Responsive image
博碩士論文 etd-1102113-111338 詳細資訊
Title page for etd-1102113-111338
論文名稱
Title
一種新穎之適應性FDTD法應用於分析覆蓋塗層之3D曲面金屬物體
A Novel Adaptive FDTD Method for Analyzing Three-Dimensional Curved Conducting Objects with the Coating
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
86
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-11-27
繳交日期
Date of Submission
2013-12-02
關鍵字
Keywords
雷達散射截面、CFL穩定準則、曲面金屬結構、適應性調整的時間步階、順形時域有限差分法
Adaptively adjusted time-step, CFDTD method, CFL stability criterion, Curved conducting geometry, RCS
統計
Statistics
本論文已被瀏覽 5766 次,被下載 374
The thesis/dissertation has been browsed 5766 times, has been downloaded 374 times.
中文摘要
由於存在被曲面金屬結構截短的細小網格,CFDTD法主要的缺點在於必須全面性降低時間步階用來確保數值穩定。在本論文中,等效介質常數的概念用來取代積分形式的法拉第定律並分析覆蓋塗層的曲面結構,因此,根據相同的CFL穩定準則之推導過程,我們能夠從理論上推導每一個不規則網格的穩定條件,所以可以適應性選擇每一個細小網格的時間步階尺寸,本論文提出適應性調整時間步階的機制並驗證數值方法的穩定性。透過計算不同散射體的雷達散射截面,我們方法和其他已建立的方法比較方法的準確性和計算效率。
Abstract
The chief shortcoming of the conventional conformal finite-difference time-domain (CFDTD) method is a global time step reduction to ensure stability, due to the small irregular cells truncated by the curved conducting geometry. In this dissertation, we employ the concept of the equivalent material constants into the integral form of Faraday’s law to analyze the curved configuration with the coating. Hence, we can theoretically derive the stability criterion of each irregular cell based on the same procedure for the Courant-Friedrichs-Lewy (CFL) stability criterion. Therefore, the local time step size of each small irregular cell can be chosen adaptively. An adaptively adjusted time-stepping procedure is presented and is theoretically proven to ensure numerical stability. The radar cross section (RCS) results of various curved conducting objects with the coating are computed. Comparisons of accuracy and efficiency of our method with other established methods are performed.
目次 Table of Contents
Contents

Acknowledgment i
Abstract iii
Contents v
List of Figures vii
List of Tables ix


1. Introduction 1
1.1 Development of the Finite-Difference Time-Domain method 1
1.2 Development of the Conformal Finite-Difference Time-Domain method 2
1.3 A Novel FDTD Time-Stepping Scheme for Analyzing the Curved Objects 6
1.4 Overview of Dissertation 7
2. Finite-Difference Time-Domain Method 9
2.1 FDTD Algorithm 9
2.2 Stability Condition 13
2.3 Anisotropic Perfectly Matched Layer 14
3. A Novel FDTD Time-Stepping Scheme for Modeling the Thinly Coated Curved Conducting Objects 17
3.1 A Novel FDTD Formulations for Modeling the Curved Conducting Object 19
3.2 Effective Parameters for the Thinly Coated Curved Conductor 22
3.2.1 The Concept of Effective Parameters with the Coating 22
3.2.2 Possible Intersections of an FDTD cell Truncated by the Curved Objects 25
3.3 An Adaptively Adjusted Time-Stepping Procedure 27
4. Radar Cross Section Calculations in FDTD Simulations Using Kirchhoff Surface Integral Representation 34
4.1 Introduction 34
4.2 Radar Cross Section Calculations in FDTD Simulation 35
4.3 Far-Field Calculation Using Kirchhoff Surface Integral Representation 37
4.3.1 Kirchhoff Surface Integral Representation 37
4.3.2 Discretization of KSIR 38
4.3.3 Modification of KSIR’s Integral Area 40
5. FDTD Analyses of Curved Conducting objects by Our Proposed Method 42
5.1 A Spherical Cavity Model 42
5.1.1 Analytical Solution of the Spherical Cavity 42
5.1.2 Numerical Analysis of a Spherical Cavity 44
5.2 A Conducting Sphere Model with the Coating 49
5.2.1 Mie Series Solution 49
5.2.2 Numerical Analysis of a Conducting Sphere with the Coating 51
5.3 A Simplified Missile Model 57
6. Conclusions 61
Bibliography 63
Appendix 68
Vita 73
Publication List 73
參考文獻 References
Bibliography

[1] K. S. Yee,“Numerical solution of initial boundary value problems involving Maxwell’s equation in isotropic media,” IEEE Trans. Antennas Propagat., vol. 14, no. 3, May 1966.
