Responsive image
博碩士論文 etd-1102114-144116 詳細資訊
Title page for etd-1102114-144116
論文名稱
Title
具TSV結構之3D與2.5D IC封裝在濕熱效應下的應力與翹曲模擬分析
Stress and Warpage Analyses on the 3D and 2.5D ICs with TSV Structure under Thermal and Moisture Effects
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
130
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-12-01
繳交日期
Date of Submission
2014-12-02
關鍵字
Keywords
有限元素、玻璃轉移溫度、有機鈍化層、蒸氣壓力、濕氣、2.5D IC封裝、3D IC封裝
Finite element, Glass transition temperature, Vapor pressure, Organic passivation, Moisture, 2.5D IC Package, 3D IC Package
統計
Statistics
本論文已被瀏覽 5891 次,被下載 2553
The thesis/dissertation has been browsed 5891 times, has been downloaded 2553 times.
中文摘要
封裝結構由多種不同材料組成,其中底膠、基板等高分子材料具有易吸濕的特性,封裝體內的殘留濕氣在高溫的迴焊環境下,則轉變成水蒸氣產生蒸汽壓力。此時若各元件膨脹量不匹配,封裝體內會有應力集中的現象產生。若濕氣、蒸氣壓力與溫度所產生的應力超過材料機械強度,則產品有毀損的風險,進而影響產品運作。
本研究採用有限元素軟體ANSYS v14.5以探討封裝體的濕氣擴散與濕-熱-蒸氣壓力耦合作用的機械性質,研究方向分為兩部分,第一部分為3D IC封裝結構,第二部分為2.5D IC封裝結構。在3D IC研究當中,本研究詳細探討有無模封包覆情況對矽導孔、微凸塊等元件受到濕氣、蒸氣壓力與溫度負載之影響;在2.5D IC研究當中,除分析過往採用的無機鈍化層,如:Si3N4,也探討成本較低的有機高分子材料,如:HD 4000E。此外,高分子材料在高溫狀態易達到玻璃轉移溫度而大幅改變其材料特性,本論文也針對此現象討論,最後比較兩種先進封裝結構,在濕氣、蒸氣壓力與溫度耦合效應的結果。
Abstract
Polymer material tends to absorb moisture of environment to cause volume swelling among various materials of electronic package, such as underfill and substrate. The residual moisture of the package would also be vaporized into vapor phase in the reflow process. These phenomena render expansion mismatch and stress concentration at the interface between each components. If stress induced by moisture, vapor pressure and temperature up to mechanical strength, the product have the risk to damage and affect the operation.

This paper adopt the finite element software, ANSYS v14.5, to investigate moisture diffusion and structure effects of hygro-thermal-vapor pressure coupling. This study is divided into two parts: First part is about 3D IC package. Second part is about 2.5D IC package. In 3D IC research, whether the mold compound covered and through silicon vias, micro-bumps are discussed under moisture, vapor pressure and temperature effects. In 2.5D IC research, the traditional inorganic passivation layer, Si3N4, is analyzed, in addition, the low-cost organic material is also investigated. Besides, the material properies of organic material will have a sharply change after reflow temperature up to the glass transition temperature (Tg). This paper also focus on this issue and compare the results of these two advanced package under hygro-thermal-vapor pressure coupling.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 xi
第一章 緒論 1
1.1 研究背景 1
1.2 研究重要性 5
1.3 電子封裝簡介 7
1.4 研究主旨 11
1.5 組織章節 13
第二章 文獻回顧 15
2.1 濕氣影響的模擬分析 16
2.2 JEDEC測試標準 24
2.3 熱應力相關研究 25
2.4 總結 27
第三章 基礎模擬與分析理論 28
3.1 濕氣擴散數值分析理論 28
3.2 濕-熱-蒸氣壓力耦合結構分析 33
3.3 濕熱應力理論 36
3.4 熱(濕)傳導理論 43
3.5 濕-熱-蒸氣壓力耦合機械有限元素理論 44
3.6 研究流程與方法 46
3.7 收斂性分析 50
3.8 總結 53
第四章 3D IC模擬結果與討論 54
