyclase Regulates Neurite Extension by Binding to Snapin and Snap25. Mol. Cell. Biol., 2011. 31(24): p. 4874-4886.
80. Talbot, K., Cho, D.-S., Ong, W.-Y., Benson, M.A., Han, L.-Y., Kazi, H.A., Kamins, J., Hahn, C.-G., Blake, D.J., and Arnold, S.E., Dysbindin-1 is a synaptic and microtubular protein that binds brain snapin. Hum. Mol. Genet., 2006. 15(20): p. 3041-3054.
81. Krapivinsky, G., Mochida, S., Krapivinsky, L., Cibulsky, S.M., and Clapham, David E., The TRPM7 Ion Channel Functions in Cholinergic Synaptic Vesicles and Affects Transmitter Release. Neuron, 2006. 52(3): p. 485-496.
82. Suzuki, F., Morishima, S., Tanaka, T., and Muramatsu, I., Snapin, a New Regulator of Receptor Signaling, Augments α1A-Adrenoceptor-operated Calcium Influx through TRPC6. J. Biol. Chem., 2007. 282(40): p. 29563-29573.
83. Morenilla-Palao, C., Planells-Cases, R., García-Sanz, N., and Ferrer-Montiel, A., Regulated Exocytosis Contributes to Protein Kinase C Potentiation of Vanilloid Receptor Activity. J. Biol. Chem., 2004. 279(24): p. 25665-25672.
84. Rüder, C., Reimer, T., Delgado-Martinez, I., Hermosilla, R., Engelsberg, A., Nehring, R., Dörken, B., and Rehm, A., EBAG9 Adds a New Layer of Control on Large Dense-Core Vesicle Exocytosis via Interaction with Snapin. Mol. Biol. Cell, 2005. 16(3): p. 1245-1257.
85. Hunt Ra Fau - Edris, W., Edris W Fau - Chanda, P.K., Chanda Pk Fau - Nieuwenhuijsen, B., Nieuwenhuijsen B Fau - Young, K.H., and KH, Y., Snapin interacts with the N-terminus of regulator of G protein signaling 7. Biochem. Biophys. Res. Commun., 2003. 303(2): p. 594-9.
86. Lu, L., Cai, Q., Tian, J.H., and Sheng, Z.H., Snapin associates with late endocytic compartments and interacts with late endosomal SNAREs. Biosci. Rep., 2009. 29(4): p. 261-9.
87. Cai, Q., Lu, L., Tian, J.-H., Zhu, Y.-B., Qiao, H., and Sheng, Z.-H., Snapin-Regulated Late Endosomal Transport Is Critical for Efficient Autophagy-Lysosomal Function in Neurons. Neuron, 2010. 68(1): p. 73-86.
88. Karki, S. and Holzbaur, E.L.F., Cytoplasmic dynein and dynactin in cell division and intracellular transport. Curr. Opin. Cell Biol., 1999. 11(1): p. 45-53.
89. Hirokawa, N., Noda, Y., and Okada, Y., Kinesin and dynein superfamily proteins in organelle transport and cell division. Curr. Opin. Cell Biol., 1998. 10(1): p. 60-73.
90. Kim, H.J., Zhong, Q., Sheng, Z.H., Yoshimori, T., Liang, C., and Jung, J.U., Beclin 1-interacting autophagy protein Atg14L targets SNARE-associated protein Snapin to coordinate endocytic trafficking. J. Cell Sci., 2012.
91. Zhou, B., Zhu, Y.B., Lin, L., Cai, Q., and Sheng, Z.H., Snapin deficiency is associated with developmental defects of the central nervous system. Biosci. Rep., 2011. 31(2): p. 151-8.
92. Dickman, D.K., Tong, A., and Davis, G.W., Snapin is Critical for Presynaptic Homeostatic Plasticity. The Journal of neuroscience : the official journal of the Society for Neuroscience, 2012. 32(25): p. 8716-24.
93. Zhou, B., Cai, Q., Xie, Y., and Sheng, Z.H., Snapin Recruits Dynein to BDNF-TrkB Signaling Endosomes for Retrograde Axonal Transport and Is Essential for Dendrite Growth of Cortical Neurons. Cell Rep, 2012. 2(1): p. 42-51.
94. Mistry, A.C., Mallick, R., Klein, J.D., Weimbs, T., Sands, J.M., and Fröhlich, O., Syntaxin specificity of aquaporins in the inner medullary collecting duct. American Journal of Physiology - Renal Physiology, 2009. 297(2): p. F292-F300.
