Responsive image
博碩士論文 etd-1029116-151436 詳細資訊
Title page for etd-1029116-151436
論文名稱
Title
高雄地區室內環境中細懸浮微粒多環芳香烴特性與來源之探討
Characteristics and sources of PM2.5-Polycyclic Aromatic Hydrocarbons in Indoor Environment in Kaohsiung
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
87
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-10-24
繳交日期
Date of Submission
2016-11-29
關鍵字
Keywords
集群分析、主成分分析、室內外關係、室內空氣、多環芳香烴(PM2.5-PAHs)、細懸浮微粒(PM2.5)
PAHs, indoor air, indoor/outdoor correlation, HCA, PCA, PM2.5
統計
Statistics
本論文已被瀏覽 5684 次,被下載 36
The thesis/dissertation has been browsed 5684 times, has been downloaded 36 times.
中文摘要
本研究於2015年9月至2016年3月期間,分別於高雄市各地區設置12個室內採樣點,採集環境中細懸浮微粒(PM2.5)並分析其多環芳香烴化合物(polycyclic aromatic hydrocarbons, PAHs),並在南(S1)、北(N1)兩個主要採樣點同時進行室內環境與室外環境之樣品蒐集,採樣時間為每次72小時。研究結果顯示,所有室內環境PM2.5濃度介於11.0~66.6 μg/m3之間,且有隨季節變化而提高的趨勢,而PM2.5-PAHs除了12月N5樣品(4.13 ng/m3)濃度特別高之外,大部分採樣點之濃度在0.5~2.0 ng/m3之間,其成分組成以高分子量(5-6環)為主,低分子量(2-3環)次之。
南(S1)、北(N1)主要採樣點之PM2.5-PAHs和PM2.5的平均室內濃度除以室外濃度(I/O)值分別為1.26和0.93,S1的PM2.5-PAHs和PM2.5平均I/O值分別為1.06和0.83,表示室內環境受室外環境影響,因此濃度皆接近1。
以全方位空氣偵測器進行即時偵測和數位型空氣採樣器所測得的濃度進行相關性分析,有顯著正相關(R2=0.404)。根據偵測器所測得之室內外PM2.5濃度除了S1採樣點在12月有觀察到室內延遲受到室外環境影響的現象導致相關性較差,其他皆呈現顯著正相關。主成分分析(PCA)及集群分析(HCA)結果指出大部分樣品皆有汽、柴油交通排放來源,但在N1採樣點的12月及3月樣品、S1採樣點之12月樣品相對有較強的燃煤、天然氣燃燒訊號。
Abstract
In this study, indoor fine particle matters (PM2.5) samples were collected and analyzed for polycyclic aromatic hydrocarbons (PAHs) at twelve sampling sites in Kaohsiung from September of 2015 to March of 2016. Two of the sampling sites, N1 and S1 were selected as the main sampling sites in which both indoor and outdoor PM2.5 samples were collected for 72 hours simultaneously. The indoor PM 2.5 concentrations, ranging from 11.0 to 66.6 μg/m3, exhibited an increasing trend in the study period. Meanwhile, most of the PM2.5-PAHs concentrations, except for one higher concentration (4.13 ng/m3) of sample N5 in December, were found in the range of 0.5 – 2.0 ng/m3. The indoor PAHs in composition were dominated mainly by the high-molecular-weight (5-6 ring), followed by low-molecular-weight (2-3 ring) compounds.
The average of the indoor/outdoor (I/O) ratios of PM2.5-PAHs (PM2.5) at sites N1 and S1 were 1.26 (0.93) and 1.06 (0.83), respectively. It indicates that the indoor environment was affected by the outdoor as most of the ratios were close to one.
Results from the real-time instrument, Air Mentor Pro (AMP), were significantly correlated with those measured using Airchek XR5000 sampling(R2=0.404). The indoor and outdoor PM2.5 concentrations recorded by AMP were significantly correlated, except for the case of December at site S1. In December, the phenomenon of time lag was observed at S1 in its time series of indoor PM2.5 with respect to the outdoor environment. The results of PCA and HCA indicate that most of the samples were associated with gasoline and diesel burning; while the relatively strong influence of coal burning was noted in the samples of N1 in March and December as well as S1 in December.