4.1 有限元素模型 54
4.2 濕氣擴散分析 57
4.3 濕-熱-蒸氣壓力耦合結構分析 65
4.3.1 有無模封結構之等效應力分佈圖 66
4.3.2 不同去濕時間模封與未模封結構對應力與翹曲之影響 69
4.3.3 不同去濕時間下有無達到玻璃轉移溫度之應力與翹曲影響 74
4.4 研究總結 77
第五章 2.5D IC模擬結果與討論 80
5.1 有限元素模型 80
5.2 濕氣擴散結果 82
5.3 有機鈍化層的濕-熱-蒸氣壓力應力結果 88
5.3.1 濕-熱-蒸氣應力結果 89
5.3.2 幾何非線性效應 96
5.4 無機鈍化層之底膠的濕-熱-蒸氣壓力應力結果 98
5.5 研究總結 104
第六章 總結與未來展望 107
6.1 總結 107
6.2 未來展望 108
參考文獻 109
參考文獻 References
[1] Cong, J., & Zhang, Y. (2005). Thermal via planning for 3-D ICs. Paper presented at the International Conference on Computer-Aided Design, 2005. ICCAD-2005. IEEE/ACM San Jose, CA, USA: DoubleTree Hotel.
[2] Cong, J., Luo, G., Wei, J., & Zhang, Y. (2007). Thermal-aware 3D IC placement via transformation. Paper presented at the Design Automation Conference, 2007. ASP-DAC'07. Asia and South Pacific, Pacifico Yokohama, Japan.
[3] Wu, C., Hsieh, M., Chiu, C., Yew, M., & Chiang, K. (2011). Interfacial delamination investigation between copper bumps in 3D chip stacking package by using the modified virtual crack closure technique. Microelectronic Engineering, Volume 88, Issue 5, 739-744.
[4] Amagai, M. (2002). Mechanical reliability in electronic packaging. Microelectronics Reliability, Volume 42, Issue 4, 607-627.
[5] Dunne, R. C., & Sitaraman, S. K. (2002). An integrated process modeling methodology and module for sequential multilayered substrate fabrication using a coupled cure-thermal-stress analysis approach. IEEE Transactions on Electronics Packaging Manufacturing, Volume 25, Issue 4, 326-334.
[6] 龔哲立. (2008). 電子構裝封膠之黏彈性模型及其製程翹曲之模擬. 碩士論文, 成功大學.
[7] Tummala, R. (2008). System on package: McGraw-Hill Professional.
[8] Lau, J. (2010). TSV manufacturing yield and hidden costs for 3D IC integration. Paper presented at the Electronic Components and Technology Conference (ECTC), 2010 Proceedings 60th, Las Vegas, NV, USA: Paris Las Vegas Hotel.
[9] Maxfield, C. (2012). 2D vs. 2.5 D vs. 3D ICs 101. http://www.eetimes.com/document.asp?doc_id=1279540
[10] Fukuzawa, I., Ishiguro, S., & Nanbu, S. (1985). Moisture resistance degradation of plastic LSIs by reflow soldering. Paper presented at the Reliability Physics Symposium, 1985. 23rd Annual.
[11] Galloway, J. E., & Miles, B. M. (1997). Moisture absorption and desorption predictions for plastic ball grid array packages. IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part A, Volume 20, Issue 3, 274-279.
[12] Kitano, M., Nishimura, A., Kawai, S., & Nishi, K. (1988). Analysis of package cracking during reflow soldering process. Paper presented at the International Reliability Physics Symposium 1988. 26th Annual Proceedings.
[13] Tay, A. A. O., & Tingyu, L. (1996). Moisture diffusion and heat transfer in plastic IC packages. IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part A, Volume 19, Issue 2, 186-193.
[14] 許峰瑞. (2010). 微機電製程壓力感測器之熱-濕-壓-固耦合與可靠度分析. 碩士論文, 義守大學.
[15] 許育騰. (2007). 指紋辨識器濕熱結構耦合分析暨可靠度設計. 碩士論文, 義守大學.