95. Mistry, A.C., Mallick, R., Fröhlich, O., Klein, J.D., Rehm, A., Chen, G., and Sands, J.M., The UT-A1 Urea Transporter Interacts with Snapin, a SNARE-associated Protein. J. Biol. Chem., 2007. 282(41): p. 30097-30106.
96. Fukui, K., Yang, Q., Cao, Y., Takahashi, N., Hatakeyama, H., Wang, H., Wada, J., Zhang, Y., Marselli, L., Nammo, T., Yoneda, K., Onishi, M., Higashiyama, S., Matsuzawa, Y., Gonzalez, F.J., Weir, G.C., Kasai, H., Shimomura, I., Miyagawa, J.-i., Wollheim, C.B., and Yamagata, K., The HNF-1 target Collectrin controls insulin exocytosis by SNARE complex formation. Cell Metab., 2005. 2(6): p. 373-384.
97. Zissimopoulos, S., West, D.J., Williams, A.J., and Lai, F.A., Ryanodine receptor interaction with the SNARE-associated protein snapin. J. Cell Sci., 2006. 119(11): p. 2386-2397.
98. Starcevic, M. and Dell'Angelica, E.C., Identification of Snapin and Three Novel Proteins (BLOS1, BLOS2, and BLOS3/Reduced Pigmentation) as Subunits of Biogenesis of Lysosome-related Organelles Complex-1 (BLOC-1). J. Biol. Chem., 2004. 279(27): p. 28393-28401.
99. Bao, Y., Lopez, J.A., James, D.E., and Hunziker, W., Snapin Interacts with the Exo70 Subunit of the Exocyst and Modulates GLUT4 Trafficking. J. Biol. Chem., 2008. 283(1): p. 324-331.
100. Schaaf, C.P., Benzing, J., Schmitt, T., Erz, D.H.R., Tewes, M., Bartram, C.R., and Janssen, J.W.G., Novel interaction partners of the TPR/MET tyrosine kinase. FASEB J., 2004.
101. Yuan, X., Shan, Y., Zhao, Z., Chen, J., and Cong, Y., Interaction between Snapin and G-CSF receptor. Cytokine, 2006. 33(4): p. 219-225.
102. 楊博賀,以酵母雙雜交系統篩選TSG101交互作用蛋白,於生物科學系2005,國立中山大學。
103. Choudhury, A., Dominguez, M., Puri, V., Sharma, D.K., Narita, K., Wheatley, C.L., Marks, D.L., and Pagano, R.E., Rab proteins mediate Golgi transport of caveola-internalized glycosphingolipids and correct lipid trafficking in Niemann-Pick C cells. The Journal of Clinical Investigation, 2002. 109(12): p. 1541-1550.
104. Vonderheit, A. and Helenius, A., Rab7 Associates with Early Endosomes to Mediate Sorting and Transport of Semliki Forest Virus to Late Endosomes. PLoS Biol., 2005. 3(7): p. e233.
105. Sherer, N.M., Lehmann, M.J., Jimenez-Soto, L.F., Ingmundson, A., Horner, S.M., Cicchetti, G., Allen, P.G., Pypaert, M., Cunningham, J.M., and Mothes, W., Visualization of Retroviral Replication in Living Cells Reveals Budding into Multivesicular Bodies. Traffic, 2003. 4(11): p. 785-801.
106. 葉俊政,腫瘤易感基因TSG101對細胞自噬標誌蛋白MAP1LC3B的影響,於生物科學系2012,國立中山大學。
107. 葉宗陳,細胞內TSG101蛋白之定位分析,於生物科學系2003,國立中山大學。
108. Granata, A., Watson, R., Collinson, L.M., Schiavo, G., and Warner, T.T., The Dystonia-associated Protein TorsinA Modulates Synaptic Vesicle Recycling. J. Biol. Chem., 2008. 283(12): p. 7568-7579.
109. Cashman, N.R., Durham, H.D., Blusztajn, J.K., Oda, K., Tabira, T., Shaw, I.T., Dahrouge, S., and Antel, J.P., Neuroblastoma × spinal cord (NSC) hybrid cell lines resemble developing motor neurons. Dev. Dyn., 1992. 194(3): p. 209-221.
110. Bucci, C., Parton, R.G., Mather, I.H., Stunnenberg, H., Simons, K., Hoflack, B., and Zerial, M., The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. Cell, 1992. 70(5): p. 715-728.
