Responsive image
博碩士論文 etd-1108116-131843 詳細資訊
Title page for etd-1108116-131843
論文名稱
Title
運用串聯直調雷射及電致吸收調變器實現強度調變直接偵測單邊帶正交分頻多工長距離傳輸
IM/DD Single-Sideband OFDM Long-Distance Transmission Using Cascaded DML/EAM
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
59
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-25
繳交日期
Date of Submission
2016-12-08
關鍵字
Keywords
單邊帶訊號、電致吸收調變器、直接調變雷射、功率衰落、正交分頻多工、強度調變與直接偵測
OFDM, single sideband, DML, EAM, RF power fading, IM/DD
統計
Statistics
本論文已被瀏覽 5702 次,被下載 127
The thesis/dissertation has been browsed 5702 times, has been downloaded 127 times.
中文摘要
近年來隨著科技的進步,網際網路快速的成長,人們對網路的需求也越來越高。隨著媒體的進步,傳輸所需要的資料量也越來越多,而如何快速的傳輸如此大量的資料成為技術發展重要的挑戰。目前,光通訊可以在傳輸速率上符合其需求,且較同軸電纜相比有較低的能量耗損與傳輸距離上的優勢。

為了達到高容量以及長距離的傳輸,我們使用具較高的頻譜使用效率的調變格式 正交分頻多工 (Orthogonal Frequency Division Multiplexing, OFDM)。並且在成本效益的考量底下,我們使用較簡單且便宜的強度調變與直接偵測 (Intensity Modulation /Direct Detection, IM/DD) 系統。然而在長距離傳輸下IM/DD-OFDM訊號會受到色散所影響。對於直接調變DFB雷射 (Directly Modulated DFB Lasers, DML)在長距離傳輸後有大量的非線性失真。而對於電致吸收調變器 (Electro-Absorption Modulated, EAM) 以及直接調變雷射在長距離傳輸後皆會有功率衰落的問題。故我們使用單邊帶訊號來從根本上解決這兩個問題。