[16] 李輝宇. (2006). CMOS 影像感測器之可靠度分析與熱設計. 碩士論文, 義守大學.
[17] Hsu, H. C., Lee, H. Y., Hsu, Y. C., & Fu, S. L. (2008). Thermo-hygro-mechanical design and reliability analysis for CMOS Image Sensor. Journal of Thermal Stresses, Volume 31, Issue 10, 917-934.
[18] Hsu, F. J. (2010). Thermal-hygro-vapor pressure-mechanical analysis and reliability on MEMS-based pressure sensor. Issue.
[19] 林鴻穎. (2008). 電子構裝材料受溼度影響之機械性質. 碩士論文, 國立清華大學.
[20] 許永昱. (2008). 底膠填充 (Underfill) 材料在不同環境及介面條件下之介面剪力強度與破壞模式分析. 碩士論文, 國立清華大學.
[21] 賴新一. (2000). 濕熱對黏彈塑性 IC 封裝體脫層破壞之研究. 碩士論文, 國立清華大學.
[22] Kim, D. W., & Kong, B. S. (2006). The effect of hygro-mechanical and thermo-mechanical stress on delamination of gold bump. Microelectronics Reliability, Volume 46, Issue 7, 1087-1094.
[23] Tee, T. Y., & Zhong, Z. (2004). Integrated vapor pressure, hygroswelling, and thermo-mechanical stress modeling of QFN package during reflow with interfacial fracture mechanics analysis. Microelectronics Reliability, Volume 44, Issue 1, 105-114.
[24] Tee, T. Y., Kho, C. L., Yap, D., Toh, C., Baraton, X., & Zhong, Z. (2003). Reliability assessment and hygroswelling modeling of FCBGA with no-flow underfill. Microelectronics Reliability, Volume 43, Issue 5, 741-749.
[25] Oterkus, S., Madenci, E., Oterkus, E., Hwang, Y., Bae, J., & Han, S. (2014). Hygro-thermo-mechanical analysis and failure prediction in electronic packages by using peridynamics. Paper presented at the Electronic Components & Technology Conference, Lake Buena Vista, Florida, USA: Walt Disney World Swan and Dolphin Resort.
[26] Xie, B., Fan, X., Shi, X., & Ding, H. (2009). Direct concentration approach of moisture diffusion and whole-field vapor pressure modeling for reflow process—part II: application to 3D ultrathin stacked-die chip scale packages. Journal of Electronic Packaging, Volume 131, Issue 3, 031-011.
[27] Fan, X., Zhang, G., Van Driel, W. D., & Ernst, L. J. (2008). Interfacial delamination mechanisms during soldering reflow with moisture preconditioning. Components and Packaging Technologies, IEEE Transactions on, Volume 31, Issue 2, 252-259.
[28] Van Gils, M., Van Driel, W., Zhang, G., Bressers, H., van Silfhout, R. B., Fan, X., & Janssen, J. (2007). Virtual qualification of moisture induced failures of advanced packages. Microelectronics Reliability, Volume 47, Issue 2, 273-279.
[29] Zhang, X., Tee, T. Y., Ng, H. S., Teysseyre, J., Loo, S., Mhaisalkar, S., Ng, F. K., Lim, C. T., Du, X., & Bool, E. (2005). Comprehensive hygro-thermo-mechanical modeling and testing of stacked die BGA module with molded underfill. Paper presented at the Electronic Components and Technology Conference, 2005. Proceedings. 55th, Lake Buena Vista, Fl, USA: Wyndham Palace Resort & Spa.
[30] Tee, T. Y., Fan, X. J., & Lim, T. B. (1999). Modeling of whole field vapor pressure during reflow for flip chip BGA and wire bond PBGA packages. Paper presented at the Proceedings of the First Electronics Material Packaging Workshop.
[31] Kitano, M., Nishimura, A., Kawai, S., & Nishi, K. (1988). Analysis of package cracking during reflow soldering process. Paper presented at the Reliability Physics Symposium 1988. 26th Annual Proceedings., International.