111. Vitelli, R., Santillo, M., Lattero, D., Chiariello, M., Bifulco, M., Bruni, C.B., and Bucci, C., Role of the Small GTPase RAB7 in the Late Endocytic Pathway. J. Biol. Chem., 1997. 272(7): p. 4391-4397.
112. Cuervo, A.M. and Dice, J.F., A receptor for the selective uptake and degradation of proteins by lysosomes. Science (New York, N.Y.), 1996. 273(5274): p. 501-3.
113. Buchanan, J., Sun, Y.A., and Poo, M.M., Studies of nerve-muscle interactions in Xenopus cell culture: fine structure of early functional contacts. The Journal of neuroscience : the official journal of the Society for Neuroscience, 1989. 9(5): p. 1540-54.
114. Springer, M.L., Rando, T.A., and Blau, H.M., Gene Delivery to Muscle, in Current Protocols in Human Genetics. 2001, John Wiley & Sons, Inc.
115. Pryor, P.R., Mullock, B.M., Bright, N.A., Lindsay, M.R., Gray, S.R., Richardson, S.C., Stewart, A., James, D.E., Piper, R.C., and Luzio, J.P., Combinatorial SNARE complexes with VAMP7 or VAMP8 define different late endocytic fusion events. EMBO Rep., 2004. 5(6): p. 590-5.
116. Théry, C., Boussac, M., Véron, P., Ricciardi-Castagnoli, P., Raposo, G., Garin, J., and Amigorena, S., Proteomic Analysis of Dendritic Cell-Derived Exosomes: A Secreted Subcellular Compartment Distinct from Apoptotic Vesicles. The Journal of Immunology, 2001. 166(12): p. 7309-7318.
117. Vella, L.J., Greenwood, D.L., Cappai, R., Scheerlinck, J.P., and Hill, A.F., Enrichment of prion protein in exosomes derived from ovine cerebral spinal fluid. Vet. Immunol. Immunopathol., 2008. 124(3-4): p. 385-93.
118. Keller, S., Sanderson, M.P., Stoeck, A., and Altevogt, P., Exosomes: from biogenesis and secretion to biological function. Immunol. Lett., 2006. 107(2): p. 102-8.
119. Caby, M.-P., Lankar, D., Vincendeau-Scherrer, C., Raposo, G., and Bonnerot, C., Exosomal-like vesicles are present in human blood plasma. Int. Immunol., 2005. 17(7): p. 879-887.
120. Pisitkun, T., Shen, R.-F., and Knepper, M.A., Identification and proteomic profiling of exosomes in human urine. Proc. Natl. Acad. Sci. U. S. A., 2004. 101(36): p. 13368-13373.
121. Urbanelli, L., Magini, A., Buratta, S., Brozzi, A., Sagini, K., Polchi, A., Tancini, B., and Emiliani, C., Signaling Pathways in Exosomes Biogenesis, Secretion and Fate. Genes, 2013. 4(2): p. 152-170.
122. van der Pol, E., Böing, A.N., Harrison, P., Sturk, A., and Nieuwland, R., Classification, Functions, and Clinical Relevance of Extracellular Vesicles. Pharmacol. Rev., 2012. 64(3): p. 676-705.
123. Stoorvogel, W., Kleijmeer, M.J., Geuze, H.J., and Raposo, G., The biogenesis and functions of exosomes. Traffic (Copenhagen, Denmark), 2002. 3(5): p. 321-30.
124. Chow, I. and Poo, M.M., Release of acetylcholine from embryonic neurons upon contact with muscle cell. The Journal of neuroscience : the official journal of the Society for Neuroscience, 1985. 5(4): p. 1076-82.
125. Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., Kominami, E., Ohsumi, Y., and Yoshimori, T., LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. The EMBO journal, 2000. 19(21): p. 5720-8.
126. Tanida, I., Minematsu-Ikeguchi, N., Ueno, T., and Kominami, E., Lysosomal Turnover, but Not a Cellular Level, of Endogenous LC3 is a Marker for Autophagy. Autophagy, 2005. 1(2): p. 84-91.
127. Mason, J.M. and Arndt, K.M., Coiled coil domains: stability, specificity, and biological implications. Chembiochem : a European journal of chemical biology, 2004. 5(2): p. 170-6.
128. Huotari, J. and Helenius, A., Endosome maturation. EMBO J., 2011. 30(17): p. 3481-3500.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code