Responsive image
博碩士論文 etd-1028116-130419 詳細資訊
Title page for etd-1028116-130419
論文名稱
Title
高螢光亮度的半導體高分子奈米顆粒:(1)應用在潛伏指紋的顯影;(2)藉由層狀雙氫氧化物包覆改善奈米顆粒在高離子環境下的穩定度
Highly Fluorescent Semiconducting Polymer Dots:(1)Applicate in Imaging of Latent Fingerprints;(2) Survive in Surroundings of High Ionic Strength by Packing Layered Double Hydroxides
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
83
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-11-25
繳交日期
Date of Submission
2016-11-29
關鍵字
Keywords
半導體高分子奈米顆粒、潛伏指紋、寧海德林、孔洞材質、近紅外光、層狀雙氫氧化物、交換性、保護性、生物顯影
Semiconducting Polymer Dots, Latent fingerprint, Ninhydrin, Dual-readout, Porous, Layered Double Hydroxides, Exchangeable, Protective, Bioimaging
統計
Statistics
本論文已被瀏覽 5675 次,被下載 127
The thesis/dissertation has been browsed 5675 times, has been downloaded 127 times.
中文摘要
本實驗研究是使用半導體高分子奈米顆粒(Semiconducting Polymer Dots, Pdots)具有的優點:優良的光學性質、高能量傳遞以及對生物沒有毒害,來設計實驗並進行應用。我們利用半導體高分子奈米顆粒作為主體,應用在潛伏指紋的可視化,以及層狀雙氫氧化物的生物應用。

(一)利用發近紅外螢光的半導體高分子奈米顆粒對孔洞及非孔洞材質表面上的潛伏指紋進行顯色及螢光的雙成像
在犯罪現場中,由於證據可能在當下已遭到犯人的清除,因此警方在採集證據時會有些困難。然而手指分泌的脂肪、汗水及其他代謝物會在碰觸的物體表面上留下不易被肉眼發現的潛伏指紋,因此往往被嫌犯遺漏,所以藉由遺留的潛伏指紋可以進行身分的比對協助辦案。由於目前常用的採證的方法可能會受到背景的干擾及單一表面材質的影響,因此造成採證的不方便。
我們利用半導體高分子奈米顆粒摻雜入寧海德林(Ninhydrin),藉由半導體高分子奈米顆粒與潛伏指紋中的脂肪進行作用,與脂肪作用的地方螢光會從近紅外光區藍移到可見光區,降低背景的干擾;寧海德林與潛伏指紋中的氨基酸進行作用產生明顯的藍紫色指紋,因此使指紋同時具有顯色及螢光的效果,並且半導體高分子奈米顆粒在孔洞及非孔洞材質下都有良好的螢光顯現效果,減少採證上的不便性。

(二) 利用層狀雙氫氧化物包覆半導體高分子奈米顆粒使其在高離子強度環境保持優良的光學穩定度
由於半導體高分子奈米顆粒已經被發現具有高亮度的螢光,良好的光學穩定度以及表面易修飾等優點,因此目前已經廣泛的被開發應用在離子偵測、生物偵測以及生物顯影上。由於層狀雙氫氧化物具有酸性以及鹼性的特徵,並且對物質具有可交換性以及保護性等性質,因此也廣泛的被使用在醫藥以及功能性的高分子材料等應用上。所以利用層狀雙氫氧化物與半導體高分子奈米顆粒的優點結合在一起,讓半導體高分子奈米顆粒在高離子強度的環境下依然具有良好的光學性質,並且應用在生物顯影上。
Abstract
1.Dual Colorimetric and Fluorescent Imaging of Latent Fingerprints on Both Porous and Nonporous Surfaces with Near-Infrared Fluorescent Semiconducting Polymer Dots
Semiconducting polymer dots (Pdots) have recently been proven as a novel type of ultrabright fluorescent probes that can be extensively used in analytical detection. Here we developed a dual visual sensor based on Pdots for fingerprint imgaing. We first designed and synthesized two types of near-infrared fluorescent polymers and then embedded ninhydrin into the Pdots matrix. The resulting Pdots assays showed the colorimetric and fluorescent dual-readout abilities to detect latent fingerprints on both porous and nonporous surfaces. The developed fingerprints clearly revealed first-, second-, and third-level details with high contrast, high selectivity, and high efficiency. We also grafted the chemical groups on the nanoparticle surface to investigate the mechanisms involved in the fingerprint development processes. We further utilized this assay in note paper and check for latent fingerprint imaging. We believe that this dual-readout method based on Pdots will create a new avenue for research in fingerprint detection and anti-counterfeiting technology.