[2] R. Holland, “Pitfalls of staircased meshing,” IEEE Trans. Electromagn. Compat., vol. 35, pp. 434–439, Nov. 1993.
[3] A. C. Cangellaris and D. B. Wright, “Numerical error caused by stairstepped approximation,” IEEE Trans. Antennas Propagat., vol. 39, pp. 1518–1525, Oct. 1991.
[4] A. Akyurtlu, D. H. Werner, V. Veremey, D. J. Steich, and K. Aydin, “Staircasing errors in FDTD at an air-dielectric interface,” IEEE Microw. Guided Wave Lett., vol. 9, no. 11, pp. 444–446, Nov. 1999.
[5] K. H. Dridi, J. S. Hesthaven, and A. Ditkowski, “Staircase free finite-difference time-domain formulation for general materials in complex geometries,” IEEE Trans. Antennas Propagat., vol. 49, no. 5, pp. 749–756, May 2001.
[6] K. S. Kunz and L. Simpson, “A technique for increasing the resolution of finite-difference solution of the Maxwell equation,” IEEE Trans. Elect. Compat., vol. 23, pp. 419–422, 1981.
[7] I. S. Kim and W. J. R. Hoefer, “A local mesh refinement algorithm for the time-domain finite-difference method using Maxwell’s curl equations,” IEEE Trans. Microw. Theory Tech., vol. 38, no. 6, pp. 812–815, June 1990.
[8] S. S. Zivanovic, K. S. Yee, and K. K. Mei, “A subgridding method for the time-domain finite difference method to solve Maxwell’s equations,” IEEE Trans. Microw. Theory Tech., vol. 39, pp. 471–479, 1991.
[9] D. T. Prescott and N. V. Schuley, “A method for incorporating different sized cells into the finite-difference time-domain analysis technique,” IEEE Microw. Guided Wave Lett., vol. 2, no. 11, pp. 434–436, 1992.
[10] M. W. Chevalier, R. J. Luebbers, and V. P. Cable, “FDTD local grid with materials transverse,” IEEE Trans. Antennas Propag., vol. 45, pp. 411–421, 1997.
[11] P. Thoma and T. Weiland, “A consistent subgridding scheme for the finite difference time domain method,” Int. J. Numer. Modeling: Electron. Networks, Devices Fields, vol. 9, pp. 359–374, 1996.
[12] O. Podebrad, M. Clemens, and T. Weiland, “New flexible subgridding scheme for the Finite Integration Technique,” IEEE Trans. Magn., vol. 39, pp. 1662–1665, 2003.
[13] T. G. Jurgens, A. Taflove, K. Umashankar, and T. G. Moore, “Finite-difference time-domain modeling of curved surfaces,” IEEE Trans. Antenna Propagat., vol. 40, no. 4, pp. 357-366, Apr. 1992.
[14] T. G. Jurgens and A. Taflove, “Three-dimensional contour FDTD modeling of scattering from sigle and multiple bodies,” IEEE Trans. Antenna Propagat., vol. 41, no. 12, pp. 1703-1708, Dec. 1993.
[15] C. J. Railton, I. J. Craddock, and J. B. Schneider, “Improved locally distorted CPFDTD algorithm with provable stability,” Electron. Lett., vol. 31, no. 18, pp. 1585-1586, Aug. 1995.
[16] C.J. Railton and I.J. Craddock, “Analysis of general 3-D PEC structures using improved CPFDTD algorithm,” Electron. Lett., vol. 31, no. 20, pp. 1753-1754, Sep. 1995.
[17] C. J. Railton and I. J. Craddock, “A modified CPFDTD algorithm for the analysis of arbitrary 3D PEC structures,” in Proc. Inst. Elect. Eng., vol. 143, pp. 367-372, Oct. 1996.