目次 Table of Contents
第一章 前言 1
1-1 研究動機 1
1-2 研究目的 1
第二章 文獻回顧 2
2-1 大氣中細懸浮微粒介紹 2
2-1-1 大氣中細懸浮微粒定義及來源 2
2-1-2 國內外細懸浮微粒污染現況 2
2-1-3 細懸浮微粒對健康之影響 2
2-2 多環芳香烴介紹 3
2-2-1 多環芳香烴之特性 3
2-2-2 多環芳香烴在環境中之來源 6
2-2-3 室內環境與室外環境 PM2.5-PAHs 相關研究 7
第三章 研究方法 8
3-1 研究流程 8
3-2 實驗材料與儀器設備 9
3-2-1 試劑與標準品 9
3-2-2 器具與試藥前處理 9
3-2-3 分析儀器與設備 10
3-3 樣品蒐集與方法 12
3-3-1 採樣時間與地點 12
3-3-2 採樣方法 14
3-4 樣品分析 14
3-5 品保與品管 (QA/QC) 16
3-5-1 空白試驗 16
3-5-2 方法偵測極限(Method detection limit, MDL) 16
3-5-3 擬似標準品回收率 16
3-6 主成分分析應用 18
3-7 階層群集分析應用 18
第四章 結果與討論 19
4-1 室內環境中之懸浮微粒 19
4-1-1 室內PM2.5濃度變化 19
4-1-2 室內PM2.5之研究比較 22
4-2 室內環境中之多環芳香烴 25
4-2-1 室內環境PM2.5-PAHs濃度分布 25
4-2-2 PM2.5-PAHs成分組成 27
4-3 室內與室外之關係 29
4-3-1 室內環境與室外環境之PM2.5濃度比較 29
4-3-2 室內環境和室外環境之PM2.5-PAHs濃度比較 35
4-3-3 I/O比值與室內外環境PM2.5及PM2.5-PAHs濃度相關性 37
4-4 PM2.5-PAHs來源分析 41
4-4-1 主成分分析(Principal Components Analysis, PCA) 41
4-4-2 集群分析(Hierarchical Cluster Analysis, HCA) 47
第五章 結論與建議 55
5-1 結論 55
5-2 建議 56
參考文獻 57
附錄 65
參考文獻 References
Ashmore MR, Byrne MA, Kinnersley RP, Dimitroulopoulou C. 2001. Modelling of indoor exposure to nitrogen dioxide in the UK. Atmospheric Environment 35: 269-279.
Bolte G, Heitmann D, Kiranoglu M, Schierl R, Diemer J, Koerner W, Fromme H. 2008. Exposure to environmental tobacco smoke in German restaurants, pubs and discotheques. Journal of Exposure Science and Environmental Epidemiology 18: 262-271.
Chen J, Wang S, Hsieh D, Yang H, Lee H. 2012. Carcinogenic potencies of polycyclic aromatic hydrocarbons for back-door neighbors of restaurants with cooking emissions. Science of the Total Environment 417-418: 68-75.
Chen Y, Chiang H, Hsu C, Yang T, Lin T, Chen M, Chen N, Wu Y. 2016. Ambient PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in Changhua County, central Taiwan: Seasonal variation, source apportionment and cancer risk assessment. Environmental Pollution 218: 372-382.
Dallarosa JB, Teixeira EC, Pires M, Fachel J. 2005. Study of the profile of polycyclic aromatic hydrocarbons in atmospheric particles (PM10) using multivariate methods. Atmospheric Environment 39: 6587-6596.
Dan M, Zhuang G, Li X, Tao H, Zhuang Y. 2004. The characteristics of carbonaceous species and their sources in PM2.5 in Beijing. Atmospheric Environment 38: 3443-3452.