本篇論文中,我們也提出了一個新穎的單邊帶 OFDM訊號調變方法,使用串聯直接調變雷射以及電致吸收調變器產生單邊帶訊號。在不需補償的狀態下,頻寬 5GHz的 IM/DD-OFDM訊號在傳輸 250公里可以達到12.8 Gbps。在補償二階非線性失真傳輸250公里可達到13.8 Gbps。
Abstract
In recent years, with technology advances, many different multimedia applications have been developed. The demand for network is increasing. How to quickly transfer a large of data has become an important challenge. Higher bit rates, lower power consumption and reaching longer distance with the deploy standard are main feature of all optical networks.
In order to meet these requirements, we need high capacity modulation technique and cost-effect transmission systems. We use a high spectral efficiency modulation format, orthogonal frequency division multiplexing (OFDM). And under cost -effect considerations, we use a simple system, Intensity modulation and direct detection (IM/DD). However, after long distance transmission, traditional IM/DD OFDM transmission suffers dispersion-induced power fading and nonlinear distortion. Frequency modulation (FM) in a DML-based system leads to considerable distortion to degrade transmission performance On the other hand, severe fading turns to be a major issue in EAM-based OFDM transmission. We use single sideband signal to solve these two problems fundamentally.
In this thesis, based on a cascaded DML/EAM, we proposed a novel IM/DD scheme to generate SSB OFDM signals, featuring tolerance to dispersion-related fading and distortion. Without compensation for dispersion and nonlinear distortion, 5-GHz SSB-OFDM signal can achieve 12.8 Gbps after 250 km. With compensation for dispersion and nonlinear distortion, signal can achieve 13.8 Gbps after 250 km.
目次 Table of Contents
論文審定書 i
致謝 ii
中文摘要 iii
Abstract iv
目錄 v
圖次 vii
第一章 緒論 1
1.1前言 1
1.2研究動機 2
第二章 直接調變強度偵測正交分頻多工系統 4
2-1正交分頻多工 4
2-1-1正交分頻多工簡介 4
2-1-2 正交分頻多工之原理 4
2-1-3 正交分頻多工的優缺點 6
2-1-4 光學正交分頻多工的架構 10
2-2強度調變直接偵測 12
2-2-1 強度調變直接偵測簡介 12
2-2-2 電致吸收調變器 13
2-2-3 直接調變DFB雷射 14
2-2-4光二極體 15
第三章 長距離傳輸之挑戰 16
3-1 光纖傳輸系統 16
3-2-1 光纖傳輸簡介 16
3-2-2 色散 16
3-2-3 啁啾 17
3-2 非線性失真 18
3-2-1 元件產生之非線性失真 18
3-2-2 子載波間混頻干擾 19
3-2-3 沃爾泰拉濾波器 22
3-3 功率衰減 24
第四章 單邊帶訊號 27
4-1 單邊帶訊號原理 27
4-2 M.E. Chaibi之單邊帶訊號調變 28
4-3 新穎單邊帶訊號調變 31
第五章 實驗架構與結果 34
5-1 實驗架構 34
5-1-1 實驗設備 34
5-1-2 M.E. Chaibi調變單邊帶訊號 36
5-1-3 新穎單邊帶調變 37
5-2實驗結果與討論 38
5-2-1 M.E. Chaibi調變單邊帶與新穎調變單邊帶比較 38
5-2-2 單邊帶調變與雙變帶調變比較 40
第六章 結論 46
參考文獻 47
參考文獻 References
[1] Future of video content: Evolution toward 2020 (https://techzine.alcatel-lucent.com/future-video-content-evolution-toward-2020?s_cid=smm15_tmc0500_bl)
[2] Koonen, T. (2006). “Fiber to the home/fiber to the premises: what, where, and when?” Proceedings of the IEEE, 94(5), 911-934.
[3] Armstrong, J. (2009). “OFDM for optical communications”. Journal of Lightwave Technology, 27(3), 189-204.
[4] Campello, J. (1998). “Optimal discrete bit loading for multicarrier modulation systems.” In IEEE International Symposium on Information Theory.
[5] Wei, C. C. (2011). “Small-signal analysis of OOFDM signal transmission with directly modulated laser and direct detection.” Optics letters, 36(2), 151-153.
[6] Wei, C. C. (2012). “Analysis and iterative equalization of transient and adiabatic chirp effects in DML-based OFDM transmission systems.” Optics express, 20 (23), 25774-25789.
[7] Chen, H. Y., Wei, C. C., Chu, H. H., Chen, Y. C., Lu, I. C., & Chen, J. (2014, September). “An EAM-based 50-Gbps 60-km OFDM system with 29-dB loss budget enabled by SSII cancellation or Volterra filter.” In 2014 The European Conference on Optical Communication (ECOC)
[8] Cheng, H. L., Chen, W. H., Wei, C. C., & Chiu, Y. J. (2015). “Optical single-sideband OFDM transmission based on a two-segment EAM.” Optics express,23(2), 982-990.
[9] Chaibi, M. E., Anfray, T., Kechaou, K., Gosset, C., Neto, L. A., Aubin, G., Kazmierski, C.,Chanclou, P.,, Christelle, A.-B. & Erasme, D. (2013). “Dispersion compensation-free IM/DD SSB-OFDM transmission at 11.11 Gb/s over 200 km SSMF using dual EML.” IEEE Photonics Technology Letters, 25(23), 2271-2273.
[10] Chang, R. W. (1966). “Synthesis of Band‐Limited Orthogonal Signals for Multichannel Data Transmission.” Bell System Technical Journal, 45(10), 1775-1796.
[11] Weinstein, S., & Ebert, P. (1971). “Data transmission by frequency-division multiplexing using the discrete Fourier transform.” IEEE transactions on communication technology, 19(5), 628-634.
[12] A short tutorial on the significance of cyclic prefix in OFDM systems
[13] Jiang, D. (2006, November). “Optimal bit loading algorithm for power-line communication systems subject to individual channel power constraints.” In2006 International Conference on Communication Technology (pp. 1-4). IEEE.
[14] Keldysh, L. V. (1958). “Behavior of non-metallic crystals in strong electric fields.” Soviet Journal of Experimental and Theoretical Physics, 6, 763.
[15] Wedding, B. (1994). “Analysis of fibre transfer function and determination of receiver frequency response for dispersion supported transmission.” Electronics letters, 30(1), 58-59.
[16] G. P. Agrawal, “Nonlinear Fiber Optics,” the 3rd edition
[17] Hsu, D., Wei, C. C., Chen, H. Y., Song, C. Y., Lu, I. C., & Chen, J. J. (2013, March). “74.4% SSII cancellation in an EAM-based OFDM-IMDD transmission system.” In Optical Fiber Communication Conference (pp. OM2C-7). Optical Society of America.
[18] Wei, C. C., Cheng, H. L., Chen, H. Y., Chen, Y. C., Chu, H. H., Chang, K. C., Lu, I-C.& Chen, J. (2015). “Analysis of Nonlinear Distortion and SSII Cancellation in EAM-Based IMDD OFDM Transmission.” Journal of Lightwave Technology, 33 (14), 3069-3082.


[19] Chen, H. Y., Wei, C. C., Chen, Y. C., Chu, H. H., Song, C. Y., Lu, I. C., & Chen, J. (2014, March). “50-Gbps 100-km EAM-based OFDM-IMDD transmission employing novel SSII cancellation.” In Optical Fiber Communication Conference (pp. Th3G-3). Optical Society of America.
[20] Chen, H. Y., Wei, C. C., Lu, I. C., Chen, Y. C., Chu, H. H., & Chen, J. (2014). “EAM-based high-speed 100-km OFDM transmission featuring tolerant modulator operation enabled using SSII cancellation.” Optics express, 22(12), 14637-14645.
[21] Cheng, H. L., Wang, Y. H., Wei, C. C., & Chen, J. (2016, March). “30-Gbps 100-km OFDM Transmission Using 10-GHz DML and Adiabatic-Chirp-Involved SSII Cancellation.” In Optical Fiber Communication Conference (pp. W1A-6). Optical Society of America.
[22] Wiener, N. (1949). Extrapolation, “interpolation, and smoothing of stationary time series (Vol. 2).” Cambridge: MIT press.
[23] Smith, G. H., Novak, D., & Ahmed, Z. (1997). “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators.” IEEE transactions on microwave theory and techniques, 45(8), 1410-1415.
[24] Kim, H. (2008). “EML-based optical single sideband transmitter.” IEEE Photonics Technology Letters, 4(20), 243-245.
[25] Marshall, W. K., Crosignani, B., & Yariv, A. (2000). “Laser phase noise to intensity noise conversion by lowest-order group-velocity dispersion in optical fiber: exact theory.” Optics letters, 25(3), 165-167.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code