[18] S. Dey and R. Mittra, “A locally conformal finite-defference time-domain (FDTD) algorithm for modeling three-dimensional perfectly conducting objects,” IEEE Microw. Guided Wave Lett., vol. 7, no. 9, pp. 273-275, Sep. 1997.
[19] I. A. Zagorodnovn, R. Schuhmann, and T. Weiland, “A uniformly stable conformal FDTD-method in Cartesian grids,” Int. J. Numer. Model., vol. 16, pp. 127-141, 2003.
[20] T. Xiao and Q. H. Liu, “Enlarged cells for the conformal FDTD method to avoid the time step reduction,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 12, pp. 551-553, Dec. 2004.
[21] T. Xiao and Q. H. Liu, “A 3-D enlarged cell technique (ECT) for the conformal FDTD method,” IEEE Trans. Antennas Propag., vol. 56, no. 3, pp. 765-773, Mar. 2008.
[22] S. Benkler, N. Chavannes, and N. Kuster, “A new 3-D conformal PEC FDTD scheme with user-defined geometric precision and derived stability criterion,” IEEE Trans. Antennas Propagat., vol. 54, no. 6, pp. 1843-1849, Jun. 2006.
[23] B. A. Al-Zohouri and M. F. Hadi, “Conformal modeling of perfect conductors in the high-order M24 finite-difference time-domain algorithm,” IET Microw. Antennas Propagat., vol. 5, no. 5, pp. 583-587, 2011.
[24] J. Wang and W. Y. Yin, “Development of a novel FDTD (2, 4)-compatible conformal scheme for electromagnetic computations of complex curved PEC objects,” IEEE Trans. Antennas Propagat., vol. 61, no. 1, pp. 299-309, 2013.
[25] C-M. Kuo and C-W. Kuo, “A new scheme for the conformal FDTD method to calculate the radar cross section of perfect conducting curved objects,” IEEE Antennas Wireless Propagat. Lett., vol. 9, pp.16-19, 2010.
[26] Chih-Ming Kuo and Chih-Wen Kuo, "A novel FDTD time-stepping scheme to calculate RCS of curved conducting Objects using adaptively adjusted time steps," IEEE Trans. on Antennas Propagat., vol. 61, no. 10, pp. 5127–5134, Oct. 2013.
[27] A. C. Cangellaris and R. Lee, "On the accuracy of numerical wave simulations on finite methods," J. Electromagn. Wave Applicat., vol. 6, no. 12, pp. 1635–1653, 1992.
[28] J. B. Schneider, "Faster-than-light propagation," IEEE Microw. and Guided Wave Lett., vol. 9, no. 2, pp. 54–56, 1999.
[29] A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed: Artech House 2000.
[30] K. L. Shlager, J. G. Maloney, S. L. Pay, and A. F. Peterson, "Relative accuracy of several finite-difference time-domain methods in two and three dimensions," IEEE Trans. on Antenna Propagat., vol. 41, pp. 1732–1737, Dec. 1993.
[31] K. L. Shlager and J. B. Schneider, "Relative accuracy of several finite-difference time-domain schemes," in IEEE AP-S/URSI Int. Symp. Dig., pp. 168–171, 1999.
[32] J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Computat. Phy., vol. 114, pp. 185–200, 1994.
[33] Z. S. Sacks, D. M. Kingsland, R. Lee, and J. F. Lee, "A perfectly matched anisotropic absorber for use as an absorbing boundary condition," IEEE Trans. on Antenna Propagat., vol. 43, pp. 1460–1463, Dec. 1995.
[34] D. M. Kingsland, R. Dycziz-Edlinger, J. F. Lee, and R. Lee, "Performance characterization of a perfectly matched anisotropic absorber for frequency domain FEM applications," URSI Symp. Dig., Newport Beach, CA, p. 339, June 1995.
[35] S. D. Gedney, "An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices," IEEE Trans. on Antenna Propagat., vol. 44, no. 12, pp. 1630–1639, Dec. 1996.