[32] He, Y., & Fan, X. (2007). In-situ characterization of moisture absorption and desorption in a thin BT core substrate. Paper presented at the Electronic Components and Technology Conference, 2007. ECTC'07. Proceedings. 57th, NV, USA: John Ascuaga's Nugget Sparks.
[33] 劉心怡, 洪雅慧, 何宗漢, 伍玉真, & 鄧希哲. (2010). 銀膠種類及厚度對構裝後晶片可靠度的影響. 工程科技與教育學刊, Volume 7, Issue 4, 546-559.
[34] Vandevelde, B., Christiaens, F., Beyne, E., Roggen, J., Peeters, J., Allaert, K., Vandepitte, D., & Bergmans, J. (1998). Thermomechanical models for leadless solder interconnections in flip chip assemblies. IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part A., Volume 21, Issue 1, 177-185.
[35] M. C., H., C. K., Y., & S. T., W. (2010). Thermo-mechanical simulative study for 3D vertical stacked IC packages with spacer structures. Paper presented at the Semiconductor Thermal Measurement and Management Symposium, 2010. SEMI-THERM 2010. 26th Annual IEEE, Techmart Santa Clara, CA, USA: Hyatt Hotel.
[36] M.C., H., & Yu, C. K. (2008). Thermo-mechanical simulations for 4-layer stacked IC packages. Paper presented at the International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Micro-Systems, 2008. EuroSimE 2008., Konzerthaus Freiburg im Breisgau, Germany.
[37] Au, K. Y., Beleran, J. D., Yang, Y. B., Zhang, Y. F., Kriangsak, S. L., Wilson, P. L. O., Drake, Y. S. K., & Nathapong, S. (2011). Multi chip stacking & reliability challenges using TSV-micro C4 solder interconnection for FCCSP TSV package. Paper presented at the Electronics Packaging Technology Conference (EPTC), 2011 IEEE 13th, Singapore: Shangri-La Hotel.
[38] Au, K. Y., Kriangsak, S. L., Zhang, X. R., Zhu, W. H., & Toh, C. H. (2010). 3D chip stacking & reliability using TSV-micro C4 solder interconnection. Paper presented at the Electronic Components and Technology Conference (ECTC), 2010 Proceedings 60th, Las Vegas, NV, USA: Paris Las Vegas Hotel.
[39] M. C., H., & W., L. (2008). FEA modeling and DOE analysis for design optimization of 3D-WLP. Paper presented at the Electronics System-Integration Technology Conference, 2008. ESTC 2008. 2nd, Greenwich, London, United Kingdom: University of Greenwich (GRE).
[40] Lu, K. H., Suk-Kyu, R., Zhao, Q., Xuefeng, Z., Im, J., Huang, R., & Ho, P. S. (2010). Thermal stress induced delamination of through silicon vias in 3-D interconnects. Paper presented at the Electronic Components and Technology Conference (ECTC), 2010 Proceedings 60th, Las Vegas, NV, USA: Paris Las Vegas Hotel.
[41] Vandevelde, B., Okoro, C., Gonzalez, M., Swinnen, B., & Beyne, E. (2008). Thermo-mechanics of 3D-wafer level and 3D stacked IC packaging technologies. Paper presented at the International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Micro-Systems, 2008. EuroSimE 2008., Konzerthaus Freiburg im Breisgau, Germany.
[42] Jiang, T., Ryu, S. K., Zhao, Q., Im, J., Huang, R., & Ho, P. S. (2013). Measurement and analysis of thermal stresses in 3D integrated structures containing through-silicon-vias. Microelectronics Reliability, Volume 53, Issue 1, 53-62.
[43] Jing, Z., Daquan, Y., Ran, H., Feng., W., Xueping, G., Chongshen, S., Huijuan, W., Guidotti, D., Liqiang, C., & Lixi, W. (2011). Nonlinear thermal stress & strain analysis of through silicon vias with different structures and polymer filling. Paper presented at the Electronics Packaging Technology Conference (EPTC), 2011 IEEE 13th, Singapore: Shangri-La Hotel.