2.Highly Fluorescent Semiconducting Polymer Dots Survive in Surroundings of High Ionic Strength by Packing Layered Double Hydroxides
Semiconducting polymer dots (Pdots) recently have been known as a potential material in ion sensing, biosensing and bioimaging because of their extraordinary fluorescence brightness, good stability, facile surface functionalization, and low cytotoxicity. By using the exchangeable and protective properties of long-known Layered Double Hydroxides (LDH), here we report a new hybrid of LDH and Pdots which can successfully prevent Pdots from self-aggregation, and make it possible for Pdots to survive in surroundings of high ionic strength for a long time, and still to have bright fluorescence.
目次 Table of Contents
論文審定書…………………………………………………………………………….i
誌謝……………………………………………………………………………………ii
中文摘要……………………………………………………………………………...iii
英文摘要………………………………………………………………………………v
目錄…………………………………………………………………………………..vii
圖目錄……………….……………………………………………………………..…ix
表目錄……………………………………………………………………………….xiii
縮寫表…………………………………………………………………………….…xiii

第一章、 緒論………………………………………………………………..………..1
一、 前言……………………………………………………………………..………..1
二、 歷史發展…………………………………………………………..……………..2
三、 製備方式…………………………………………………………..……………13
四、 Pdots之應用………………………………………………………..………….14
4-1. Ion sensor ………………………………….…………..…………………....…14
4-2. Bioimaging ……..…………………………..………………………………..…15
4-3. Hydrogen generation……..…………………………..………………………...16
五、研究動機……..…………………………..…………………………………..…17

第二章、 利用發近紅外螢光的半導體高分子奈米顆粒對孔洞及非孔洞材質表面
上的潛伏指紋進行顯色及螢光的雙成像……..………………………..18
一、 前言……..…………………………..…………………………………………..18
二、 實驗部分……..…………………………..……………………………………..20
2-1.實驗藥品……..…………………………..………………………………………20
2-2.儀器裝置……..…………………………..………………………………………23
2-3.樣品配製方法……..…………………………..…………………………………26
2-4.實驗步驟……..…………………………..………………………………………27
三、實驗設計及原理……..…………………………..…………………………...…31
四、實驗結果與討論……..…………………………..………………………………36
4-1.選擇具有最佳螢光的半導體高分子奈米顆粒讓指紋可用肉眼辨識……..…36
4-2.利用高解析度的顯色及螢光來偵測潛伏指紋……..…………………………37
4-3.修飾上不同官能基的半導體高分子奈米顆粒對潛伏指紋顯影的影響……..41
4-4.以半導體高分子奈米顆粒為主體應用在潛伏指紋的顯現檢測…………..…43
五、結論……………………………………………………………………………..44

第三章、利用層狀雙氫氧化物包覆半導體高分子奈米顆粒使其在高離子強度環境
保持優良的光學穩度……………………………………………………....45
一、前言………………………………………………………………………………45
二、實驗部分…………………………………………………………………………46
2-1.實驗藥品…………………………………………………………………………46
2-2.儀器裝置…………………………………………………………………………47
2-3.樣品配製方法……………………………………………………………………48
2-4.實驗步驟………………………………………………………………………....50
三、實驗設計及原理…………………………………………………………………60
四、實驗結果與討論…………………………………………………………………60
4-1.細胞實驗………………………………………………………………………..60
4-2.斑馬魚實驗……………………………………………………………………..62