[36] M. Celuch-Marcysiak and W. K. Gwarek, "Higher order modeling of media surfaces for enhanced FDTD analysis of microwave circuits," Proc. 24th European Microwave Conf., Cannes, France, vol. 2, pp. 1530–1535, 1994.
[37] N. Kaneda, B. Houshmand, and T. Itoh, "FDTD analysis of dielectric resonators with curved surfaces," IEEE Trans. on Microwave Theory Tech.., vol. 45, no. 9, pp. 1645–1649, Sep. 1997.
[38] S. Dey and R. Mittra, "A conformal finite-difference time-domain technique for modeling cylindrical dielectric resonators," IEEE Trans. on Microwave Theory Tech., vol. 47, no. 9, pp. 1737–1739, Sep. 1999.
[39] X. J. Hu and D. B. Ge, "Study on conformal FDTD for electromagnetic scattering by targets with thin coating," Progress In Electromagnetics Research, PIER 79, pp. 305–319, 2008.
[40] J. Z. Lei, C. H. Liang, W. Ding, and Y. Zhang, "Study on MPI-based parallel modified conformal FDTD for 3-D electrically large coated targets by using effective parameters," IEEE Antennas Wireless Propagat. Lett., vol. 7, pp.175-178, 2008.
[41] R. F. Harrington, Field Computation by Moment Methods, New York, Macmillan, 1968.
[42] N. Engheta, W. D. Murphy, V. Rokhlin, and M. S. Vassiliou, “The fast multipole method (FMM) for electromagnetic scattering problems,” IEEE Trans. on Antennas Propagat., vol. 40, no. 6, pp. 634-641, Jun. 1992.
[43] E. A. Dunn, J. K. Byun, E. D. Branch, and J. M. Jin, “Numerical simulation of BOR scattering and radiation using a higher order FEM,” IEEE Trans. on Antennas Propagat., vol. 54, no. 3, pp. 945-952, Mar. 2006.
[44] R. Chiniard, A. Barka, and O. Pascal, “Hybrid FEM/Floquet Modes/PO technique for multi-incidence RCS prediction of array antennas,” IEEE Trans. on Antennas Propagat., vol. 56, no. 6, pp. 1679-1686, Jun. 2008.
[45] L. Gurel, H. Bagci, J. C. Castelli, A. Cheraly, and F. Tardivel, “Validation through comparison: measurement and calculation of the bistatic RCS of a stealth target,” Radio Sci., vol. 38, no. 3, pp. 1046 -1057, Jun. 2003.
[46] L. Sevgi and S. Paker, “FDTD based RCS calculations and antenna simulations,” AEU, Int. J. Electron. Commun., vol. 52, no. 2, pp. 65-75, Mar. 1998.
[47] R. J. Luebbers, K. S. Kunz, M. Schneider, and F. Hunsberger, “A finite-difference time-domain near zone to far zone transformation,” IEEE Trans. on Antennas Propagat., vol. 39, pp. 429-433, Apr. 1991.
[48] O. M. Ramahi, “Near- and far-field calculations in FDTD simulations using Kirchhoff surface integral representation,” IEEE Trans. on Antennas Propagat., vol. 45, no. 5, pp. 753-759, May 1997.
[49] K. R. Umashankar and A. Taflove, “A novel method to analyze electromagnetic scattering of complex objects,” IEEE Trans. on Electromag. Compat.., vol. 24, pp. 397-405, 1982.
[50] K. Zhang and D. Li, Electromagnetic theory for microwaves and optoelectronics, Berlin, Heidelberg : Springer-Verlag Berlin Heidelberg, 2008.
[51] T. B. A. Senior and R. F. Goodrich, “Scattering by a sphere,” Proc. IEE, vol. 111, no. 5, pp. 907-916, May 1964.
[52] H. C. Strifors and G. C. Gaunaurd, “Scattering of electromagnetic pulses by simple-shaped targets with radar cross section modified by a dielectric coating,” IEEE Trans. on Antennas Propagat., vol. 46, no. 9, pp. 1252-1262, Sep. 1998.
[53] H. C. Strifors and G. C. Gaunaurd, “Bistatic scattering by bare and coated perfectly conducting targets of simple shape,” J. Electromag. Wave Appl., vol. 20, no. 8, pp. 1037-1050, 2006.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code