Delgado-Saborit JM, Stark C, Harrison RM. 2011. Carcinogenic potential, levels and sources of polycyclic aromatic hydrocarbon mixtures in indoor and outdoor environments and their implications for air quality standards. Environment International 37: 383-392.
Dong TT, Lee BK. 2009. Characteristics, toxicity, and source apportionment of polycylic aromatic hydrocarbons (PAHs) in road dust of Ulsan, Korea. Chemosphere 74: 1245-1253.
Dudhagara DR, Rajpara RK, Bhatt JK, Gosai HB, Sachaniya BK, Dave BP. 2016. Distribution, sources and ecological risk assessment of PAHs in historically contaminated surface sediments at Bhavnagar coast, Gujarat, India. Environmental Pollution 213: 338-346.
Endo O, Koyano M, Mineki S, Goto S, Tanabe K, Yajima H, Ishii T, Matsushita H. 2000. Estimation of indoor air PAH concentration increases by cigarette, incense-stick, and mosquito-repellent-incense smoke. Polycyclic Aromatic Compounds 21: 261-272.
Ezzati M, Kammen DM. 2001. Indoor air pollution from biomass combustion and acute respiratory infections in Kenya: an exposure-response study. The Lancet 358: 619-624.
Feng S, Gao D, Liao F, Zhou F, Wang X. 2016. The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicology and Environmental Safety 128: 67-74.
Ferro A, Kopperud R, Hildemann L. 2004. Source strengths for indoor human activities that resuspend particulate matter. Environmental Science & Technology 38: 1759-1764.
Goodman P, Agnew M, McCaffrey M, Paul G, Clancy L. 2007. Effects of the Irish smoking ban on respiratory health of bar workers and air quality in Dublin pubs. American Journal of Respiratory and Critical Care Medicine 175: 840-845.
Han Y, et al. 2015. Influences of ambient air PM2.5 concentration and meteorological condition on the indoor PM2.5 concentrations in a residential apartment in Beijing using a new approach. Environmental Pollution 205: 307-314.
Harrison RM, Smith DJT, Luhana L. 1996. Source Apportionment of Atmospheric Polycyclic Aromatic Hydrocarbons Collected from an Urban Location in Birmingham, U.K. Environmental Science & Technology 30: 825-832.
He J, Fan S, Meng Q, Sun Y, Zhang J, Zu F. 2014. Polycyclic aromatic hydrocarbons (PAHs) associated with fine particulate matters in Nanjing, China: Distributions, sources and meteorological influences. Atmospheric Environment 89: 207-215.
Huang H, Lee SC, Cao JJ, Zou CW, Chen XG, Fan SJ. 2007. Characteristics of indoor/outdoor PM2.5 and elemental components in generic urban, roadside and industrial plant areas of Guangzhou City, China. Journal of Environmental Sciences 19: 35-43.
Hussain K, Rahman M, Prakash A, Hoque RR. 2015. Street dust bound PAHs, carbon and heavy metals in Guwahati city – Seasonality, toxicity and sources. Sustainable Cities and Society 19: 17-25.
Ji W, Zhao B. 2015. Contribution of outdoor-originating particles, indoor-emitted particles and indoor secondary organic aerosol (SOA) to residential indoor PM2.5 concentration: A model-based estimation. Building and Environment 90: 196-205.
Kameda Y, Shirai J, Komai T, Nakanishi J, Masunaga S. 2005. Atmospheric polycyclic aromatic hydrocarbons: size distribution, estimation of their risk and their depositions to the human respiratory tract. Science of the Total Environment 340: 71-80.
Keller CD, Bidleman TF. 1984. Collection of airborne polycyclic aromatic hydrocarbons and other organics with a glass fiber filter-polyurethane foam system. Atmospheric Environment 18: 837-845.
Kennedy IM. 2007. The health effects of combustion-generated aerosols. Proceedings of the Combustion Institute 31: 2757-2770.