[44] Cheng, E. J., & Shen, Y. L. (2012). Thermal expansion behavior of through-silicon-via structures in three-dimensional microelectronic packaging. Microelectronics Reliability, Volume 52, Issue 3, 534-540.
[45] C. W., K., & H. Y., T. (2012). Thermal stress analysis and failure mechanisms for through silicon via array. Paper presented at the 2012 13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Sheraton San Diego, CA, USA.
[46] Li, L., Su, P., Xue, J., Brillhart, M., Lau, J., Tzeng, P. J., Lee, C. K., Zhan, C. J., Dai, M. J., & Chien, H. C. (2012). Addressing bandwidth challenges in next generation high performance network systems with 3D IC integration. Paper presented at the Electronic Components and Technology Conference (ECTC), 2012 IEEE 62nd, San Diego, CA, USA: Sheraton San Diego Hotel and Marina.
[47] Shen, Y.-L., & Johnson, R. (2013). Misalignment induced shear deformation in 3D chip stacking: A parametric numerical assessment. Microelectronics Reliability, Volume 53, Issue 1, 79-89.
[48] Kung, C., Liao, T. T., & Liao, C. H. (2012). Parametric analyses on fatigue reliability of 3D IC packages with built through silicon vias (TSVs). Paper presented at the 2012 International Conference on Mechatronics and Automation (ICMA), Chengdu, Sichuan Chengdu, China: Wangjiang Hotel.
[49] Chen, C. I., Cheng, F. C., Zhan, C. J., & Chang, T. C. (2010). Parameter study to the interposer stress analysis of fine pitch 3-D stack package. Paper presented at the Microsystems Packaging Assembly and Circuits Technology Conference (IMPACT), 2010 5th International, Taipei, Taiwan: Taipei Nangang Exhibition Center.
[50] Wong, E. H., Koh, S. W., Lee, K. H., & Rajoo, R. (2002). Comprehensive treatment of moisture induced failure-recent advances. IEEE Transactions on Electronics Packaging Manufacturing, Volume 25, Issue 3, 223-230.
[51] E. H., W., Y. C., T., & T. B., L. (1998). Moisture diffusion and vapour pressure modeling of IC packaging. Paper presented at the Electronic Components and Technology Conference, 1998. 48th IEEE.
[52] Xie, B., Fan, X., Shi, X., & Ding, H. (2009). Direct concentration approach of moisture diffusion and whole-field vapor pressure modeling for reflow process—part I: theory and numerical implementation. Journal of Electronic Packaging, Volume 131, Issue 3, 031-010.
[53] Fan, X., Lee, S., & Han, Q. (2009). Experimental investigations and model study of moisture behaviors in polymeric materials. Microelectronics Reliability, Volume 49, Issue 8, 861-871.
[54] T. Y., T., & H. S., N. (2002). Whole field vapor pressure modeling of QFN during reflow with coupled hygro-mechanical and thermo-mechanical stresses. Paper presented at the Electronic Components and Technology Conference, 2002. Proceedings. 52nd.
[55] Vandevelde, B., Christiaens, F., Beyne, E., Roggen, J., Peeters, J., Allaert, K., Vandepitte, D., & Bergmans, J. (1998). Thermomechanical models for leadless solder interconnections in flip chip assemblies. IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part A, Volume 21, Issue 1, 177-185.
[56] Hsieh, M. C., & Yu, C. K. (2008). Thermo-mechanical simulations for 4-layer stacked IC packages. Paper presented at the International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Micro-Systems, 2008. EuroSimE 2008., Konzerthaus Freiburg im Breisgau, Germany.
[57] M. C., H., C. C., L., & L. C., H. (2013). Comprehensive thermo-mechanical stress analyses and underfill selection of large die flip chip ball grid array. IEEE Transactions on Components, Packaging and Manufacturing Technology., Volume 3, Issue 7, 1155-1162.
[58] M. C., H., C. C., L., & L. C., H. (2013). Comprehensive thermo-mechanical stress analyses and underfill selection of large die flip chip ball grid array. IEEE Transactions on Components, Packaging and Manufacturing Technology, Volume 3, Issue 7, 1155-1162.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code