第四章、參考文獻……………………………………………………………………64

第五章、附錄…………………………………………………………………………67
參考文獻 References
[1]Clifford, J. N.; Martínez-Ferrero, E.; Viterisi, A.; Palomares, E. Chem. Soc. Rev. 2011, 40,1635– 1646.
[2]Feng, X.; Liu, L.; Wang, S.; Zhu, D. Chem. Soc. Rev. 2010, 39,2411.
[3]Wu, C.; Szymanski, C.; McNeill, J. Langmuir 2006, 22, 2956.
[4]Wu, C.; Bull, B.; Szymanski, C.; Christensen, K.; McNeill, J. ACS Nano 2008, 2, 2415.
[5]Wu, C.; Schneider, T.; Zeigler, M.; Yu, J.; Schiro, P. G.; Burnham, D. R.; McNeill, J. D.; Chiu, D. T. J. Am. Chem. Soc 2010, 132, 15410.
[6]Wu, C.; Hansen, S. J.; Hou, Q.; Yu, J.; Zeigler, M.; Jin, Y.; Burnham, D. R.; McNeill, J. D.; Olson, J. M.; Chiu, D. T. Angew. Chem., Int. Ed. 2011, 50, 3430.
[7]Wu, C.; Chiu, D. T. Angew. Chem., Int. Ed. 2013, 52, 3086.
[8]Zhu, C.; Liu, L.; Yang, Q.; Lv, F.; Wang, S. Chem. Rev. 2012, 112, 4687..
[9]Kuo, S.-Y.; Li, H.-H.; Wu, P.-J.; Chen, C.-P.; Huang, Y.-C.; Chan, Y.-H. Anal. Chem., 2015, 87, 4765-4771.
[10]Ding, D.; Liu, J.; Feng, G.; Li, K.; Hu, Y.; Liu, B. Small 2013, 9, 3093.
[11]Wang, Z.; Ricardo,F. T.; Zhang, Z.; Tian, L.; Chen, H.; Tian, H. Angew. Chem. Int. Ed. 2016, 55, 12306.
[12]Jelly, R.; Patton, E. L. T.; Lennard, C.; Lewis, S. W.; Lim, K. F. Anal. Chim. Acta. 2009, 652, 128.
[13]Sodhi, G. S.; Kaur, J. Forensic Sci. Int. 2001, 120, 172.
[14]Oden, S.; Von Hofsten, B. Nature 1954, 173, 449.
[15]Jasuja, O. P.; Kaur, A.; Kumar, P. Forensic Sci. Int. 2012, 223, E47.
[16]Fung, T. C.; Grimwood, K.; Shimmon, R.; Spindler, X.; Maynard, P.; Lennard, C.; Roux, C. Forensic Sci. Int. 2011, 212, 143.
[17]Frick, A. A.; Busetti, F.; Cross, A.; Lewis, S. W. Chem. Commun. 2014, 50, 3341.
[18]He, Y.; Xu, L.; Zhu, Y.; Wei, Q.; Zhang, M.; Su, B. Angew. Chem. Int. Ed. 2014, 53, 12609.
[19]Chen, H.; Chang, K.; Men, X.; Sun, K.; Fang, X.; Ma, C.; Zhao, Y.; Yin, S.; Qin, W.; Wu, C. ACS Appl. Mater. Interfaces 2015, 7, 14477.
[20]Lee, J.; Pyo, M.; Lee, S.-h.; Kim, J.; Ra, M.; Kim, W.-Y.; Park, B. J.; Lee, C. W.; Kim, J.-M. Nat. Commun. 2014, 5, 3736..
[21]Park, D.-H.; Park, B. J.; Kim, J.-M. Acc. Chem. Res. 2016.
[22]Kim, B. S.-I.; Jin, Y.-J.; Uddin, M. A.; Sakaguchi, T.; Woo, H. Y.; Kwak, G. Chem. Commun. 2015, 51, 13634.
[23]Wu, P.; Xu, C.; Hou, X.; Xu, J.-J.; Chen, H.-Y. Chem. Sci. 2015,6, 4445.
[24]Cai, K.; Yang, R.; Wang, Y.; Yu, X.; Liu, J. Forensic Sci. Int. 2013,226, 240.
[25]Bottrill, M.; Green, M. Chem. Commun. 2011, 47, 7039.
[26]Brunetti, V.; Chibli, H.; Fiammengo, R.; Galeone, A.; Malvindi,M. A.; Vecchio, G.; Cingolani, R.; Nadeau, J. L.; Pompa, P. P. Nanoscale 2013, 5, 307.
[27]Boyer, J.-C.; van Veggel, F. C. J. M. Nanoscale 2010, 2, 1417.
[28]Tian, Z.; Yu, J.; Wu, C.; Szymanski, C.; McNeill, J. Nanoscale, 2010, 2, 1999.
[29]Chen, C.-P.; Huang, Y.-C.; Liou, S.-Y.; Wu, P.-J.; Kuo, S.-Y.; Chan, Y.-H. ACS Appl. Mater. Interfaces 2014, 6, 21585.
[30]Sun, K.; Chen, H.; Wang, L.; Yin, S.; Wang, H.; Xu, G.; Chen, D.; Zhang, X.; Wu, C.; Qin, W. ACS Appl. Mater. Interfaces 2014, 6, 10802.
[31]Wu, P.-J.; Kuo, S.-Y.; Huang, Y.-C.; Chen, C.-P.; Chan, Y.-H. Anal. Chem. 2014, 86, 4831.
[32]Ye, F.; Wu, C.; Jin, Y.; Chan, Y.-H.; Zhang, X.; Chiu, D. T. J. Am. Chem. Soc. 2011, 133, 8146.
[33]Jelly, R., Patton, E. L., Lennard, C., Lewis, S. W., and Lim, K. F. Anal. Chim. Acta, 2009,652, 128– 142.
[34]Li, Y.; Xu, L.; Su, B. Chem. Commun. 2012, 48, 4109.
[35]Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 3rd Edition; Springer: New York, 2006.
[36]Zhang, D.; Liu, F.; Zhao, Q.; Lu, G.; Luo, N. IEEE Trans. Instrum. Meas. 2011, 60, 863.
[37]Zhang, X.; Yu, J.; Wu, C.; Jin, Y.; Rong, Y.; Ye, F.; Chiu, D. T. ACS Nano 2012, 6, 5429.
[38]He, J.; Wei, M.; Li, B.; Kang, Y.; Evans, D. G.; X., D. Struct. Bonding (Berlin) 2006, 119, 89.
[39]Zhao, M. Q.; Zhang, Q.; Huang, J. Q.; Wei, F. Adv. Funct. Mater. 2012, 22, 675.
[40]Liu, Z.; Ma, R.; Osada, M.; Iyi, N.; Ebina, Y.; Takada, K.; Sasaki, T. J. Am. Chem. Soc. 2006, 128, 4872.
[41]Li, L.; Gu, W.; Chen, J.; Chen, W.; Xu, Z. P. Biomaterials. 2014, 35, 3331.
[42]Liu, C.; Hou, W.; Li, L.; Li, Y.; Liu, S. J. Solid State Chem. 2008, 181, 1792.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code