Kirso U, Lintelmann J, Teinemaa E, Irha N, Panova E, Joa K. 2009. Determination of polycyclic aromatic hydrocarbons (PAHs) in oil Shale processing wastes : current practice and new trends. Oil Shale 26: 59.
Kwon SB, Jeong W, Park D, Kim KT, Cho KH. 2015. A multivariate study for characterizing particulate matter (PM(10), PM(2.5), and PM(1)) in Seoul metropolitan subway stations, Korea. Journal of Hazardous Materials 297: 295-303.
Larsen R, Baker J. 2003. Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: A comparison of three methods. Environmental Science & Technology 37: 1873-1881.
Li C, Fu J, Sheng G, Bi X, Hao Y, Wang X, Mai B. 2005. Vertical distribution of PAHs in the indoor and outdoor PM2.5 in Guangzhou, China. Building and Environment 40: 329-341.
Lin TC, Chang FH, Hsieh JH, Chao HR, Chao MR. 2002. Characteristics of polycyclic aromatic hydrocarbons and total suspended particulate in indoor and outdoor atmosphere of a Taiwanese temple. Journal of Hazardous Materials A95: 1-12.
Liu G, Li J, Wu D, Xu H. 2015. Chemical composition and source apportionment of the ambient PM2.5 in Hangzhou, China. Particuology 18: 135-143.
MacNeill M, Wallace L, Kearney J, Allen RW, Van Ryswyk K, Judek S, Xu X, Wheeler A. 2012. Factors influencing variability in the infiltration of PM2.5 mass and its components. Atmospheric Environment 61: 518-532.
Masih J, Masih A, Kulshrestha A, Singhvi R, Taneja A. 2010. Characteristics of polycyclic aromatic hydrocarbons in indoor and outdoor atmosphere in the North central part of India. Journal of Hazardous Materials 177: 190-198.
Massey D, Masih J, Kulshrestha A, Habil M, Taneja A. 2009. Indoor/outdoor relationship of fine particles less than 2.5 μm (PM2.5) in residential homes locations in central Indian region. Building and Environment 44: 2037-2045.
Meng QY, et al. 2005. Influence of ambient (outdoor) sources on residential indoor and personal PM2.5 concentrations: analyses of RIOPA data. Journal of Exposure Science and Environmental Epidemiology 15: 17-28.
Mohammed MO, et al. 2016. Distribution patterns, infiltration and health risk assessment of PM2.5-bound PAHs in indoor and outdoor air in cold zone. Chemosphere 155: 70-85.
Morawska L, He C, Hitchins J, Mengersen K, Gilbert D. 2003. Characteristics of particle number and mass concentrations in residential houses in Brisbane, Australia. Atmospheric Environment 37: 4195-4203.
Nandasena S, Wickremasinghe AR, Lee K, Sathiakumar N. 2012. Indoor fine particle (PM2.5) pollution exposure due to secondhand smoke in selected public places of Sri Lanka. American Journal of Industrial Medicine 55: 1129-1136.
Nasir ZA, Colbeck I. 2013. Particulate pollution in different housing types in a UK suburban location. Science of the Total Environment 445-446: 165-176.
Ohura T, Amagai T, Sugiyama T, Fusaya M, Matsushita H. 2004. Characteristics of particle matter and associated polycyclic aromatic hydrocarbons in indoor and outdoor air in two cities in Shizuoka, Japan. Atmospheric Environment 38: 2045-2054.
Oliveira RL, Varandas L, Arbilla G. 2014. Characterization of polycyclic aromatic hydrocarbon levels in the vicinity of a petrochemical complex located in a densely populated area of the Rio de Janeiro, Brazil. Atmospheric Pollution Research 5: 87-95.
Sajani Z, Ricciardelli I, Trentini A, Bacco D, Maccone C, Castellazzi S, Lauriola P, Poluzzi V, Harrison RM. 2015. Spatial and indoor/outdoor gradients in urban concentrations of ultrafine particles and PM2.5 mass and chemical components. Atmospheric Environment 103: 307-320.
Sangiorgi G, Ferrero L, Ferrini BS, Lo Porto C, Perrone MG, Zangrando R, Gambaro A, Lazzati Z, Bolzacchini E. 2013. Indoor airborne particle sources and semi-volatile partitioning effect of outdoor fine PM in offices. Atmospheric Environment 65: 205-214.
Schauer JJ, Rogge WF, Hildemann LM, Mazurek MA, Cass GR, Simoneit BRT. 1996. Source apportionment of airborne particulate matter using organic compounds as tracers. Atmospheric Environment 30: 3837-3855.
Sidra S, Ali Z, Ahmad Nasir Z, Colbeck I. 2015. Seasonal variation of fine particulate matter in residential micro–environments of Lahore, Pakistan. Atmospheric Pollution Research 6: 797-804.
Sklorz M, Schnelle-Kreis J, Liu Y, Orasche J, Zimmermann R. 2007. Daytime resolved analysis of polycyclic aromatic hydrocarbons in urban aerosol samples - impact of sources and meteorological conditions. Chemosphere 67: 934-943.
Wang W, Huang M, Chan C, Cheung K, Wong M. 2013. Risk assessment of non-dietary exposure to polycyclic aromatic hydrocarbons (PAHs) via house PM2.5, TSP and dust and the implications from human hair. Atmospheric Environment 73: 204-213.
Wang W, Huang M, Kang Y, Wang H, AOLeung, Cheung K, Wong M. 2011. Polycyclic aromatic hydrocarbons (PAHs) in urban surface dust of Guangzhou, China: Status, sources and human health risk assessment. Science of the Total Environment 409: 4519-4527.
Wang X, Bi X, Sheng G, Fu J. 2006. Hospital indoor PM10/PM2.5 and associated trace elements in Guangzhou, China. Science of the Total Environment 366: 124-135.
Xu H, et al. 2016. Microscale spatial distribution and health assessment of PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) at nine communities in Xi'an, China. Environmental Pollution 218: 1065-1073.
Zhang J, Chen J, Yang L, Sui X, Yao L, Zheng L, Wen L, Xu C, Wang W. 2014. Indoor PM2.5 and its chemical composition during a heavy haze–fog episode at Jinan, China. Atmospheric Environment 99: 641-649.
Zhao L, Chen C, Wang P, Chen Z, Cao S, Wang Q, Xie G, Wan Y, Wang Y, Lu B. 2015. Influence of atmospheric fine particulate matter (PM2.5) pollution on indoor environment during winter in Beijing. Building and Environment 87: 283-291.
Zhu L, Wang J. 2003. Sources and patterns of polycyclic aromatic hydrocarbons pollution in kitchen air, China. Chemosphere 50: 611-618.
Zhu Y, et al. 2015. Indoor/outdoor relationships and diurnal/nocturnal variations in water-soluble ion and PAH concentrations in the atmospheric PM2.5 of a business office area in Jinan, a heavily polluted city in China. Atmospheric Research 153: 276-285.
石珮琦. 2015. 高雄地區大氣顆粒態多環芳香烴-污染來源及濃度影響因子. 碩士論文. 國立中山大學.
交通部統計處. 2014. 全國機動車輛統計 in 交通部, ed.
江涵. 2014. 高雄地區大氣懸浮微粒上多環芳香烴濃度之時空變化. 碩士論文. 國立中山大學.
馬瑩齡. 2006. 環境中多環芳香烴含量之分析:1.柴油引擎排氣粒狀物樣品多環芳香烴含量之分析2.微波輔助頂空液相微萃取分析水樣品中多環芳香烴含量. 碩士論文. 國立高雄師範大學.
張文馨. 2008. 北投焚化爐附近社區空氣中PM2.5、PM10及PAHs濃度研究. 碩士論文. 國立陽明大學.
潘侑興. 2016. 高雄都會區大氣細懸浮微粒上多環芳香烴的調查研究. 碩士論文. 國立中山大學.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code